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ABSTRACT
Objective: The mechanisms through which ω-3 fatty
acids reduce adverse cardiac events remain uncertain.
We aimed to investigate the effect of ω-3 fatty acid
supplementation on endothelial vasomotor function,
endogenous fibrinolysis, and platelet and monocyte
activation in patients with coronary heart disease.
Design: Randomised, double-blind, placebo-controlled,
cross-over trial.
Setting: Academic cardiac centre.
Participants: 20 male patients with a previous
myocardial infarction.
Intervention: ω-3 Fatty acid supplementation (2 g/day
for 6 weeks) versus olive oil placebo.
Outcome measures: Peripheral blood was taken for
analysis of platelet and monocyte activation, and forearm
blood flow (FBF) was assessed in a subset of 12 patients
during intrabrachial infusions of acetylcholine, substance
P and sodium nitroprusside. Stimulated plasma tissue
plasminogen activator (t-PA) concentrations were
measured during substance P infusion.
Results: All vasodilators caused dose-dependent
increases in FBF (p<0.0001). ω-3 Fatty acid
supplementation did not affect endothelium-dependent
vasodilation with acetylcholine and substance P
compared with placebo (p=0.5 and 0.9). Substance P
caused a dose-dependent increase in plasma t-PA
concentrations (p<0.0001), which was not affected by ω-
3 fatty acid supplementation (p=0.9). ω-3 Fatty acids did
not affect platelet–monocyte aggregation, platelet P-
selectin or CD40L, or monocyte CD40.
Conclusions:We have demonstrated that dietary
supplementation with ω-3 fatty acids does not affect
endothelial vasomotor function, endothelial t-PA release,
or platelet and monocyte activation in patients with
coronary heart disease. Cardiac benefits conferred by ω-3
fatty acids in coronary heart disease are unlikely to be
mediated through effects on these systems.

INTRODUCTION
Dietary fish or fish oil supplements contain-
ing ω-3 fatty acids may protect against

cardiovascular disease.1 Clinical trials have
demonstrated beneficial effects on mortality
or cardiac events in patients with coronary
heart disease.2–4 However, the mechanisms
through which they confer cardiac benefits
are uncertain. Although an effect on ven-
tricular arrhythmias has been thought to be
important due to an observed reduction in
sudden death,5 6 subsequent studies have
failed to clearly demonstrate an antiarrhyth-
mic effect.7 An alternative mechanism may,
therefore, be an effect on the vascular endo-
thelium, as acute myocardial infarction due
to plaque rupture and subsequent coronary
thrombosis remains the most common cause
of sudden cardiac death.8

The endothelium regulates vascular tone
and blood flow, and mediates thrombosis
through the production of factors that influ-
ence fibrinolysis and platelet activation. The
endogenous fibrinolytic system is responsible
for the dissolution of arterial thrombi and is
regulated by the endothelium-derived profi-
brinolytic factor, tissue plasminogen activator
(t-PA) and its inhibitor, plasminogen-
activator inhibitor type 1 (PAI-1).9 The rapid
release of t-PA from the endothelium is vital,
with thrombus dissolution being more

ARTICLE SUMMARY

Strengths and limitations of this study
▪ Randomised, double-blind, placebo-controlled

crossover design.
▪ Use of an established and robust model to sim-

ultaneously assess endothelial vasomotor tone
as well as endogenous fibrinolysis: two import-
ant and complementary measures of vascular
function.

▪ Limitations: modest sample size.
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effective if t-PA is incorporated early during thrombus
formation.10

Endothelial cells regulate thrombosis through the
release of paracrine factors that mediate platelet func-
tion. Activated platelets can bind to leucocytes through a
P-selectin-dependent mechanism,11 and these interac-
tions can also be modulated by the CD40 receptor and
its ligand.12 Formation of platelet–leucocyte aggregates
or ligation of CD40 can mediate an array of proinflam-
matory and prothrombotic effects, thereby contributing
to endothelial injury and atherothrombosis.13

Patients with coronary heart disease demonstrate
impaired endothelial function,14 in addition to
increased platelet–monocyte aggregation and upregula-
tion of the CD40/CD40 ligand system.15 16 We have
recently demonstrated that ω-3 fatty acid supplements
improve endogenous fibrinolysis and endothelial func-
tion in healthy cigarette smokers, a group at high risk of
adverse cardiac events.17 Previously, we have shown that
dietary fish intake reduces platelet–monocyte aggrega-
tion in man.18 We, therefore, hypothesised that ω-3 fatty
acid supplementation would improve endothelial vaso-
motor function, endogenous fibrinolysis, and markers of
platelet and monocyte activation in patients with coron-
ary heart disease.

