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ABSTRACT
Objectives: To develop a classifier to predict the
presence of visual field (VF) deterioration in glaucoma
suspects based on optical coherence tomography
(OCT) measurements using the machine learning
method known as the ‘Random Forest’ algorithm.
Design: Case–control study.
Participants: 293 eyes of 179 participants with open
angle glaucoma (OAG) or suspected OAG.
Interventions: Spectral domain OCT (Topcon 3D
OCT-2000) and perimetry (Humphrey Field Analyser,
24-2 or 30-2 SITA standard) measurements were
conducted in all of the participants. VF damage (Ocular
Hypertension Treatment Study criteria (2002)) was
used as a ‘gold-standard’ to classify glaucomatous
eyes. The ‘Random Forest’ method was then used to
analyse the relationship between the presence/absence
of glaucomatous VF damage and the following
variables: age, gender, right or left eye, axial length
plus 237 different OCT measurements.
Main outcome measures: The area under the
receiver operating characteristic curve (AROC) was then
derived using the probability of glaucoma as suggested
by the proportion of votes in the Random Forest
classifier. For comparison, five AROCs were derived
based on: (1) macular retinal nerve fibre layer
(m-RNFL) alone; (2) circumpapillary (cp-RNFL) alone;
(3) ganglion cell layer and inner plexiform layer (GCL
+IPL) alone; (4) rim area alone and (5) a decision tree
method using the same variables as the Random
Forest algorithm.
Results: The AROC from the combined Random
Forest classifier (0.90) was significantly larger than the
AROCs based on individual measurements of m-RNFL
(0.86), cp-RNFL (0.77), GCL+IPL (0.80), rim area
(0.78) and the decision tree method (0.75; p<0.05).
Conclusions: Evaluating OCT measurements using
the Random Forest method provides an accurate
prediction of the presence of perimetric deterioration in
glaucoma suspects.

INTRODUCTION
Glaucoma is the second most common cause
of blindness. As glaucomatous visual field
(VF) damage is irreversible, the early diagno-
sis of glaucoma is essential. Structural
changes at the optic nerve head1 and retinal
nerve fibre layer (RNFL) around the optic
disc2 can also indicate glaucomatous damage
and may precede measurable VF loss.
Optical coherence tomography (OCT) is an

imaging technology widely used in the diagno-
sis of glaucoma, enabling high-resolution mea-
surements of the retina.3 The recent
advancement of OCT from the time domain
to the spectral domain OCT (SD-OCT) has
greatly improved the imaging speed and reso-
lution of the device,4 and has enabled imaging
scans of the macular RNFL (m-RNFL) and the
macular ganglion cell layer and inner plexi-
form layer (GCL+IPL). It has been reported
that these retinal layers are damaged early in
the glaucoma disease process5 6 and many
studies have investigated the diagnostic per-
formance of thickness measurements of these
structures to discriminate between healthy and
glaucomatous eyes.7–14 However, in these previ-
ous studies, the different measurements were
interpreted independently, yet damage to

SUMMARY

Strengths and limitations of this study
▪ Combining optical coherence tomography

measurements.
▪ Accurate prediction of the presence of perimetric

deterioration in glaucoma suspects.
▪ Lack of a normative population to act as a

reference.

Sugimoto K, Murata H, Hirasawa H, et al. BMJ Open 2013;3:e003114. doi:10.1136/bmjopen-2013-003114 1

Open Access Research

 on A
pril 10, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2013-003114 on 7 O

ctober 2013. D
ow

nloaded from
 

http://dx.doi.org/10.1136/bmjopen-2013-003114
http://dx.doi.org/10.1136/bmjopen-2013-003114
http://bmjopen.bmj.com/


these structures does not necessarily occur in parallel15 16

and thus there is no consensus on which structure is
optimum for diagnosing glaucoma. Indeed, specific struc-
tures may be preferentially damaged in any given patient.
For example, Cordeiro et al17 reported that the diagnostic
performance of circumpapillary RNFL (cp-RNFL) thick-
ness measurements tended to be better in patients with a
small optic disc, and an inverse effect was observed using
the macular ganglion cell complex (GCC) measurement.
Conversely, GCC may be preferential to detect glaucomat-
ous change in patients with high myopia.18 Thus, it
appears that no single structural measurement is best for
diagnosing glaucoma.
The ‘Random Forest’ method is a decision support

