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ABSTRACT
Objective: To evaluate the reference values for short-
term heart rate variability (HRV), estimate the
performance of cardiovascular autonomic neuropathy
(CAN) diagnostic tests in the absence of a gold standard,
and assess CAN prevalence in our dataset.
Setting: Community and hospital health centre.
Participants: Of 2092 subjects available for data
analysis, 371 healthy subjects were selected so the
reference values for the short-term HRV test could be
evaluated. An external dataset contained 88 subjects who
completed both the short-term HRV test and Ewing’s test.
Intervention: Collection of information on clinical
outcome.
Primary and second outcome measures:
Cardiovascular autonomic function evaluated by using the
short-term HRV test and/or Ewing’s test.
Results: Cut-off points of 356.13, 55.45 and 36.64 ms2

were set for total power, low frequency and high
frequency (HF), respectively. The diagnostic test for
CAN based on the mentioned reference value was created.
The HRV test had a high sensitivity (80.01–85.09%) and
specificity (82.30–85.20%) for CAN. In addition, the
non-inferiority test rejected the null hypothesis that the
performance of the HRV test was inferior to that of
Ewing’s test (p<0.05). The estimated CAN prevalence was
14.92% and 29.17% in the total sample and patients with
diabetes, respectively.
Conclusions: Our findings provided reference values for
short-term HRV, which were used for the CAN diagnostic
test with high sensitivity and specificity. The estimated
CAN prevalence was high in the Chinese population.

INTRODUCTION
The prevalence of cardiovascular autonomic
neuropathy (CAN) is increasing worldwide,
particularly in the developing world.1 The
disease is a major factor contributing to the
cardiovascular complications of diabetes mel-
litus (DM),2 and also affects many other
majority segments of the general population,
such as the elderly, and patients with

hypertension (HT) and metabolic syndrome
(MS).1 3 4 Individuals with previously undiag-
nosed CAN have an unfavourable cardiovas-
cular risk profile, especially in terms of
sudden death, indicating a higher risk of car-
diovascular disease.1

In general, tests to assess CA function
consist of the classic Ewing’s test and spectral
analysis of spontaneous heart rate variability
(HRV).5 6 Ewing’s test includes five simple
non-invasive cardiovascular autonomic reflex
tests that are widely used in diabetology as
well as rheumatology and gastroenterology.7 8

Ewing’s test has been reported to have high
sensitivity and specificity for CAN diagnosis.2 9

However, this test requires personnel with
specialised skills and is not readily available
in general practice.9 10 Spectral analysis of
HRV has the advantage of quantitatively
assessing CA activity, and yields results that
are similar to those produced by Ewing’s
test.2 9 10 Our previous study indicated that
significant negative values for the short-term
HRV indices correlated with DM, HT and
MS.11 Compared with traditional methods,
the short-term HRV test is simple, non-
invasive and reproducible; therefore, it is
easily used together with other diagnostic

Strengths and limitations of this study

▪ This was a large-scale, cross-sectional study of
diagnostic tests in a Chinese population.

▪ This is the first study to evaluate cardiovascular
autonomic neuropathy diagnosis using the short-
term heart rate variability test by using Bayesian
analysis without a gold standard.

▪ The diagnostic performance of the short-term
heart rate variability test and Ewing’s test was
compared using a non-inferior test.

▪ The findings of this study can be applied to the
Chinese population, but not to other ethnic groups.
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tests for a large number of individuals in the general
population.2 10

However, normal reference values for short-term HRV
for assessment of CA function in the Chinese population
have not been reported. There is no widely accepted
gold standard approach to CAN diagnosis. Studies have
been performed to evaluate the performance of new
diagnostic tests using Ewing’s test as a reference.2 10 12

However, Ewing’s was actually not a gold standard.
Moreover, the performance of the HRV test was similar
to that of Ewing’s test,2 9 so both diagnostic tests should
be considered as acceptable and comparable for CA
function assessment or CAN diagnosis. In addition, our
previous study was performed to evaluate the perform-
ance of CAN diagnosis based on a baroreflex sensitivity
test by using Bayesian analysis without a gold standard.13

In general, the Bayesian approach to inference about a
generic parameter θ combines prior information about
θ with the data to obtain the posterior distribution of θ,
p(θ|data). Then, one can use the mean, median or
mode of this posterior distribution as an estimate of θ.
Once one has obtained a sample from p(θ|data), a
Monte Carlo based estimate of θ can be calculated.
This study aimed to evaluate the reference values for

short-term HRV in a large cross-sectional dataset, and to
estimate the sensitivities and specificities of CAN diag-
nostic tests using the Bayesian approach, in the absence
of a gold standard, in another independent dataset.
Finally, CAN prevalence was estimated in our cross-
sectional dataset.

METHODS AND MATERIALS
Study population
This study is a survey of CAN factors carried out in a
random sample of the middle-aged Chinese popula-
tion.11 Participants were recruited from rural and urban
communities in Shanghai. Survey participants with
undiagnosed CAN and aged 30–80 years were included
in the study. A total of 3012 subjects were invited to a
screening visit between 2011 and 2012. Some subjects
were excluded from the study because of potential con-
founding factors that may have influenced their CA
function.11 Briefly, the exclusion criteria were as follows:
(1) history or findings of arrhythmia, and hyperthyroid-
ism or hypothyroidism; (2) pregnancy or lactation; and/
or (3) serious hepatic or renal dysfunction. Complete
baseline data were obtained for 2092 (69.46%) of the
participants. To create an external dataset, 88 individuals
with the same inclusion and exclusion criteria were
recruited from another cohort, such as a healthy exam-
ination centre, to assess CA function using both the
short-term HRV and Ewing’s tests. Written consent was
obtained from all patients before the study began. This
study was approved by the Ethics Committee of Huashan
Hospital, Shanghai, China.
For reference value analysis, 371 healthy subjects were

selected from the dataset. The inclusion criteria

included the following: (1) clinically stable condition
with no previous medical history of DM, HT, dyslipide-
mia, coronary artery disease, cerebral stroke or heart
failure; (2) fasting plasma glucose (FPG) <100 mg/dL
and 2 h plasma glucose (2hPG) <140 mg/dL after a 75 g
oral glucose tolerance test; (3) normal body mass index
(BMI) between 18.5 and 24.9 kg/m2; (4) triglycerides
(TG) <150 mg/dL and high-density lipoprotein (HDL)
cholesterol >40 mg/dL; and (5) systolic blood pressure
(SBP) <140 mm Hg and diastolic blood pressure (DBP)
<90 mm Hg. The exclusion criterion was the use of any
medications that may affect resting HR, such as
β-receptor blockers, 1 month before the study.