METHODS
Study participants
Twenty patients with a myocardial infarction at least
3 months previously were recruited to participate in the
study. Myocardial infarction was defined as any two of
the following: typical clinical history, ECG changes (Q
waves in 2 contiguous leads) or elevation of cardiac
markers (CKmB or troponin). All participants gave
written informed consent.. Exclusion criteria included
dietary fish allergy or intolerance, consumption of more
than one fish meal per week, renal or hepatic failure, or
any intercurrent illness likely to be associated with an
inflammatory response. The first patient was randomised
in December 2004 and the last study visit took place in
June 2006. There were logistical delays in the analysis of
frozen plasma samples and the final data became avail-
able for analysis in June 2009.

Study design
This was a prospective, double-blind, placebo-controlled,
randomised crossover trial. Participants were randomised
to receive either ω-3 fatty acid supplements (2 g/day,
Omacor capsules, Pronova, Norway) or matching
placebo capsules (2 g/day olive oil capsules; Eurocaps
Ltd, Gwent, Australia) for a 6-week period. After a
4-week washout phase, participants crossed over to the
opposite treatment arm for a further 6-week period. The
ω-3 Fatty acid supplements and placebo were packaged
and dispensed in identical containers by the Royal
Infirmary of Edinburgh Pharmacy. All study participants
and investigators were blinded to the study allocation.

The randomisation schedule was generated by an investi-
gator not involved in the study, and securely kept in the
Royal Infirmary of Edinburgh Pharmacy. The ω-3 fatty
acid capsules contained 85–88% eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) as ethyl esters
in a ratio of 1.2:1. The ω-3 fatty acid capsules as well as
olive oil placebo contained 4 mg α-tocopherol. All 20
participants had peripheral blood taken for fasting lipid
profile, plasma fatty acid analysis and flow cytometric
analysis of platelet activation at baseline and at the end
of each treatment period. Two patients withdrew from
the study: one was withdrawn after being admitted with
unstable angina and a second was lost to follow-up. A
subset of 12 participants also underwent measurement
of forearm blood flow (FBF) and endogenous fibrinoly-
sis at the end of each treatment period.

Blood collection protocol
Peripheral venous blood was drawn from a large antecu-
bital vein with a 19-gauge needle and anticoagulated with
EDTA (1.6 mg/mL, Sarstedt Monovette) and the direct
thrombin inhibitor d-phenylalanine-l-prolyl-l-arginine
chloromethyl ketone (75 μM, PPACK, Cambridge
Biosciences). Whole blood anticoagulated with PPACK
was immunolabelled within 5 min of phlebotomy for sub-
sequent flow cytometric analysis. Plasma was prepared
from blood anticoagulated with sodium EDTA by centri-
fugation (1500×g for 30 min). Plasma samples were
stored at −70°C until analysis.