tool which consists of many decision trees. Decision
trees have previously been used to diagnose glaucoma19;
however, decision trees suffer from the problem of ‘over-
fitting’, which influences the diagnostic accuracy.20 On
the contrary, the Random Forest classifier overcomes
this problem by summarising the results of many deci-
sion trees. Another noteworthy advantage of the
Random Forest algorithm over traditional methods, such
as logistic regression, is that any interaction or correl-
ation between variables does not adversely affect the
classification since it is capable of representing high-
order interactions.21 Furthermore, predictors that might
otherwise be masked by their correlation with other vari-
ables, using other classification methods, can contribute
to the Random Forest classifier.
Glaucomatous structural change is often apparent in

patients with glaucoma without VF defects (preperi-
metric glaucoma).22 23 Therefore, it may be possible to
predict the presence of the VF deterioration from struc-
tural measurements, as it has been reported that there is
a significant difference in structural measurements
between patients with perimetric and preperimetric
glaucoma.22 Predicting the presence of VF damage from
structural measurements is clinically very important,
especially in patients who cannot reliably perform VF
test, for example, due to inability to concentrate, mental
disorders, locomotor disabilities, etc. The purpose of
this study was to improve the prediction of the presence
of VF damage in glaucoma suspects by analysing mul-
tiple OCT measurements concurrently using the
Random Forest algorithm.

MATERIALS AND METHODS
Written consent was given by the patients for their infor-
mation to be stored in the hospital database and used
for research. This study was performed according to the
tenets of the Declaration of Helsinki.
This retrospective study comprised 293 eyes of 179

consecutive patients referred to the University of Tokyo
Hospital for glaucoma or suspected glaucoma between
August 2010 and July 2012. Patients were referred based
on optic disc damage: focal or diffuse neuroretinal rim
thinning, localised notching or nerve fibre layer defects.

The patients underwent complete ophthalmic examina-
tions, including slit lamp biomicroscopy, gonioscopy,
intraocular pressure measurement and funduscopy. If
glaucomatous structural changes were confirmed from
these tests, axial length (AL; IOL Master, Carl Zeiss
Meditec, Dublin, California, USA), imaging with
SD-OCT and VF testing were performed. The criteria for
inclusion were visual acuity better than 6/12; no previ-
ous ocular surgery, except cataract extraction and intrao-
cular lens implantation; open anterior chamber angle
(patients with angle closure glaucoma and secondary
open angle glaucoma were excluded); no other anterior
and posterior segment eye disease. AL was not used for
the inclusion/exclusion criteria.
VF testing was performed using the Humphrey Field

Analyzer (HFA, Carl Zeiss Meditec), 24-2 or 30-2 test
pattern and the Swedish interactive threshold algorithm
(SITA) Standard strategy, with the Goldmann size III
target. Near refractive correction was used as necessary,
calculated according to the patient’s age by the HFA
software. Unreliable VFs were excluded according to the
HFA criteria (fixation losses greater than 25%, or false-
positive responses greater than 15%). A false negative
rate was not used as an indicator of test reliability follow-
ing a previous report.24 A glaucomatous VF was defined
as a pattern SD value beyond the normal limit (p<0.05),
or a Glaucoma Hemifield Test result outside normal
limits following the criteria in.25 All patients with glau-
coma had previous experience in visual field testing.
SD-OCT (3D OCT-2000; Topcon Corp, Tokyo, Japan)

was used to obtain tomographic images of the parapapil-
lary fundus with the three-dimensional (3D) disc scan
and 3D Macula scan (128 horizontal scan lines com-
prised of 512 A scans for an image area of 6×6 mm).
SD-OCT uses a superluminescent diode laser with a
centre wavelength of 840 nm and a bandwidth of 50 nm
as the light source. The transverse and axial resolutions
are less than 20 and 5 μm, respectively. The acquisition
speed is 50 000 A scans/s. In the selected eye, the
macula was imaged by six radial lines centred at the
fovea spaced 30° apart. All of the measurements were
performed after pupil dilation with 1% Tropicamide
and all of the images had signal strength of at least 60,
as recommended by the manufacturer.
The ‘Random Forest’ algorithm is an ensemble

machine learning classifier proposed by Breiman in
2001.26 27 The Random Forest consists of many decision
trees and outputs the class that is the mode of the
classes output by individual trees. Thus, the Random
Forest is an ensemble classifier, which has been reported
to improve the prediction accuracy of decision tree.28