Measurement
Subjects were interviewed for the documentation of
medical histories and medication, history of smoking
habits and laboratory assessment of cardiovascular
disease risk factors. All study subjects underwent a com-
plete clinical baseline characteristics evaluation after an
8 h fast, which included: (1) history and physical exam-
ination, (2) heart rate and blood pressure (BP), (3) FPG
and insulin, and (4) fasting plasma lipids. BMI was cal-
culated as weight in kilograms divided by the square of
height in metres. FPG was quantified by the glucose
oxidase procedure. Serum total cholesterol, HDL choles-
terol, TG levels, creatinine and uric acid were measured
by an enzymatic method with a chemical analyser
(Hitachi 7600-020, Tokyo, Japan). Low-density lipopro-
tein cholesterol levels were calculated using the
Friedewald formula. At the central laboratory in our hos-
pital, the day-to-day and inter-assay coefficients of vari-
ation for all analyses were between 1% and 3%. MS was
diagnosed in individuals who met three or more of the
updated National Cholesterol Education Program/Adult
Treatment Panel III criteria (WHO Western Pacific
Region obesity criteria).14

Diagnostic tests
HRV values were measured non-invasively by power spec-
tral analysis. Subjects were studied while awake in the
supine position after 20 min of rest. Testing times were
from 8:00 to 11:00 in the morning. A type I FDP-1 HRV
non-invasive detection system was used with V.2.0 soft-
ware (Department of Biomedical Engineering of Fudan
University, Shanghai, China). Electrocardiograms,
respiratory signals and beat-to-beat BP were continually
and simultaneously recorded for 15 min using an
HMX-3C electrosphygmograph transducer (placed on
the radial artery of the dominant arm) and a respiration
sensor. The short-term HRV analysis was performed for
all subjects using a computer-aided examination and
evaluation system for spectral analysis to investigate
changes in autonomic regulation. The following HRV
parameters were measured by frequency domain spec-
tral analysis9: total power (TP), lower frequency (LF),
normalised LF (LFn), high frequency (HF) and normal-
ised HF (HFn). The TP is the variance of the
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normal-to-normal interval over a temporal segment; HF
is closely related to vagal activity. The LF/HF ratio was
calculated because it is considered to reflect sympatho-
vagal balance or sympathetic modulation.10

Ewing’s test for the detection of subclinical CAN was
carried out as previously described.5 Briefly, HRV values
were analysed during three manoeuvres: deep-breathing
(DB), lying-to-standing (LS) and Valsalva (V) tests. The
DB test consisted of six deep respiratory cycles in 1 min.
The result of the DB test was expressed as the mean
value for the ratio of maximal interval between two con-
secutive R waves on the ECG (RR) during breathing out,
over minimal RR during breathing in at each respiratory
cycle. The result of the LS test was expressed as the ratio
of the longest RR interval (about the 30th beat after
standing up) over the shortest RR interval (about the
15th beat). The Valsalva test was performed three con-
secutive times, and the mean value for the Valsalva ratio
was defined as the longest RR interval after Valsalva
release over the shortest RR interval during the active
phase of Valsalva. Cardiac parasympathetic neuropathy
was considered to be present when at least one test was
abnormal according to age. The other two tests investi-
gated BP response to the LS test and to a standard hand-
grip test. Postural hypotension was assessed by
measuring BP after 10 min in the recumbent position
and again after 1 min in the standing position. Postural
hypotension was defined as a drop in SBP of
≥20 mm Hg or in DBP of ≥10 mm Hg. The handgrip
test consisted of determining the maximal contraction
with a dynamometer and then maintaining one-third of
the maximal contraction for 5 min. An increase in DBP
lower than 10 mm Hg was considered to be abnormal.
The three tests evaluating HRV are mainly dependent
on parasympathetic control, whereas the other two tests
evaluating BP response are mainly dependent on sympa-
thetic activity. In this study, CAN was diagnosed based on
at least two abnormal CA reflex test results (based on
Ewing’s test model or HRV test model).2

Statistical analysis
The Kolmogorov-Smirnov (K-S) test was used to deter-
mine whether continuous variables followed a normal
distribution. Variables that were not normally distributed
were log-transformed to approximate normal distribu-
tion for analysis. The results are expressed as the mean
±SD or median, unless otherwise stated. The quantiles
were based on the distribution of HRV values, where the
5th, 10th and 50th percentiles were considered, and the
median was the 50th quantile. Pearson and Spearman
analytical methods were employed for correlation ana-
lysis of two variables. Skewed data in tables are usually
reported using 2.5th and 97.5th percentiles or the
median; however, in this study we have reported skewed
data for HRV indices using the mean and SD because
HRV parameters are often presented in this way in other
studies. Additionally, we have described HRV indices
using two formats in the tables. In our study, we

performed correlation analysis between age and HRV
having a skewed distribution using the Spearman correl-
ation test so as not as to show log-transformed data.
We used a Bayesian latent class model to estimate the