Flow cytometry
The following reagents were used: fluorscein isothio-
cyanate (FITC)-conjugated CD42a (GRP-P, IgG1),
FITC-conjugated CD14 (UCHM1, IgG2a), phycoerythrin
(PE)-conjugated CD40 (LOB7/6, IgG1), and their
appropriate isotype controls (Serotec Ltd, Oxford, UK)
as well as PE-conjugated CD154 (TRAP1, IgG1),
PE-conjugated CD14 (Tuk-4, IgG2a), PE-conjugated CD
62P (IE3, IgG2a) and their appropriate isotype controls
(Dako Cytomation, Buckinghamshire, UK) and
FACS-Lyse (Becton-Dickinson; Cowley, UK). Aliquots of
whole blood (60 μL) anticoagulated with PPACK were
incubated with appropriate antibodies and their isotype
matched controls for 20 min at room temperature. To
evaluate platelet–monocyte aggregates and CD40 on
monocytes, samples were fixed and red cells lysed by the
addition of 500 μL of FACS-Lyse solution. To evaluate
platelet surface P-selectin and CD40 ligand, samples
were fixed with 1% paraformaldehyde. Samples were
analysed using a Coulter EPICS XL flow cytometer
equipped with a 488 nm wavelength laser (Beckman
Coulter, High Wycombe, UK) within 6 h of labelling.
Monocytes and platelets were identified by gating for
CD14 and CD42a positive cells, respectively. Platelet–
monocyte aggregates were defined as monocytes positive
for CD42a. Analyses were performed using EXPO 32
software (Beckman Coulter).
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Plasma fatty acid analysis
The fatty acid composition of plasma phospholipids was
determined from blood anticoagulated with EDTA. Total
lipids were recovered from 500 μL of plasma using
dichloromethane–methanol (2:1) containing 0.005%
butyrated hydroxytoluene as an antioxidant (Folch
extraction). Phospholipids were isolated by solid phase
extraction using aminopropyl silica columns (IST
International), and fatty acids converted into methyl
esters by transmethylation with 0.5 M sodium methox-
ide. Fatty acid methyl ester analysis was performed
with an HP-INNOWAX capillary column (Agilent
Technologies). Peaks were identified by comparison of
retention times with known fatty acid methyl ester stan-
dards and quantified using an internal standard. Plasma
total phospholipid fatty acids were expressed as the indi-
vidual fractions of fatty acids and fatty acid groups as
relative values (% of total fatty acids). The mean coeffi-
cient of variation for the assay was 2.4%.

Vascular studies
Studies were conducted in a quiet temperature con-
trolled room (22–25°C). Participants fasted for 6 h prior
to the study and avoided caffeine and alcohol for the pre-
ceding 24 h. Blood pressure and heart rate were recorded
throughout the study using a semi-automated non-
invasive oscillometric sphygmomanometer (OMRON 705
IT, Kyoto, Japan).
All participants underwent brachial artery cannulation

with a 27-standard wire gauge steel needle under con-
trolled conditions. After a 30-min baseline saline infusion,
acetylcholine at 5, 10 and 20 µg/min (endothelium-
dependent vasodilator that does not release t-PA; Merck
Biosciences), substance P at 2, 4 and 8 pmol/min
(endothelium-dependent vasodilator that releases t-PA;
Clinalfa, Switzerland) and sodium nitroprusside at 2, 4
and 8 µg/min (endothelium-independent vasodilator that
does not release t-PA; David Bull Laboratories) were
infused for 6 min at each dose. The three vasodilators
were separated by 20-min saline infusions and given in a
randomised order.
FBF was measured in infused and non-infused arms by

venous occlusion plethysmography with mercury-in-
silicone elastomer strain gauges as described previ-
ously.19 Venous cannulas (17-gauge) were inserted into
large subcutaneous veins of the antecubital fossae of
both arms. Blood (10 mL) was withdrawn simultaneously
from each arm at baseline and during infusion of each
dose of substance P and collected into acidified buffered
citrate (Stabilyte tubes, Biopool International; for t-PA
assays) and into citrate (BD Vacutainer; for PAI-1 assays).
Samples were kept on ice before being centrifuged at
2000g for 30 min at 4°C. Platelet-free plasma was dec-
anted and stored at −80°C before assay. Plasma t-PA
antigen and activity (t-PA Combi Actibind Elisa Kit;
Technoclone, Vienna, Austria) and PAI-1 antigen and
activity (Elitest PAI-1 Antigen and Zymutest PAI-1
Activity; Hyphen Biomed, Neuville-Sur-Oise, France)

concentrations were determined by ELISAs.
Haematocrit was determined by capillary tube centrifu-
gation at baseline.

Data analysis and statistical methods
Continuous variables are reported as mean±SE of the
mean. The pre-specified primary endpoint was endothe-
lial vasomotor and fibrinolytic function. The sample size
of n=12 was based on power calculations derived from
previous studies giving 90% power to detect a 17% dif-
ference in the mean t-PA release at a significance level
of 5%.19 The pre-specified secondary endpoint was
platelet and monocyte activation. The sample size of
n=20 was based on power calculations derived from pre-
vious studies, giving 90% power to detect a 5% differ-
ence in mean platelet–monocyte aggregation at a
significance level of 5%. Forearm plethysmographic data
were analysed as described previously.17 Estimated net
release of plasma t-PA has been defined previously as
the product of the infused forearm plasma flow (based
on the mean haematocrit and the infused FBF) and the
concentration difference between the infused and non-
infused arms.19 Statistical analyses were performed using
one-way and two-way ANOVA with Bonferroni’s post-tests
for multiple comparisons where appropriate. The
statistical methods for each analysis are detailed in
the relevant figure and table legends. All calculations
were performed using GraphPad Prism (Graph Pad
Software).