Indeed there are many reports that suggest that the
Random Forest gives the best prediction accuracy among
various machine learning methods and it has been used
in many research fields, including gene selection and
cancer classification.29–32 In the Random Forest method,
when classifying a new object from an input vector, the
input vector is classified by each of the trees in the
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forest and the tree ‘votes’ for that class. The forest then
chooses the classification having the most votes over all
the trees in the forest. Each tree is constructed using a
different bootstrap sample from the original data. Thus,
cross-validation is performed internally and there is no
need for a separate cross-validation data set to obtain an
unbiased estimate of the test set error. For classification,
node impurity was measured using the Gini index.33

The Random Forest method was used to classify the
presence or absence of glaucomatous VF damage using:
OCT measurements (237 different measurements in
total were analysed), age, gender, AL and right/left eye
(see table 1). In this procedure, 10 000 trees were grown
and 5 among the 241 parameters were used at each
node. The area under the receiver operating characteris-
tic curve (AROC) was derived from the probability of
glaucoma (the proportion of votes) as suggested by the
method; for each individual, only the data from all other
participants (n=178) was used (leave-one-out cross valid-
ation) so that right and left eyes of a participant were
not used for training and testing simultaneously. For
comparison, the AROCs were also derived using only
individual raw thickness measurements of: m-RNFL, or
cp-RNFL, or GCL+IPL, or rim area and the prediction
with the decision tree method. The diagnostic sensitivity
and specificity was also calculated for the age-matched
normative limits of the different measurements (p≤5%
or p≤1%): m-RNFL and GCL+IPL, as shown on the
instrument’s print out.

Finally, variable importance was calculated by ran-
domly permuting a variable at each decision tree and
observing whether the number of correct decisions
decreased.27

All statistical analyses were carried out using the statis-
tical programming language R (V.2.14.2, The R
Foundation for Statistical Computing, Vienna, Austria)
and Medcalc V.11.4.2.0; MedCalc statistical software,
Mariakerke, Belgium). The R package ‘randomForest’
and ‘rpart’ was used to carry out the analysis of the
Random Forest method and decision tree method,
respectively.

RESULTS
Participant’s characteristics are given in table 2. VFs of
224 eyes in 150 patients were diagnosed as glaucomatous
while the remaining 69 eyes of 57 patients were judged as
normal. The average total m-RNFL thickness, cp-RNFL
thickness, GCL+IPL thickness and rim area were signifi-
cantly smaller in the glaucomatous group compared with
the normal group (p<0.05, non-paired t test).
As shown in the figure 1, the AROC of the Random

Forest method utilising all measurements (0.90) was sig-
nificantly larger than that with m-RNFL alone (0.86),
cp-RNFL alone (0.77), GCL-IPL (0.80) and rim area
alone (0.78; p<0.05). Furthermore, the diagnostic per-
formance (sensitivity and specificity) of the age-matched
normative database (as shown on the OCT printout)
were also plotted in figure 1. The sensitivity and specifi-
city for thickness values outside normal limits were:
m-RNFL (p<5%): 0.74 and 0.93; m-RNFL (p<1%): 0.61
and 0.96; GCL+IPL (p<5%): 0.48 and 0.88; GCL+IPL
(p<1%): 0.42 and 0.90 (sensitivity and specificity,
respectively).
Figure 2 illustrates the OCT measurements analysed.

Among 237 measurements, 76 had a significant variable
importance measure including: total and inferior m-RNFL
thickness, total and inferior GCL+IPL thickness, an
m-RNFL thickness value outside normal limits (p<5%),
various sectorial m-RNFL thickness values (figure 2A),
various GCL+IPL thickness values (figure 2B) and two
cp-RNFL thickness values (figure 2A). Age, AL, gender
and right or left eye were not significant.

DISCUSSION
In the current study, the ‘Random Forest’ decision tree
classifier was used to predict the presence of VF damage
in glaucoma suspects. As a result, it was shown that the
AROC given by the Random Forest method was signifi-
cantly larger than those derived from any single OCT
parameter and the simple decision tree method.
Previous attempts have been made to interpret mul-

tiple structural parameters in order to aid the diagnosis
of glaucoma. Chen et al used a logistical diagnostic
model to diagnose glaucoma; the model analysed a
patient’s optic cup:optic disc vertical ratio, cp-RNFL
thickness and rim area simultaneously, but the authors