sensitivity and specificity of the HRV test and/or Ewing’s
test for CAN in the absence of a gold standard, as
described by Branscum et al.15 Latent class analysis
allows characterisation of a discrete latent class (here,
the true disease status) by discrete observed variables. In
this model, both tests are equally considered as imper-
fect. There are unknown parameters about which infer-
ence must be made: the CAN population prevalence,
and the sensitivity and specificity of each of the two
tests. The Bayesian approach can simultaneously esti-
mate all five unknown parameters (prevalence of CAN;
sensitivity of HRV test; sensitivity of Ewings’ test; specifi-
city of HRV test; and, specificity of Ewings’ test). These
methods proceed in two steps: first, a prior distribution
summarises the available pre-experimental information
about the parameters. Subsequently, the prior distribu-
tion is updated via Bayes’ theorem to a posterior distri-
bution, using the data and the usual multinomial
likelihood function. Marginal posterior densities can be
derived for each parameter by integration, from which
95% marginal posterior credible intervals can be calcu-
lated. Since the integration here is analytically intract-
able, the Gibbs sampler, a Monte Carlo approach to
calculating marginal densities, is employed. The above
methods allow for simultaneous inferences to be made
for all unknown parameters, which take full advantage
of all the information contained in the data, as well as
formally incorporated prior information, when available.
See the online supplementary file for details. Data were
analysed using SPSS V.16.0 and WinBUGS.14 for the
Bayesian analysis. The minimum sample size estimation
for this diagnostic performance analysis was 80 subjects
according to the sample size estimation formula:
N=Z2Sen(1−Sen)/δ2+Z2Spe(1−Spe)/δ2; where Z was
derived from the α level (0.05 in this study), Sen (sensi-
tivity) and Spe (specificity) were set to 0.85, respectively,
and δ was set to 0.08–0.01.
Prior distributions can be estimated based on a review

of the literature and/or expert opinion in the absence
of data. Published evaluations of Ewing’s test indicated
good sensitivity (0.7–1.0) and specificity (0.7–1.0), which
has a β distribution with parameters (α, β).2 9 10 16

Previous studies demonstrated that the performance of
the HRV test to assess CA activity was similar to that of
Ewing’s test.10 17 18 We hypothesised that the β distribu-
tion of the sensitivity and specificity of the short-term
HRV test was between 0.7 and 1.0. Finally, β of the prior
distribution of prevalence was considered to be between
0.1 and 0.5.9 10 19 The same parameters of prior distribu-
tion for the HRV test alone were estimated in the total
sample, and in the DM, HT and MS patients. The two
tests used here relied on the analysis of HRV attributes.
As recommended by Dendukuri and Joseph,20 the tests
in the main analysis were also considered a conditionally
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independent model. The particular β prior density for
each test parameter was selected by matching the centre
of the range with the mean of the β distribution, given
by α/(α+β), and matching the variance of the β distribu-
tion, given by the square root of (αβ)/((α+β)2(α+β+1)),
with one quarter of the total range.

RESULTS
The baseline characteristics of the 2092 subjects are
listed in table 1. The entire sample included 905 males
and 1187 females (mean age, 60.78±9.25 years). The
majority of subjects had never smoked (85.37%), and
the prevalence of HT, DM and MS was 46.65%, 21.33%
and 39.82%, respectively, in the entire sample. A total of
371 healthy subjects, consisting of 78 males and 293
females, were selected for reference value analysis. The
mean age of the healthy subjects (56.5±8.75 years) was
younger than that of the entire sample. The demo-
graphic parameters, blood glucose parameters, lipid pro-
files and medical histories of the healthy subjects were
better than those of the entire sample. The HRV indices
of healthy subjects were significantly higher than those

of the entire sample. The mean age of external subjects
was younger than that of the entire sample. However,
the other demographics parameters, glucose para-
meters, lipid profiles, HRV indices and medical histories
were similar to those of the entire sample.

Reference values for short-term HRV
No normal distribution results were found in HRV
indices using K-S tests (p<0.05 for all, data not shown).
In this study, we set the 5th percentile as the cut-off
point for TP, LF and HF indices. The normal value of
LF/HF ranged from the 2.5th to the 97.5th percentile.
Age had a strong negative correlation with HRV
(figure 1). TP, LF and HF had significant negative corre-
lations with age (r=−0.111–0.291, p<0.05 for all). No sig-
nificant correlation between age and LF/HF was found
(p>0.05). Reference values for the total sample and sub-
jects stratified by age were calculated and are listed in
table 2. In the total sample, the reference value for TP
was more than 356.13 ms2. Cut-off points of 55.45 and
36.64 ms2 were set for LF and HF, respectively. The
cut-off points for LFn and HFn were 6.40 and 4.83 nu,
respectively. The reference values for LF/HF ranged

Table 1 Baseline characteristics of subjects

Variables Entire sample Healthy subjects External dataset

Demographic information

N 2092 371 88

Age, years 60.42±8.68 56.5±8.75 56.61±9.26

Male gender, % 705 (33.7%) 78 (21.02%) 38 (43.18%)

BMI, kg/m2 24.21±3.36 21.57±1.99 23.81±2.72

WC, cm 85.07±9.70 77.08±6.83 85.09±7.12

SBP, mm Hg 127.62±18.68 114.6±10.93 117.85±14.62

DBP, mm Hg 79.83±9.69 73.81±6.92 79.23±9.59

Laboratory assays

FPG, mmol/L 5.53±1.81 4.64±0.59 6.84±2.38

PBG, mmol/L 7.67±3.56 5.26±1.11 10.29±4.51

FINS, IU/L 7.19±11.82 32.72±13.67 8.77±19.31

TC, mmol/L 5.32±1 5.19±0.96 5.35±1.05

TG, mmol/L 1.71±0.98 1.1±0.31 1.86±1.07

HDL, mmol/L 1.36±0.32 1.55±0.33 1.30±0.30

LDL mmol/L 3.19±0.77 3.04±0.77 3.14±0.79

UA, μmol/L 281.21±83.79 240.52±68.77 292.34±82.65

HRV measurement

HR, bpm 72.42±10.13 68.39±8.61 72.23±9.80

TP, ms2 873.95±702.47 1127.33±697.28 883.69±935.65

LF, ms2 190.98±207.88 241.35±204.92 164.04±220.97

LFn, nu 21.33±10.66 21.44±10.56 17.13±8.82

HF, ms2 183.05±219.43 245.93±230.26 208.99±399.68

HFn, nu 20.67±13.25 21.85±12.83 20.84±16.23

LF/HF 1.70±1.98 1.53±1.79 1.50±1.64

Medical history

Smoking yes, % 306 (14.63%) 35 (9.43%) 13 (14.77%)

HT yes, % 976 (46.65%) 0 (0%) 32 (36.36%)

DM yes, % 446 (21.33%) 0 (0%) 53 (60.23%)

MS yes, % 833 (39.82%) 0 (0%) 34 (38.64%)

BMI, body mass index; DBP, diastolic blood pressure; DM, diabetes; FINS, fasting blood insulin; FPG, fasting plasma glucose; HDL,
high-density lipoprotein cholesterol; HF, high frequency; HFn, normalised HF; HR, heart rate; HRV, heart rate variability; HT, hypertension;
LDL, low density lipoprotein cholesterol; LF, low frequency; LFn, normalised LF; MS, metabolic syndrome; PBG, plasma blood glucose; SBP,
systolic blood pressure; TC, serum total cholesterol; TG, triglyceride; TP, total power of variance; UA, uric acid; WC, waist circumference.
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from 0.3 to 6.5. In our study, the HRV test (model 1)
was based on the uniform reference values for HRV
indices used to set the diagnostic criteria for CAN, while
the HRV test (model 2) was based on reference values
stratified by age.