RESULTS
Baseline characteristics
Participant flow through the study including a
CONSORT diagram is included in the online supple-
mentary file. Patients were relatively young and well
treated in terms of blood pressure control and lipid
profile (table 1). The mean and median times from
myocardial infarction were 12 and 16 months, respect-
ively. Patients were on standard medical therapy includ-
ing aspirin, β-blockers, statins and ACE-inhibitors, and
over half had undergone revascularisation post-MI.

Effect of ω-3 fatty acid supplementation on plasma
phospholipid fatty acid composition
Dietary supplementation with ω-3 fatty acids led to a
marked increase in EPA as a percentage of plasma phos-
pholipids compared with both baseline (3.7±0.4% vs 2.0
±0.2%, p<0.0001) and placebo (3.7±0.4% vs 1.7±0.1%,
p<0.0001; table 2). There was also an increase in DHA
compared with baseline (5.6±0.2% vs 4.8±0.3%, p<0.01)
and placebo (5.6±0.2% vs 4.4±0.3%, p<0.0001; table 2).
We did not detect any carryover of EPA or DHA after
6 weeks of placebo in the group who had ω-3 fatty acids
first (data not shown). There was a reduction in the
plasma phospholipid percentage of arachidonic acid,
but no effect on α-linolenic acid, linoleic acid, palmitic
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acid, stearic acid or oleic acid with either ω-3 fatty acid
supplements or olive oil placebo (table 2).

Effect of ω-3 fatty acid supplementation on lipid profile
Supplementation for 6 weeks with ω-3 fatty acids did not
affect total cholesterol, low-density liproprotein

cholesterol, high-density liproprotein cholesterol or tri-
glycerides (data not shown).

Effect of ω-3 fatty acid supplementation on vasomotor
function
ω-3 Fatty acid supplementation did not have any effect on
systolic blood pressure, diastolic blood pressure or heart
rate compared with placebo (data not shown). During
forearm vascular studies substance P, acetylcholine and
sodium nitroprusside led to a dose-dependent increase
in absolute FBF (p<0.0001 for all). Compared with
placebo, ω-3 fatty acid supplementation did not affect
endothelium-dependent vasodilation in response to
acetylcholine or substance P (p=0.5 and 0.9; figure 1), or
endothelium-independent vasodilation with sodium
nitroprusside (p=0.9; figure 1).

Effect of ω-3 fatty acid supplementation on stimulated t-PA
activity
Substance P infusion caused a dose-dependent increase
in plasma t-PA activity concentrations after both ω-3 fatty
acid supplementation and placebo (p<0.0001; table 3).
ω-3 Fatty acid supplementation did not affect plasma
TPA activity, TPA antigen or PAI-1 concentrations com-
pared to placebo (table 3). There was no difference in
net release of t-PA activity after ω-3 fatty acid supplemen-
tation compared to placebo (p=0.94; figure 2).

Effect of ω-3 fatty acid supplementation on platelet–
monocyte aggregation and CD40/CD40 ligand
Supplementation with ω-3 fatty acids did not have any
effect on platelet–monocyte aggregation, platelet–neu-
trophil aggregation, platelet surface expression of
P-selectin or CD40L, or monocyte expression of CD40
(data not shown).