Table 1 The variables used in the analysis, including 237

optical coherence tomography parameters

Measurement

cp-RNFL Total, 4 sectors (superior, temporal, nasal,

inferior), 12 sectors

m-RNFL Total, 2 sectors (superior, inferior), 100

sectors

GCL+IPL Total, 2 sectors (superior, inferior), 100

sectors

Optic disc Disc area, cup area, rim area, cup

volume, rim volume, C/D area ratio, linear

C/D ratio, vertical C/D ratio, disc diameter

(vertical), disc diameter (horizontal)

m-RNFL Significant according to normative

database (p value <5%)

m-RNFL Significant according to normative

database (p value <1%)

GCL+IPL Significant according to normative

database (p<5%)

GCL+IPL Significant according to normative

database (p value <1%)

Age

Gender

AL

Eye (right/left)

AL, axial length; cp-RNFL, circumpapillary retinal nerve fibre layer;
GCL+IPL, ganglion cell layer and inner plexiform layer; m-RNFL,
macular RNFL.
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found that diagnostic performance was not significantly
improved compared with using individual measure-
ments.34 On the other hand, Burgansky-Eliash et al35

used a support vector machine classifier of multiple
Stratus OCT parameters to diagnose glaucoma and
showed that the AROC was significantly larger. Other
studies also support combining multiple structural mea-
surements to diagnose glaucoma.36 37 In addition, a
recent study suggested the decision tree method is
useful to discriminate between patients with glaucoma
and normal participants.19 However, in the current
study, the decision tree method, which often suffers
from the problem of over-fitting,38 failed to show benefit
in discriminating glaucoma. On the other hand, it was
beneficial to use the Random Forest method, which is
an ensemble classifier of decision trees. Recent reports
have revealed that distinguishing between perimetric

glaucoma and preperimetric glaucoma is more difficult
than differentiating normal participants from patients
with glaucoma39 with early VF damage.22 A noteworthy
advantage of the current study is that it is the first of its
kind to analyse m-RNFL and GCL+IPL layers simultan-
eously with cp-RNFL, optic disc shape parameters as well
age and AL.
It must be noted that a clear caveat of the current

study is the lack of a normative population to act as a ref-
erence. Therefore, AROCs derived in the current study
are not directly relevant to distinguishing between
healthy participants and patients with glaucoma. A
further study should be carried out with normative and
glaucomatous populations (particularly patients with
early stage glaucoma) in order to further investigate the
merits of the Random Forest classifier. Nonetheless, the
method’s ability to accurately differentiate glaucoma

Table 2 Characteristics of the study participants

‘Glaucomatous’ VF group ‘Normal’ VF group
Mean SD Range Mean SD Range p Value

Age (years) 53.6 13.2 17–85 48.5 12.7 17–48 <0.01

MD (dB) −6.2 5.2 −28.2–1.8 −0.5 1.2 −3.6–1.3 <0.01

AL (mm) 25.1 1.7 22.2–29.3 26.0 1.0 22.8–29.5 0.11

m-RNFL (μm) 25.5 7.9 1.0–46.6 35.6 5.4 27.5–63.1 <0.01

cp-RNFL (μm) 88.3 15.1 49.0–123.4 104.0 15.0 66.9–150.9 <0.01

GCL+IPL (μm) 68.8 15.3 43.7–106.5 89.3 19.7 55.7–127.3 <0.01

Rim area (mm2) 1.1 0.5 0.3–3.8 1.6 0.6 0.6–3.7 <0.01

Eye (right/left) 116/108 35/34

Gender (male/female) 108/116 38/31

AL, axial length; cp-RNFL, circumpapillary retinal nerve fibre layer; GCL+IPL, ganglion cell layer and inner plexiform layer; MD, mean
deviation; m-RNFL, macular; VF, visual field.

Figure 1 ROC curves with the

probability of glaucoma suggested

by the Random Forest classifier

and raw thickness measurements

of: m-RNFL alone, cp-RNFL

alone, and GCL+IPL alone, and

decision tree method. The area

under the ROC with the Random

Forest method was significantly

larger than those of individual

measurements and decision tree

method (p<0.05). The coloured ‘X’

represent the sensitivity and

specificity of the SD-OCT

normative database (red: m-RNFL

(p<5%), orange: m-RNFL (p<1%),

green: GCL+IPL (p<5%), blue:

GCL+IPL (p<1%)). AL, axial

length; cp-RNFL, circumpapillary

retinal nerve fibre layer; GCL+IPL,

ganglion cell layer and inner

plexiform layer; m-RNFL, macular

RNFL; ROC, receiver operating

characteristic.
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suspects from patients with glaucoma suggests that the
classifier may be even more useful in this context.
The variable importance measure from the Random

Forest method suggested that total m-RNFL thickness,
total GCL+IPL thickness and m-RNFL thickness outside
normal limits (p<5%) significantly contributed to the
diagnosis of glaucoma. In contrast, age, AL, gender, eye
(right/left) and optic disc measurements such as rim
area, were not significant. Reports have suggested that
optic disc shape parameters are useful for classifying glau-
comatous eyes, but are less useful compared to RNFL
parameters.16 40 However, previous results have been
based on Heidelberg retina tomography (HRT) measure-
ments of the optic disc and there are notable differences
between the corresponding measurements in SD-OCT.
For instance, the margin of the optic disc and cup is auto-
matically identified in SD-OCT, whereas it is manually
drawn by the examiner in HRT. Furthermore, it has been
reported that HRT measurements of optic disc shape
detect a different population of patients with glaucoma

to OCT measurements of the RNFL.16 Accordingly, the
diagnostic performance of the Random Forest classifier
may be further improved by also including various optic
disc-shape parameters derived from HRT. We intend to
investigate this hypothesis in a future study.
Interestingly, our results question the validity of

SD-OCT’s normal limits to discriminate glaucoma. For
example, the blue cross in figure 1 indicates that GCL
+IPL measurements outside normal limits at the p<1%
level have a specificity of 90%. The normal limits of the
SD-OCT are derived by testing ‘normal’ participants
without ocular disease; Rao et al41 have reported that
cp-RNFL thickness measurements from normal partici-
pants and patients with glaucoma overlap considerably.
A significant advantage of the Random Forest classifier
is that normal limits could be established based on
results from normal participants and patients with glau-
coma; these would be expected to better reflect the
‘true’ specificity of the test result. Another merit of the
Random Forest method, in comparison to the current

Figure 2 Variables in the Random Forest classifier having a significant effect on the presence of glaucomatous visual field

damage. Sectors of the cp-RNFL, m-RNFL and GCL+IPL were superimposed onto a fundus photograph44; significant sectors are

highlighted in red. If a participant’s left eye was tested, the recorded data were mapped to a right eye format for analysis. (A)

cp-RNFL, (B): m-RNFL, (C): GCL+IPL. AL, axial length; cp-RNFL, circumpapillary retinal nerve fibre layer; GCL+IPL, ganglion

cell layer and inner plexiform layer; m-RNFL, macular RNFL.
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standard, is that the method gives an exact probability of
glaucoma, rather than a binary classification (glaucoma
or not at p<1%, or p<5%); such a value could be inter-
preted in a manner similar to that of the ‘Nerve Fiber
Index’ score in the nerve fibre analyser imaging instru-
ment (GDx, Carl Zeiss Meditec), which is a continuous
numeric score from 0 to 99.
In our Random Forest classifier, many sectorial thick-

ness measurements of the m-RNFL, GCL+IPL and
cp-RNFL layers were deemed significant for the predic-
tion of glaucomatous VF damage. Significant sectors
were generally located in the inferior hemiretina,
although a few sectors were also situated in the superior
hemiretina (see figure 2). Previous studies have sug-
gested that glaucomatous VF damage preferably affects
the superior hemifield.42 43 Interestingly, the significant
m-RNFL, GCL+IPL and cp-RNFL sectors in our classifier
were principally distributed along the inferotemporal
RNFL bundle, which likely corresponds to an arcuate
defect in the superior VF.44 Thus, these results also
suggest that glaucomatous RNFL/GCL+IPL damage
tends to occur in the inferior hemiretina.
OCT structural measurements are influenced by

ageing; cp-RNFL,45–47 rim area,48 m-RNFL and GCL+IPL
all become thinner with age.49 In addition, studies
suggest that AL may have an effect on measurements of
the cp-RNFL,48 50 rim area,48 50 m-RNFL49 and GCL
+IPL49; however any such effects remain contentious.51–
53 In our study, removing age and AL factors did not
affect the AROC of the Random Forest classifier.
Other machine learning methods, such as support

vector machines, boosting and bagging classifiers could
also be used to diagnose glaucoma. Previous reports
suggest that the Random Forest method outperforms
most other methods31 54 55; hence the Random Forest
algorithm was used in the current study. Nevertheless, in
a future study, we intend to investigate the performance
of machine learning methods for discriminating peri-
metric and preperimetric glaucoma.
In conclusion, we have shown that combining

SD-OCT measurements of the m-RNFL, cp-RNFL, GCL
+IPL layers, using the Random Forest method, is benefi-
cial for predicting the presence of glaucomatous VF
damage in glaucoma suspects, especially when com-
pared with the current OCT reference-standard of com-
paring these measurements to an age-matched
normative database.