Bayesian estimation of diagnostic tests
Of the 88 subjects in the external dataset, 31 and 43
were diagnosed with CAN using the HRV test (model 1)
alone and Ewing’s test alone, respectively (table 3).
Using both tests, 21 subjects were diagnosed with CAN,
while 35 subjects were diagnosed as being free of CAN.
Using the HRV test (model 2), 33 subjects were diag-
nosed with CAN. The prior parameters are listed in
table 4.

Median posterior CAN prevalence using the HRV test
(model 1) alone and Ewing’s test alone was estimated as
29.06% and 38.55%, respectively. The median posterior
sensitivity and specificity of the HRV test (model 1)
alone were 85.09% and 85.20%, respectively, while they
were 87.13% and 80.46%, respectively, for Ewing’s test
alone. When both tests were combined with the condi-
tional independence model, the median posterior CAN
prevalence was 32.15% (95% CI 19.36% to 46.92%), and
the median posterior sensitivity and specificity of the
HRV test (model 1) were 81.13% (95% CI 62.9% to
93.97%) and 85.17% (95% CI 74.36% to 94.03%),
respectively. Ewing’s test had an apparently higher sensi-
tivity (85.53%) but a lower specificity (73.55%) com-
pared with the HRV test. When both tests were
combined with the conditional dependence model, the

Figure 1 Results of correlation analysis between age and parameters of short-term heart rate variability. (A) Correlation analysis

between age and TP (r=−0.295 and p<0.001); (B) correlation analysis between age and LF/HF (r=−0.038 and p=0.461); (C)

correlation analysis between age and LF (ms2) (r=−0.258 and p<0.001); (D) correlation analysis between age and LF (nu)

(r=−0.132 and p=0.011); (E) correlation analysis between age and HF (ms2) (r=−0.221 and p<0.001); and (F) correlation analysis

between age and HF (nu) (r=−0.117 and p=0.024). HF, high frequency; LF, low frequency; TP, total power.
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median posterior CAN prevalence was 30.60% (95% CI
15.26% to 50.65%) and the median posterior sensitivity
and specificity of the HRV test were 80.01% (95% CI
54.68% to 94.64%) and 82.30% (95% CI 69.34% to
93.63%), respectively. There were modest correlations
between the HRV test and Ewing’s test (ρP=0.317 and
ρN=0.319; ρP = correlation coefficients of the sensitivities
of two tests; ρN = correlation coefficients of the specifici-
ties of two tests).

Similar parameters were found for the HRV test
(model 2) for CAN (table 4). Generally, the median pos-
terior sensitivities and specificities of the HRV test were
over 80% in all models. Higher sensitivities and lower
specificities for Ewing’s test were found in all models,
compared with those of the HRV test. The posterior
Youden indices of the HRV test were higher than those
of Ewing’s test in all models. In combined tests, we com-
pared the parameters (mean sensitivity and mean speci-
ficity) of performance of both diagnostic tests by using a
non-inferiority test that rejected the hypothesis that the
performance of the HRV test was inferior to that of
Ewing’s test (p<0.05 for all parameters in two models,
table 5).

Estimated CAN prevalence in different groups
In the entire sample, 387 and 465 subjects were diag-
nosed with CAN using the HRV test (model 1) and the
HRV test (model 2) alone, respectively (table 6). The
median posterior sensitivities and specificities of the HRV
test (model 1) alone for CAN were high in four different
groups (sensitivities >80% and specificities >85% for all).
The median posterior CAN prevalence in the total
sample was estimated at 14.92%. The estimated median

Table 2 Reference values for short-term HRV

Variable Total sample Aged ≤45 years Aged 46–55 years Aged 55–65 years Aged >65 years

N 371 42 120 160 49

TP, ms2

Mean±SD 1127.33±697.28 1425.87±602.81 1163.64±587.5 1112.14±801.26 832.07±532.91

5th percentile 356.13 786.34 463.91 345.92 317.71

10th percentile 441.58 850.57 568.35 419.09 326.79

50th percentile 972.82 1225.39 1058.10 902.77 671.60

LF, ms2

Mean±SD 241.35±204.92 370.77±207.51 233.69±200.62 221.6±207.04 164.69±155.73

5th percentile 55.45 84.34 70.92 55.11 20.82

10th percentile 68.75 113.90 88.18 64.78 34.52

50th percentile 173.44 345.18 181.56 167.22 103.24

LFn, nu

Mean±SD 21.44±10.56 25.69±10.61 23.48±9.92 21.84±10.71 18.85±10.66

5th percentile 6.40 9.93 6.68 6.20 4.86

10th percentile 9.65 13.43 10.49 9.82 6.05

50th percentile 19.51 25.33 19.95 19.50 17.46

HF, ms2

Mean±SD 245.93±230.26 348.93±241.48 246.33±203.98 232.74±245.16 199.74±211.14

5th percentile 36.64 57.37 38.64 32.09 27.07

10th percentile 53.87 105.26 59.18 53.96 48.57

50th percentile 183.97 283.00 194.54 156.30 147.58

HFn, nu

Mean±SD 21.85±12.83 24.79±13.79 22.07±12.7 21.37±12.66 20.82±12.87

5th percentile 4.83 5.48 5.05 4.78 4.15

10th percentile 7.04 8.75 7.10 6.23 6.22

50th percentile 19.09 20.82 18.73 18.64 18.35

LF/HF

Mean±SD 1.53±1.79

2.5th percentile 0.30

50th percentile 1.00

97.5th percentile 6.50

HF, high frequency; HFn, normalised HF; HRV, heart rate variability; LF, low frequency; LFn, normalised LF; TP, total power.