DISCUSSION
The current study has demonstrated that dietary supple-
mentation with ω-3 fatty acids does not affect endothelial
vasomotor function or endothelial t-PA release in
patients with coronary heart disease. There is also no
effect on markers of platelet or monocyte activation.
These findings suggest that any cardiac benefits con-
ferred by ω-3 fatty acids in coronary heart disease are
unlikely to be mediated through effects on endothelial
function, endogenous fibrinolysis or platelet activation.
We do not believe the lack of effect on outcome mea-

sures in the current study is likely to have been due to
poor compliance. The assessment of plasma phospho-
lipid fatty acid composition confirmed substantial
increases in the percentage of both EPA and DHA
during supplementation with ω-3 fatty acids. The dose
and duration of therapy with ω-3 fatty acids are also
likely to have been appropriate. We used 2 g/day of ω-3
fatty acids which is similar to the amount shown to
reduce mortality in secondary prevention trials.2 3

Although we cannot exclude an effect with a longer

Table 2 Effect of ω-3 fatty acid supplementation on

plasma phospholipid fatty acid composition.

Baseline ω-3 Placebo p Value

EPA 2.0±0.2 3.7±0.4 1.7±0.1 p<0.0001

DHA 4.8±0.3 5.6±0.2 4.4±0.3 p<0.0001

α-Linolenic
acid

0.3±0.01 0.3±0.02 0.3±0.03 0.3

Arachidonic

acid

12.5±0.4 11.0±0.3 11.6±0.5 0.0005

Linoleic acid 18.8±0.6 19.0±0.6 20.0±0.6 0.1

Palmitic acid 28.2±0.4 27.9±0.3 28.2±0.3 0.6

Stearic acid 13.8±0.3 14.1±0.2 13.9±0.2 0.4

Oleic acid 13.3±0.5 13.0±0.4 13.8±0.5 0.1

Mean±SEM. Data analysed using one-way ANOVA. p Values in
the table are for the difference between the three means. p Values
for individual comparisons are below.
EPA: baseline versus ω-3, p<0.0001; baseline versus placebo,
p=NS; ω-3 versus placebo, p<0.0001.
DHA: baseline versus ω-3, p<0.01; baseline versus placebo,
p=NS; ω-3 versus placebo, p<0.0001.
Arachidonic acid: baseline versus ω-3, p<0.001; baseline versus
placebo, p=0.05; ω-3 versus placebo, p=NS.
EPA, Eicosapentaenoic acid; DHA, Docosahexaenoic acid.

Table 1 Baseline characteristics.

Age, years 53±3

Body mass index, kg/m2 28±1

Systolic blood pressure, mm Hg 137±5

Diastolic blood pressure, mm Hg 78±3

Heart rate, bpm 60±2

Total cholesterol, mmol/L 4.2±0.2

LDL cholesterol, mmol/L 2.3±0.2

HDL cholesterol, mmol/L 1.1±0.1

Chol:HDL chol ratio 3.8±0.2

Triacylglycerol, mmol/L 1.6±0.2

Fasting glucose, mmol/L 5.4±0.1

Time from MI, months 16±4

Revascularisation post-MI, % 56

Current or ex-smoker, % 61

Hypertension, % 11

Diabetes mellitus, % 0

Hyperlipidemia, % 78

Family history of premature coronary heart

disease, %

33

Medical therapy

Aspirin, % 100

Clopidogrel, % 11

ACE-inhibitor/ angiotensin-receptor blocker, % 56

β-Blocker, % 78

Statin, % 100

HDL, high-density lipoprotein; LDL, low-density lipoprotein; MI,
myocardial infarction; Mean±SEM.
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duration of therapy, 6 weeks of supplementation caused
a large increase in the plasma phospholipid content of
ω-3 fatty acids and has previously been long enough to

demonstrate clear effects on vascular function and plate-
let activation.20–22

ω-3 Fatty acids have previously been shown to have
inconsistent effects on endothelial function. Although
some studies have reported beneficial effects in a variety
of populations including healthy volunteers,22 patients
with hyperlipidaemia,21 23 diabetes mellitus24 and heart
failure,25 others have not found any improvement.26–28

Our findings are in contrast to previous studies in coron-
ary heart disease which demonstrated an improvement
in endothelial function with ω-3 fatty acids.20 29 30 These
discrepancies could be partly due to differences in study
populations or concomitant medication. However, previ-
ous studies were all either not randomised or double-
blinded, and lacked a control group or placebo. Indeed,
our trial is the first double-blinded, placebo-controlled
trial investigating the effect of ω-3 fatty acids on endothe-
lial vasomotor function in coronary heart disease; we
therefore believe that our study design and findings are
likely to be robust.
We also found that ω-3 fatty acids did not augment

endogenous fibrinolysis in coronary heart disease.
Previous results have varied widely and it has been con-
cluded that ω-3 fatty acids are unlikely to influence the
fibrinolytic system.31 While some studies have reported a
beneficial impact on fibrinolytic parameters,32 33 others
have found an adverse effect34 or no effect.26 35–37