Acknowledgements The authors express huge thanks to Hiroyo Hirasawa for
her invaluable help with manuscript preparation and publication.

Contributors MA and CM gave advice from the viewpoint of a glaucoma
specialist. KS, HM and RA conceived and designed the experiments,
performed the experiments, analysed the data, contributed in arranging
reagents/materials/analysis tools and wrote the manuscript.

Funding This research was supported in part by grants 25861618 (HM),
60645000 (HH), and 50570701 (CM) from the Ministry of Education, Culture,
Sports, Science and Technology of Japan.

Competing interests None.

Ethics approval The study was approved by the Research Ethics Committee of
the Graduate School of Medicine and Faculty of Medicine at the University of Tokyo.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with
the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license,
which permits others to distribute, remix, adapt, build upon this work non-
commercially, and license their derivative works on different terms, provided
the original work is properly cited and the use is non-commercial. See: http://
creativecommons.org/licenses/by-nc/3.0/

REFERENCES
1. Quigley HA, Katz J, Derick RJ, et al. An evaluation of optic disc and

nerve fiber layer examinations in monitoring progression of early
glaucoma damage. Ophthalmology 1992;99:19–28.

2. Sommer A, Katz J, Quigley HA, et al. Clinically detectable nerve
fiber atrophy precedes the onset of glaucomatous field loss. Arch
Ophthalmol 1991;109:77–83.

3. Chang R, Budenz DL. New developments in optical coherence
tomography for glaucoma. Curr Opin Ophthalmol 2008;19:127–35.

4. Huang D, Swanson EA, Lin CP, et al. Optical coherence
tomography. Science 1991;254:1178–81.

5. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell
atrophy correlated with automated perimetry in human eyes with
glaucoma. Am J Ophthalmol 1989;107:453–64.

6. Nakano N, Ikeda HO, Hangai M, et al. Longitudinal and
simultaneous imaging of retinal ganglion cells and inner retinal
layers in a mouse model of glaucoma induced by
N-methyl-D-aspartate. Invest Ophthalmol Vis Sci 2011;52:8754–62.

7. Cho JW, Sung KR, Lee S, et al. Relationship between visual field
sensitivity and macular ganglion cell complex thickness as
measured by spectral-domain optical coherence tomography. Invest
Ophthalmol Vis Sci 2010;51:6401–7.

8. Garas A, Vargha P, Hollo G. Diagnostic accuracy of nerve fibre
layer, macular thickness and optic disc measurements made with
the RTVue-100 optical coherence tomograph to detect glaucoma.
Eye 2011;25:57–65.

9. Kim NR, Lee ES, Seong GJ, et al. Structure-function relationship
and diagnostic value of macular ganglion cell complex measurement
using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci
2010;51:4646–51.

10. Moreno PA, Konno B, Lima VC, et al. Spectral-domain optical
coherence tomography for early glaucoma assessment: analysis of
macular ganglion cell complex versus peripapillary retinal nerve fiber
layer. Can J Ophthalmol 2011;46:543–7.

11. Rao HL, Babu JG, Addepalli UK, et al. Retinal nerve fiber layer and
macular inner retina measurements by spectral domain optical
coherence tomograph in Indian eyes with early glaucoma. Eye
2012;26:133–9.

12. Rao HL, Kumbar T, Addepalli UK, et al. Effect of spectrum bias on
the diagnostic accuracy of spectral-domain optical coherence
tomography in glaucoma. Invest Ophthalmol Vis Sci
2012;53:1058–65.

13. Schulze A, Lamparter J, Pfeiffer N, et al. Diagnostic ability of retinal
ganglion cell complex, retinal nerve fiber layer, and optic nerve head
measurements by Fourier-domain optical coherence tomography.
Graefes Arch Clin Exp Ophthalmol 2011;249:1039–45.