Table 3 Results of short-term heart rate variability (HRV)

test and Ewing’s test for cardiovascular autonomic

neuropathy in 88 subjects

Model

Ewing’s

test

Total+ −

HRV test (model 1) + 21 10 31

− 22 35 57

Total 43 45 88

HRV test (model 2) + 23 10 33

− 20 35 55

Total 43 45 88
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posterior CAN prevalence values were 29.17%, 20.04%
and 21.16% in DM, HT and MS patients, respectively.
The estimated CAN prevalences based on the HRV test
(model 2) in different groups are listed table 6.

DISCUSSION
A large-scale, population-based, cross-sectional study was
conducted to evaluate the reference values for the short-
term HRV test and the Bayesian estimate of the perform-
ance of diagnostic tests for CAN among 2092 partici-
pants in the Chinese population. This sample was an
adequate representation of the Chinese population, and
the reference values may work similarly well outside the
areas studied in China.21 22 Importantly, we first carried
out a performance analysis of the short-term HRV test
for CAN by using Bayesian approaches in the general
Chinese population. It is crucial to understand that the
HRV test and Ewing’s test are similar diagnostic tests. In
addition, evaluation of the performance of the short-
term HRV test would be inappropriate if Ewing’s test was
used as the reference standard. In the absence of a gold
standard, the Bayesian approach can be applied to esti-
mate diagnostic tests.

Reference value analysis
The results of this study most likely reflect typical HRV
patterns for healthy subjects. The HRV parameters
provide general information on CA function. Cut-off
points for the HRV indices for the total sample are
reported (table 2). Bigger et al23 reported that in a
Caucasian sample, the reference values were higher
than in our study. Recently, Kim and Woo24 conducted a
study to examine the normal reference values for short-
term HRV measurements in a large Korean cohort
(>3000 healthy participants). In the total sample, the
10th percentiles of TP, LF and HF were 347, 74.5 and
38.2 ms2, respectively. The values for the 10th to 90th
percentiles of LF/HF ranged from 0.6 to 5.1, suggesting
that our findings are consistent with these results.
Establishment of normal reference values may therefore
provide important evidence for clinical evaluation of
CAN. In this study, evaluation of the relationship
between HRV parameters and age using correlation ana-
lysis indicated that HRV indices were independent of
gender but decreased with age. Several previous studies
suggested that age should be considered as an inde-
pendent determinant for HRV.25 26 Voss et al25 deter-
mined that the reference values were for short-term
HRV analysis in 2000 individuals, showing 216 and
94 ms2 for TP in the younger group (<50 years) and
older group (≥50 years), respectively. The younger
group had lower quartile values for LF and HF of 62.88
and 30.75 ms2, respectively. Kim and Woo24 reported ref-
erence values stratified by age that were similar to those
in our study. Our findings were good representations,
and we recommend cut-off points for the normal refer-
ence values of HRV parameters.
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Bayesian estimation of diagnostic tests
An interesting finding is that the diagnostic test for CAN
based on short-term HRV showed high sensitivity and spe-
cificity. In the external dataset, the estimated median sen-
sitivities and specificities of the HRV test for CAN were
over 80% in all models. In the total sample, the estimated
median sensitivity of the HRV model alone was greater
than 83%. Similar results were found in DM, HT and MS
patients. Moreover, the estimated median specificities of
the HRV test were over 85% in four different subgroups.
These findings support the fact that the HRV test is an
efficient tool for the diagnosis of CAN in individuals with
metabolic disorders. It was very important to evaluate the
performance of the HRV test in both tests combined with
the independence and dependence models using the
Bayesian approach. The combined tests allowed for
sharper inferences to be drawn.27 Studies were per-
formed to evaluate the performance of new diagnostic
tests using Ewing’s as a reference. However, Ewing’s is a
non-invasive test for CAN and is actually not a gold stand-
ard. Using the Bayesian approach, in the absence of a
gold standard, simultaneous inferences about the per-
formance of each diagnostic test are possible.
Additionally, Bayesian estimation of the parameters of a
diagnostic test needs prior information. This is more

suitable for clinical research because it is easier for
experts with relevant clinical experience to estimate prior
parameters accurately. In this study, precise and accurate
posterior parameters should be derived from appropriate
prior sensitivity of HRV test parameters. A non-inferiority
test indicated that the sensitivity of HRV test parameter
was not inferior to that of Ewing’s test. The Youden index
of the HRV test was higher than that of Ewing’s test.
These findings demonstrate that the performance of the
HRV test was not inferior to Ewing’s test. To our knowl-
edge, this is the first study to report that in the absence of
a gold standard, the short-term HRV test for CAN diagno-
sis had high sensitivity and specificity and was not inferior
to Ewing’s test using Bayesian analysis in a general
Chinese population. This finding is important for the
clinical diagnosis of CAN in the general population. We
recommend the HRV test, based on the uniform normal
reference values (model 1), as an acceptable diagnostic
test for CAN.

Estimation of CAN prevalence
In our study sample, when the HRV test (model 1) was
used alone, the prevalence of CAN was estimated to be
14.92% in the general population. In patients with DM,
its prevalence was estimated to be 29.17%. The estimated

Table 5 Comparison of performance of the HRV test and Ewing’s test in both tests combined

Parameter

Both tests combined

(independence) Both tests combined (dependence)

HRV test Ewing’s test

p Value

HRV test Ewing’s test

p ValueMean SE Mean SE Mean SE Mean SE

HRV test (model 1)

Sensitivity 0.804 0.081 0.853 0.063 0.019 0.782 0.108 0.802 0.080 0.048

Specificity 0.849 0.051 0.753 0.064 <0.001 0.821 0.062 0.700 0.085 <0.001

HRV test (model 2)

Sensitivity 0.815 0.077 0.853 0.062 0.011 0.787 0.103 0.804 0.080 0.023

Specificity 0.848 0.052 0.753 0.064 <0.001 0.815 0.065 0.712 0.081 <0.001

A non-inferiority test tested the hypothesis that the performance of the HRV test was inferior to Ewing’s test; δ>0 is the non-inferiority margin
of clinical interest, which is set as a quarter of the value of the parameter of Ewing’s test in this study.
HRV, heart rate variability.