However, previous studies have only measured basal
plasma t-PA concentrations that do not reflect the local
capacity for acute endothelial t-PA release.9 38 It is the
rapid endogenous release of t-PA from the endothelium
which regulates the dissolution of thrombus and is of
greater pathophysiological relevance. We used an estab-
lished model of acute endothelial t-PA release that pre-
dicts cardiovascular outcome,19 39 but found no effect of
ω-3 fatty acid supplementation on acute endogenous
fibrinolytic capacity in coronary heart disease.
There are several possible explanations for the lack of

effect of ω-3 fatty acids on endothelial function and
endogenous fibrinolysis observed in the present coron-
ary heart disease population. The patients were all well
treated with modern cardio-active medication known to
influence endothelial vasomotor function.40 41 In con-
trast, patients in previous studies demonstrating
improved endothelial function20 29 and cardiac out-
comes2 3 with ω-3 fatty acids were much less likely to be
taking HMG CoA reductase inhibitors or ACE inhibitors.
It is conceivable that endothelial function cannot be
further improved by the addition of ω-3 fatty acids in
coronary heart disease patients already treated with
modern medical therapy. This possibility is supported by
the most recent large clinical trials which found a low
rate of cardiac events in patients on optimal medical
therapy post-myocardial infarction, which could not be
improved with ω-3 fatty acid supplementation.42–44

However, concomitant medication may not fully
explain the neutral effects on endogenous fibrinolysis.
While lipid-lowering therapy improves endothelial

Figure 1 Effect of ω-3 fatty acid supplementation on

absolute forearm blood flow in response to

endothelium-dependent and endothelium-independent

vasodilators. Statistical analyses two-way analysis of variance

and Bonferroni’s post-tests for multiple comparisons.
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vasomotor function, it has not been found to influence
acute t-PA release.45 ACE inhibitors only augment brady-
kinin induced t-PA release; they do not affect t-PA
release stimulated by substance P.46 Therefore, there
may be other factors that explain why ω-3 fatty acid sup-
plementation can improve endogenous fibrinolytic cap-
acity in healthy cigarette smokers but not in patients
with coronary heart disease. Perhaps, the most likely
explanation is that the coronary heart disease group was
considerably older and may have a dysfunctional endo-
thelium and fibrinolytic system less responsive to dietary
interventional measures.

Circulating platelet–monocyte aggregates are
increased in stable coronary heart disease and acute cor-
onary syndromes, consistent with an important role in
both the development of atherosclerotic lesions and in
acute thrombosis.15 We have previously demonstrated
that moderate intake of oil-rich fish can significantly
reduce platelet–monocyte aggregation.18 However, we
did not observe any effect of ω-3 fatty acid supplements
on these measures of platelet and monocyte activation
in the current study. It is possible that our previous
results were due to another active ingredient in oily fish
rather than ω-3 fatty acids, and we cannot exclude a
dose–effect of ω-3 fatty acids on platelet activation. ω-3
Fatty acids also had no effect on monocyte expression of
CD40 or platelet surface CD40 ligand, consistent with
previous studies which found no effect of either ω-3 fatty
acids or dietary fish on soluble CD40 ligand.18 47

Our study has potential limitations that should be
acknowledged. First, the sample size is relatively small
which raises the possibility of a type II error due to lack of
power. However, the sample size was based on separate
power calculations for the vascular function and the plate-
let monocyte studies, and we have previously detected
modest changes in these outcome measures with similar
sample sizes.17 18 Although it is possible, we lacked power
to detect very small changes; we believe the study had suffi-
cient power to detect any clinically relevant effects of ω-3
fatty acids. Second, as we did not measure fatty acids at the
beginning of the second treatment stage we cannot fully
exclude the possibility of some carryover of EPA or DHA
into the early placebo phase in the group receiving ω-3
fatty acids first. However, we feel any such effect would be
modest and unlikely to alter the study outcomes.

Table 3 Effect of ω-3 fatty acid supplementation on plasma t-PA activity concentrations.