14. Tan O, Chopra V, Lu AT, et al. Detection of macular ganglion cell
loss in glaucoma by Fourier-domain optical coherence tomography.
Ophthalmology 2009;116:2305–14. e1–2.

15. Tuulonen A, Lehtola J, Airaksinen PJ. Nerve fiber layer defects with
normal visual fields. Do normal optic disc and normal visual field
indicate absence of glaucomatous abnormality? Ophthalmology
1993;100:587–97; discussion 97–8.

16. Leung CK, Choi N, Weinreb RN, et al. Retinal nerve fiber layer
imaging with spectral-domain optical coherence tomography: pattern
of RNFL defects in glaucoma. Ophthalmology 2010;117:2337–44.

17. Cordeiro DV, Lima VC, Castro DP, et al. Influence of optic disc size
on the diagnostic performance of macular ganglion cell complex and
peripapillary retinal nerve fiber layer analyses in glaucoma. Clini
Ophthalmol 2011;5:1333–7.

18. Shoji T, Nagaoka Y, Sato H, et al. Impact of high myopia on the
performance of SD-OCT parameters to detect glaucoma. Graefes
Arch Clin Exp Ophthalmol 2012;250:1843–9.

19. Baskaran M, Ong EL, Li JL, et al. Classification algorithms enhance
the discrimination of glaucoma from normal eyes using

6 Sugimoto K, Murata H, Hirasawa H, et al. BMJ Open 2013;3:e003114. doi:10.1136/bmjopen-2013-003114

Open Access

 on A
pril 10, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2013-003114 on 7 O

ctober 2013. D
ow

nloaded from
 

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://bmjopen.bmj.com/


high-definition optical coherence tomography. Invest Ophthalmol Vis
Sci 2012;53:2314–20.

20. Mitchell T. Machine learning. McGraw-Hill Higher Education, 1997.
21. Strobl C, Boulesteix AL, Kneib T, et al. Conditional variable

importance for random forests. BMC Bioinformatics 2008;9:307.
22. Cvenkel B, Kontestabile AS. Correlation between nerve fibre layer

thickness measured with spectral domain OCT and visual field in
patients with different stages of glaucoma. Graefes Arch Clin Exp
Ophthalmol 2011;249:575–84.

23. Jeoung JW, Park KH. Comparison of Cirrus OCT and Stratus OCT
on the ability to detect localized retinal nerve fiber layer defects in
preperimetric glaucoma. Invest Ophthalmol Vis Sci 2010;51:938–45.

24. Bengtsson B, Heijl A. False-negative responses in glaucoma
perimetry: indicators of patient performance or test reliability? Invest
Ophthalmol Vis Sci 2000;41:2201–4.

25. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension
Treatment Study: baseline factors that predict the onset of primary
open-angle glaucoma. Arch Ophthalmol 2002;120:714–20.
discussion 829–30.

26. Breiman L. Random Forests. Mach Learn 2001;45:5–32.
27. Breiman L, Cutler A. Random Forests. 2004. http://www.stat.

berkeley.edu/∼breiman/RandomForests/cc_home.htm
28. Dietterich TG. Ensemble learning. In: The handbook of brain theory

and neural networks. 2nd edn. Cambridge: The MIT Press, 2002.
29. Palmer DS, O’Boyle NM, Glen RC, et al. Random forest models to

predict aqueous solubility. J Chem Inf Model 2007;47:150–8.
30. Wu B, Abbott T, Fishman D, et al. Comparison of statistical methods

for classification of ovarian cancer using mass spectrometry data.
Bioinformatics 2003;19:1636–43.

31. Diaz-Uriarte R, Alvarez de Andres S. Gene selection and classification
of microarray data using random forest. BMC Bioinformatics 2006;7:3.

32. Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and
regression tool for compound classification and QSAR modeling.
J Chem Inf Comput Sci 2003;43:1947–58.

33. Gini C. 1909 Concentration and dependency ratios (in Italian).
Riv Pol Econ 1997;87:769–89.

34. Fang Y, Pan YZ, Li M, et al. Diagnostic capability of Fourier-Domain
optical coherence tomography in early primary open angle
glaucoma. Chin Med J 2010;123:2045–50.

35. Burgansky-Eliash Z, Wollstein G, Chu T, et al. Optical coherence
tomography machine learning classifiers for glaucoma detection:
a preliminary study. Invest Ophthalmol Vis Sci 2005;46:4147–52.