Table 6 Estimated prevalence of cardiovascular autonomic neuropathy (CAN) in different groups

Group CAN* Population

Prevalence (%) Sensitivity† (%) Specificity† (%)

Median 95% CI Median 95% CI Median 95% CI

HRV test (model 1)

Total sample 387 2092 14.92 9.63 to 26.69 82.76 61.87 to 94.74 92.32 86.56 to 97.42

DM 149 446 29.17 18.59 to 43.48 84.33 67.41 to 95.30 86.57 74.64 to 95.20

HT 241 976 20.04 11.78 to 32.22 83.42 65.05 to 94.67 89.82 80.94 to 96.45

MS 204 833 21.16 12.78 to 34.69 83.65 65.86 to 95.15 90.84 82.48 to 96.63

HRV test (model 2)

Total sample 465 2092 18.26 9.63 to 26.69 83.12 63.70 to 94.84 90.99 83.98 to 97.00

DM 162 446 31.60 18.59 to 43.48 84.83 67.57 to 95.46 85.96 74.64 to 95.34

HT 263 976 22.35 11.78 to 32.22 83.56 65.12 to 95.00 88.86 80.02 to 96.28

MS 241 833 23.94 12.78 to 34.69 84.02 66.17 to 95.12 87.99 78.48 to 96.15

*Subjects diagnosed with CAN using the HRV test.
†Bayesian estimation of the HRV test alone model in different groups.
DM, patients with diabetes mellitus; HRV, heart rate variability; HT, patients with hypertension; MS, patients with metabolic syndrome.
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CAN prevalence in patients with DM was found to be 20–
50% in previous reports,2 9 indicating that our result was
consistent with these studies. In hypertensive individuals,
CAN prevalence was estimated to be 20.04%. Our previ-
ous studies demonstrated that BP and HT were strongly
associated with a low HRV.22 Laitinen et al28 reported that
the prevalence of parasympathetic dysfunction was 25%
in subjects with central obesity and in persons with
impaired glucose tolerance. In our study, the estimated
CAN prevalence was 21.16% in the MS population. Our
findings supported evidence indicating that CAN has
become a serious public problem in China. A higher
prevalence of this disease was found in special subgroups.
Several limitations of this study warrant comment. This

study does not cover age groups below or above 30–90 years
of age. Additionally, a cross-sectional study for the determin-
ation of normal reference values requires a larger sample
size and a wider geographical spread. Furthermore, the
normal reference values of short-term HRV established in
this study need to be verified in future follow-up studies.
Finally, it is important to mention that our study was per-
formed in Chinese individuals, and our findings may not
be relevant to people of other ethnicities.
In conclusion, this study provided reference values for

short-term HRV that were applied to the CAN diagnostic
test with high sensitivity and specificity. Moreover, our
findings offered evidence that the HRV test was not infer-
ior to the traditional Ewing’s test for CAN. The estimated
CAN prevalence was high in the general Chinese popula-
tion, and more frequent in individuals with DM, HT and
MS. CAN is now a major public health problem in China,
and strategies to prevent and treat it are required.
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1. Overview 

W We used a Bayesian latent class model to estimate the sensitivity and specificity of 

HRV test or/and Ewing’s test for CAN in the absence of a gold standard, as described by 

Branscum et al. [1]. The latent class analysis allows the characterization of a discrete latent 

class (here the true disease status) by discrete observed variables. In this model, both tests 

are equally considered as imperfect. There are unknown parameters about which inference 

must be made: the CAN population prevalence, and the sensitivity and specificity of each of 

the two tests. Bayesian approach can simultaneously estimate all five unknown parameters. 

These methods proceeds in two steps: first, a prior distribution summarizes the available 

pre-experimental information about the parameters. Subsequently, the prior distribution is 

updated via Bayes Theorem to a posterior distribution, using the data and the usual 

multinomial likelihood function. Marginal posterior densities can be derived for each 

parameter by integration, from which 95% marginal posterior credible intervals can be 

calculated. Since the integration here is analytically intractable, the Gibbs Sampler, a Monte 

Carlo approach to calculating marginal densities, is employed. The above methods allow for 

simultaneous inferences to be made for all unknown parameters, which takes full advantage 

of all the information contained in the data, as well as formally incorporating prior 

information, when available. Data were analyzed using SPSS16.0 (USA) and WinBUGS 14 

for the Bayesian analysis. 
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2. Prior distribution 

Prior distributions can be estimated based on a review of the literature and/or expert 

opinion in the absence of data. Published evaluations of the Ewing’s test indicated a good 

sensitivity (0.7 to 1.0) and specificity (0.7 to 1.0), which has a beta distribution with 

parameters (α, β) [2,3,4,5]. Previous studies demonstrated that performances of HRV to 

assess CA activity are similar to those of Ewing’s test [4,6,7]. We made a hypothesis for the 

short-term HRV test with sensitivity and specificity of a beta distribution between 0.7 and 

1.0, respectively. Finally, the prior distribution of prevalence was considered beta between 

0.1 and 0.5 [3,4,8]. The same parameters of prior distribution for HRV test alone were 

estimated in total sample, DM, HT and MS patients. The two tests used here rely on analysis 

of HRV attributes. As recommended by Dendukuri et al. [9], in the main analysis the tests 

were also considered conditionally independent model. The particular beta prior density for 

each test parameter was selected by matching the center of the range with the mean of the 

beta distribution, given by α/(α+β), and matching the variance of the beta distribution, given 

by square root of (αβ)/(( α+β)
2
( α+β+1)) with one quarter of the total range.  
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3. One diagnostic test 

Let A and B be the observed number of positive and negative test results, respectively, 

in the sample of A + B = N subjects (Table a1). Let Y1 and Y2 be the information that is 

missing when there is no gold standard, that is, the number of true positive test results out of 

A and B, respectively. Thus, Y1 is the number of true positives, and Y2 is the number of false 

negatives. Such missing information has been termed "latent data".  