Substance P,

pmol/min

ω-3 Fatty acids Placebo

0 2 4 8 0 2 4 8

t-PA activity, IU mL−1

Non-infused arm 0.39±0.08 0.45±0.09 0.54±0.12 0.64±0.14 0.45±0.07 0.52±0.08 0.60±0.09 0.65±0.11

Infused arm 0.38±0.08 0.83±0.16 1.12±0.23 1.67±0.38 0.43±0.07 0.78±0.10 1.09±0.11 1.26±0.15

t-PA antigen, ng mL−1

Non-infused arm 11.78±1.29 12.01±1.0 12.69±1.08 12.83±1.49 13.45±1.40 12.93±1.70 13.08±1.80 12.37±1.27

Infused arm 11.90±1.45 13.98±1.33 13.63±1.12 14.86±1.40 12.55±1.10 12.85±1.44 13.45±1.35 13.97±1.55

PAI-1 activity, ng mL−1

Non-infused arm 1.77±0.53 1.84±0.43 1.80±0.42 1.64±0.45 1.44±0.29 1.38±0.26 1.39±0.47 1.34±0.44

Infused arm 2.33±0.86 2.18±0.61 2.21±0.69 1.92±0.63 1.69±0.46 1.64±0.41 1.54±0.39 1.49±0.39

PAI-1 antigen, ng mL−1

Non-infused arm 39.51±9.22 40.84±7.08 39.99±6.62 38.48±5.79 45.06±7.09 43.33±6.45 44.41±6.67 44.26±7.03

Infused arm 37.64±8.36 38.83±6.25 41.71±5.74 40.26±7.32 48.89±8.25 42.65±6.59 43.12±6.60 40.61±6.46

Net t-PA antigen

release, ng 100 mL−1

of tissue mm−1

0.23±0.51 −0.28±4.7 3.92±1.8 8.41±2.94 −0.87±1.1 −0.84±2.82 0.94±4.22 8.10±3.67

Mean±SEM. Data analysed using two-way analysis of variance.
Tissue plasminogen activator (t-PA) activity: dose response p<0.0001. ω-3 Fatty acids versus placebo; p=0.83 (infused arm).
t-PA antigen: dose response p=0.7. ω-3 Fatty acids versus placebo; p=0.60 (infused arm).
Plasminogen-activator inhibitor type 1 (PAI-1) activity: dose response p=0.94. ω-3 Fatty acids versus placebo; p=0.17 (infused arm).
PAI-1 antigen: dose response p=0.67. ω-3 Fatty acids versus placebo; p=0.40 (infused arm).
Net t-PA antigen: dose response p=0.02. ω-3 Fatty acids versus placebo; p=0.62 (infused arm).

Figure 2 Net release of plasma tissue plasminogen activator

activity with ω-3 fatty acid supplementation and placebo.

Statistical analyses two-way analysis of variance and

Bonferroni’s post-tests for multiple comparisons.
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CONCLUSIONS
We have demonstrated that ω-3 fatty acid supplementa-
tion does not affect endothelial function, endogenous
fibrinolytic capacity or markers of platelet and monocyte
activation in patients with stable coronary heart disease.
A major strength of our study is the use of a robust
model to simultaneously assess endothelial vasomotor
tone as well as endogenous fibrinolysis: two important
and complementary measures of vascular function. Our
results suggest that any potential cardiac benefits con-
ferred by ω-3 fatty acids in this patient group are unlikely
to be mediated by effects on endothelial function or the
fibrinolytic system.
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At the time the study was performed, we unfortunately did not record the number of patients screened for 
eligibility or excluded before randomization for our vascular function studies. Generally, around 30% of patients 
approached agreed to participate in the invasive venous plethysmography studies.  
 

Three patients were not included in the final analysis. One patient complained of chest pain when he arrived for 
his second visit (after completing the omega-3 intervention arm) and was admitted with suspected unstable 
angina. He underwent coronary intervention and made an uncomplicated recovery. An adverse event was logged 
and the patient withdrawn from the study. The event was reviewed by the Chief Investigator and Independent 
Advisor and felt unlikely to be related to the omega-3 supplements. Two patients withdrew from the study 
because they found returning for subsequent visits inconvenient.  
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