36. Lu AT, Wang M, Varma R, et al. Combining nerve fiber layer
parameters to optimize glaucoma diagnosis with optical coherence
tomography. Ophthalmology 2008;115:1352–7, 57e1–2.

37. Chen HY, Huang ML, Hung PT. Logistic regression analysis for
glaucoma diagnosis using Stratus Optical Coherence Tomography.
Optom Vis Sci 2006;83:527–34.

38. Hastie T, Tibshirani R, Friedman J. The elements of statistical
learning. New York: Springer, 2001.

39. Morooka S, Hangai M, Nukada M, et al. Wide 3-dimensional
macular ganglion cell complex imaging with spectral-domain optical
coherence tomography in glaucoma. Invest Ophthalmol Vis Sci
2012;53:4805–12.

40. Lisboa R, Leite MT, Zangwill LM, et al. Diagnosing preperimetric
glaucoma with spectral domain optical coherence tomography.
Ophthalmology 2012.

41. Rao HL, Zangwill LM, Weinreb RN, et al. Comparison of different
spectral domain optical coherence tomography scanning areas
for glaucoma diagnosis. Ophthalmology 2010;117:1692–9, 99e1.

42. Hart WM Jr, Becker B. The onset and evolution of glaucomatous
visual field defects. Ophthalmology 1982;89:268–79.

43. Heijl A, Lundqvist L. The frequency distribution of earliest
glaucomatous visual field defects documented by automatic
perimetry. Acta Ophthalmol 1984;62:658–64.

44. Garway-Heath DF, Poinoosawmy D, Fitzke FW, et al. Mapping the
visual field to the optic disc in normal tension glaucoma eyes.
Ophthalmology 2000;107:1809–15.

45. Lee JY, Hwang YH, Lee SM, et al. Age and retinal nerve fiber layer
thickness measured by spectral domain optical coherence
tomography. Korean J Ophthalmol 2012;26:163–8.

46. Parikh RS, Parikh SR, Sekhar GC, et al. Normal age-related decay
of retinal nerve fiber layer thickness. Ophthalmology
2007;114:921–6.

47. Feuer WJ, Budenz DL, Anderson DR, et al. Topographic differences
in the age-related changes in the retinal nerve fiber layer of normal
eyes measured by Stratus optical coherence tomography.
J Glaucoma 2011;20:133–8.

48. Knight OJ, Girkin CA, Budenz DL, et al. Effect of race, age, and
axial length on optic nerve head parameters and retinal nerve fiber
layer thickness measured by Cirrus HD-OCT. Arch Ophthalmol
2012;130:312–18.

49. Ooto S, Hangai M, Tomidokoro A, et al. Effects of age, sex, and
axial length on the three-dimensional profile of normal macular layer
structures. Invest Ophthalmol Vis Sci 2011;52:8769–79.

50. Kang SH, Hong SW, Im SK, et al. Effect of myopia on the thickness
of the retinal nerve fiber layer measured by Cirrus HD optical
coherence tomography. Invest Ophthalmol Vis Sci
2010;51:4075–83.

51. Zou H, Zhang X, Xu X, et al. Quantitative in vivo retinal thickness
measurement in chinese healthy subjects with retinal thickness
analyzer. Invest Ophthalmol Vis Sci 2006;47:341–7.

52. Chan CM, Yu JH, Chen LJ, et al. Posterior pole retinal thickness
measurements by the retinal thickness analyzer in healthy Chinese
subjects. Retina 2006;26:176–81.

53. Hoh ST, Lim MC, Seah SK, et al. Peripapillary retinal nerve fiber
layer thickness variations with myopia. Ophthalmology
2006;113:773–7.

54. Maroco J, Silva D, Rodrigues A, et al. Data mining methods in the
prediction of Dementia: A real-data comparison of the accuracy,
sensitivity and specificity of linear discriminant analysis, logistic
regression, neural networks, support vector machines,
classification trees and random forests. BMC Res Notes
2011;4:299.

55. Douglas PK, Harris S, Yuille A, et al. Performance comparison of
machine learning algorithms and number of independent
components used in fMRI decoding of belief vs disbelief.
NeuroImage 2011;56:544–53.

Sugimoto K, Murata H, Hirasawa H, et al. BMJ Open 2013;3:e003114. doi:10.1136/bmjopen-2013-003114 7

Open Access

 on A
pril 10, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2013-003114 on 7 O

ctober 2013. D
ow

nloaded from
 

http://bmjopen.bmj.com/