 

Table a1: Observed and latent data in the case of one diagnostic 

test In the absence of a gold standard, presented in a 2 x 2 table 

  True 
Total 

  Positive Negative 

Test 
Positive Y1 A-Y1 A 

Negative Y2 B-Y2 B 

 Total Y1+Y2 N-Y1-Y2 N 

 

 

The likelihood function of the observed and latent data is given by 

])1[()]1)(1[()]1([][
2121),,|,,,(

21
SpeSpeSenSenSpeSenYYBAL

YBYAYY  



. 

Prior information in the form of a beta density will be assumed. A random variable (0≤θ≤1) 

has a beta distribution with parameters (α, β) if it has a probability density given by  

)1(
),(

1),;(
11












B
f

 , where B(α, β), the beta function evaluated at (α, β), is the 

normalizing constant. This family of distributions was selected since its region of positive 

density, from 0 to 1, matches the range of all parameters of interest in this study. In addition, 

it also has the advantage of being the conjugate prior distribution for the binomial likelihood, 

a property that simplifies the derivation of the posterior distributions. Let (απ, βπ), (αSen, βSen), 

and (αSpe, βSpe) represent the prior beta parameters for π, Sen and Spe, respectively. Since the 

joint posterior distribution is proportional to the product of the likelihood function and the 

prior distribution.  

Inference is possible using a Gibbs sampler algorithm. The basic idea is as follows. 
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Conditional on knowing the exact values of the prevalence and all diagnostic test parameters, 

it is possible to derive posterior distributions of the latent data Y1 and Y2. Conversely, if Y1 

and Y2 are known, then deriving posterior distributions of the prevalence and diagnostic test 

parameters given the prior distributions requires only a straightforward application of Bayes' 

theorem. An algorithm that alternates between these two steps can thus be devised, similar in 

spirit to the expectation maximization algorithm that is commonly used in latent class analysis. 

The Gibbs sampler algorithm provides random samples from the marginal posterior densities 

of each parameter of interest. These random samples can then be used to reconstruct the 

marginal posterior densities, or summaries of these densities, such as their means, medians, or 

standard deviations, as well as probability interval summaries.  

Implementation of the Gibbs sampler requires the specification of the full conditional 

distributions of the parameters, i.e., the conditional distributions of each parameter given the 

values of all of the other parameters. It is straightforward to show from likelihood function 

that the following conditional distributions must hold:  

)
)1)(1(
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1 SpeSen
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ABinomialSpeSenAY
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

   (app1.1) 
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




    (app1.2) 
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    (app 1.3) 

),( 21~,,,|
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
    (app 1.4) 

and 
),( 12~,,,,,|

21
 SpeSpe YAYBBetaYYBASpe

SpeSpe


   (app 1.5) 

 

The Gibbs sampler operates as follows. Arbitrary starting values are chosen for each 

parameter. A sample of size m is then drawn from each full conditional distribution, in turn. 

The sampled values from the previous iterations are used in the conditional distributions for 

subsequent iterations. A cycle of the algorithm is completed when all conditional 

distributions have been sampled at least once. The entire cycle is repeated a large number of 

times. The random samples thus generated for each parameter can be regarded as a random 

sample from the correct posterior marginal distribution. For the above model, Y1 and Y2 are 
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generated from expressions app 1.1 and app1.2, respectively, given the starting values of the 

other parameters. Then, π is generated from equation app1.3 conditional on the Y1 and Y2 

variates just sampled. Drawing Sen and Spe from densities given in expressions app1.4 and 

app1.5, respectively, using the same values of Y1 and Y2 completes the first cycle. Positive 

and negative predictive values can be computed after each cycle from Y1/A and (b-Y2)/B, 

respectively. The random samples generated by repeating the above cycle the desired 

number of times are then used to reconstruct the marginal posterior densities of each 

parameter and to find credible sets, marginal posterior means or medians, or other 

inferences.  
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4. Two diagnostic tests (conditional independence model) 

The methods of the previous section can be extended to the situation where results of 

two diagnostic tests for the same disease are available on a randomly selected sample of 

subjects, where neither test can be considered a gold standard. There are unknown five 

parameters about which inference must be made: the population prevalence of CA 

dysfunction (π), and the sensitivity (S1) and specificity (C1) of the test1, and sensitivity (S2) 

and specificity (C2) of the Test2. Let U1 be the observed number of positive test1 and test2 

results, and U2 be the observed number of positive test1 and negative test2 results, and U3 

the observed number of negative test1 and positive test2 results, and U4 be the observed 

number of negative test1 and test2 results, in the sample of U1+U2+U3+U4 = N subjects 

(Table a2).  

 

Table a2: Observed data from two diagnostic tests, In the 

absence of a gold standard 

  Test2 
Total 

  Positive Negative 

Test1 
Positive U1 U2 U1+U2 

Negative U3 U4 U3+U4 

 Total U1+U3 U2+U4 N 

 

 

Let the unobserved latent data Y1, Y2, Y3, and Y4 represent the number of true positive 

subjects out of the observed cell values U1, U2, U3 and U4, respectively. Since any subject, 

whether truly possessing the disease in question or not, can test positively or negatively on 

each test, there are eight possible combinations.  
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Table a3: Likelihood contributions of all possible combinations of observed and latent data for 

the case of two independence diagnostic tests 

No. of sub Truth Test1 result Test2 result Likelihood Contribution 

Y1 Positive Positive Positive πS1S2 

Y2 Positive Positive Negative πS1(1-S2) 

Y3 Positive Negative Positive π(1-S1)S2 

Y4 Positive Negative Negative π(1-S1)(1-S2) 

U1-Y1 Negative Positive Positive (1-π)(1-C1)(1-C2) 

U2-Y2 Negative Positive Negative (1-π)(1-C1)C2 

U3-Y3 Negative Negative Positive (1-π)C1(1-C2) 

U4-Y4 Negative Negative Negative (1-π)C1C2 

Note: The likelihood is proportional to the product of each entry In the last column of the table 

raised to the power of the corresponding entry In the first column of the table. 

 

The likelihood function of the observed and latent data is given by (Table a3): 
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We used standard distributional families to represent our prior information. The choice 

of distributions discussed below is not unique and they may be replaced by other suitable 

densities, as needed. The prevalence is assumed to follow a beta prior distribution with 

parameters α and β, π~beta(απ, βπ). The sensitivities and specificities are also assumed to 

have beta prior densities such that Sj~beta(αSj, βSj), and Cj~beta(αCj, βCj), j=1,2. The Gibbs 

sampler can again be used to construct the marginal posterior densities of all parameters of 

interest. For two independence diagnostic tests, the full conditional distributions are as 

follows:  
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5. Two diagnostic tests (conditional dependence model) 

Assume that we have results from two different dichotomous tests Tj, j=1,2, from a 

sample of N subjects such that a positive result on the jth test is denoted by Tj=1 and a 

negative result by Tj=0. Let D denote the latent true disease status such that D=1 among 

diseased subjects and D=0 among nondiseased subjects. To model the conditional 

dependence between two diagnostic tests recommended by Dendukuri et al., the conditional 

dependence between tests may be estimated using a measure such as the covariance between 

tests within each disease class. We denote the covariance between the two tests among the 

diseased and nodiseased subjects as covs and covc, respectively. Here, covs=P(T1=1, 

T2=1|D=1)-S1S2, and covc= P(T1=0, T2=0|D=0)-C1C2. 

 

Table a4: Likelihood contributions of all possible combinations of observed and latent data for 

the case of two dependence diagnostic tests 

No. of sub Truth Test1 result Test2 result Likelihood Contribution 

Y1 Positive Positive Positive π(S1S2+covs) 

Y2 Positive Positive Negative π(S1(1-S2)-covs) 

Y3 Positive Negative Positive π((1-S1)S2-covs) 

Y4 Positive Negative Negative π((1-S1)(1-S2) +covs) 

U1-Y1 Negative Positive Positive (1-π)((1-C1)(1-C2) +covc) 

U2-Y2 Negative Positive Negative (1-π)((1-C1)C2-covc) 

U3-Y3 Negative Negative Positive (1-π)(C1(1-C2) -covc) 

U4-Y4 Negative Negative Negative (1-π)(C1C2+covc) 

Note: The likelihood is proportional to the product of each entry In the last column of the table 

raised to the power of the corresponding entry In the first column of the table. 

 

The likelihood function of the observed and latent data is given by (Table a4): 
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    We used standard distributional families to represent our prior information. The choice 

of distributions discussed below is not unique and they may be replaced by other suitable 

densities, as needed. The prevalence is assumed to follow a beta prior distribution with 
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parameters α and β, π~beta(απ, βπ). The sensitivities and specificities are also assumed to 

have beta prior densities such that Sj~beta(αSj, βSj), and Cj~beta(αCj, βCj), j=1,2. The feasible 

range of the covariance is determined by the sensitivities among the disease subjects and the 

specificities among the nondiseased subjects. The covariance parameters are taken to have 

uniform prior distribution, covs~uniform(0,min(S1,S2)-S1S2) and covc~uniform(0, min(C1,C2) 

-C1C2), where min(a,b) is the minimum of a and b. The Gibbs sampler can again be used to 

construct the marginal posterior densities of all parameters of interest. For two independence 

diagnostic tests, the full conditional distributions are as follows:  
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Gibbs sampling is used to sample in turn from distribution app2.10 to distribution 

app2.20 in a similar fashion to the procedure used for the case of one diagnostic test outlined 

previously. The positive and negative predictive values for each cycle of the Gibbs algorithm 
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are again obtained directly from the relevant fractions of the true positive or negative 

subjects in each cell of the 2 by 2 table to the total observed number of subjects in that cell. 

Throughout, the Gibbs sampler was run for 100,000 cycles, the first 10,000 to assess 

convergence and the last 90,000 for inference. Each analysis was repeated from several 

different starting values, and convergence was assumed only if all runs provided very similar 

posterior distributions. Convergence of the algorithm here appeared to occur within the first 

100-200 cycles, as evidenced by the monitoring of selected percentiles of the posterior 

samples. In general, the rate of convergence will depend on the starting values and the 

particulars of the data set and prior distributions. A computer program written in S-PLUS 

implementing all of the methods described in this paper is available from the first author 

(albert.tang@163.com).  

mailto:albert.tang@163.com
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6. WinBUGS program code for two independence diagnostic test  

// 

model; 

{ pi ~ dbeta(api,bpi)    

 sen1 ~ dbeta(as1,bs1)    

 spe1 ~ dbeta(ac1,bc1)    

 sen2 ~ dbeta(as2,bs2)    

 spe2 ~ dbeta(ac2,bc2)   

   

 api<-x[1]document+x[10]+x[11]+x[4]+api0  

 bpi<-n-(x[1]+x[10]+x[11]+x[4])+bpi0  

  

 as1<-x[1]+x[10]+as10  

 bs1<-x[11]+x[4]+bs10  

 ac1<-u[11]+u[4]-(x[11]+x[4])+ac10  

 bc1<-u[1]+u[10]-(x[1]+x[10])+bc10  

  

 as2<-x[1]+x[11]+ as20  

 bs2<-x[10]+x[4]+ bs20  

 ac2<-u[10]+u[4]-(x[10]+x[4])+ac20  

 bc2<-u[1]+u[11]-(x[1]+x[11])+bc20  

  

 p[1] <- pi * sen1 * sen2/(pi * sen1 * sen2 + (1 - pi) * (1 - spe1) * (1 - spe2))  

 p[10] <- pi * sen1 * (1-sen2)/(pi * sen1 * (1-sen2) + (1 - pi) * (1 - spe1) * spe2)  

 p[11] <- pi * (1-sen1) *sen2/(pi * (1-sen1) *sen2 + (1 - pi) *  spe1 * (1-spe2))  

 p[4] <- pi * (1-sen1) * (1-sen2)/(pi * (1-sen1) * (1-sen2) + (1 - pi) * spe1 * spe2)  

   

   for(i in 1:N)  

 { x[i] ~ dbin(p[i],u[i]) 

 }   

} 

List(data format...) 

//
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