Deafness in children: a national survey of aetiological investigations

Shankar Rangan,¹ Bernie Borgstein,² Janet Lowe³

ABSTRACT

Objective: The aim of this study was to obtain national data regarding adherence to national guidelines for aetiological investigations for hearing loss in children and highlight any variations in practice. Information was also collected on possible factors affecting lack of adherence.

Design: An online questionnaire based on the national guidelines for aetiological investigations for deafness was designed.

Setting: The questionnaire was distributed to the leads of all the Newborn Hearing Screening Programme (NHSP) sites across England through the Medical Research Council Hearing & Communication Group.

Participants: The questionnaire was sent to 100 recipients; from this 52 responses were obtained.

Outcome measures: Variability in the investigations offered for hearing loss.

Results: There was a 52% response rate. Analysis of the responses showed that audiovestibular physicians and paediatricians in audiology were more likely than other specialists to request level 1 investigations (investigations that are recommended to be offered in all cases). Respondents from London and the North West were more likely to request level 1 investigations compared with those from other regions. In all, 14 of the 19 audiovestibular physicians and paediatricians in audiology requested level 1 investigations routinely, but only 11 of 33 from other specialties did likewise. Of the 20 respondents from London and the North West, 15 requested level 1 investigations routinely, whereas only 10 of the 32 respondents from the other regions did the same. The difference was statistically significant in both cases. The geographical variation was specially marked for family audiograms and MRI.

Conclusions: There is significant variation from the national guidelines in requesting aetiological investigations for permanent hearing impairment (PHI) in children, depending on the specialty of the clinician and the geographical region. These variations appear partly to be due to the availability of local resources but also due to lack of awareness of the importance of some investigations.

INTRODUCTION

The incidence of permanent hearing impairment (PHI) in children in UK is approximately 1 in 1000 births, but this incidence...
The main limitation of this study was that the Medical Research Council (MRC) Hearing & Communication group, which sent out the questionnaires on behalf of the authors, could not divulge details about the number of recipients in each strategic health authorities (SHA) or provide us with a breakdown of the specialty of all the recipients as they felt this would be a breach of confidentiality. It was not possible for the authors to find out this information as only the MRC Hearing & Communication group had the relevant database. The specialty of the responders was known as this was a mandatory question. Since the specialty of all the recipients was not known, it was difficult to know if any one specialty had a higher percentage of return rates than others, which might create a bias. However, since there was a fairly symmetrical mix of specialty among the responders, the chance of any bias towards any one particular specialty is unlikely. Similarly, the number of responses received from each SHA was known, but the exact number of recipients in each SHA was unknown. Therefore, it is not known if a higher percentage of recipients responded from any particular SHA. Again, as for the specialty of the recipients, since there was a good distribution of responses from the various SHAs, bias towards any particular SHA would not be likely.

Reasons for investigating the aetiology of PHI in children include; providing parents with information, improving understanding of the progress and natural history of deafness, identification of other pathologies such as Pendred or Usher syndrome to enable timely and appropriate management strategies, genetic counselling and to help in understanding the epidemiology of hearing loss.

National guidelines for the aetiological investigations of deafness in children have been issued by the NHSP.

<table>
<thead>
<tr>
<th>Box 1</th>
<th>Level 1 investigations (investigations to be offered in all cases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 investigations</td>
<td></td>
</tr>
<tr>
<td>1. General history, family history of hearing loss</td>
<td></td>
</tr>
<tr>
<td>2. Clinical, developmental examination</td>
<td></td>
</tr>
<tr>
<td>3. Family audiograms—first-degree relatives</td>
<td></td>
</tr>
<tr>
<td>4. MRI of inner ears/Internal Auditory Meati (IAM)</td>
<td></td>
</tr>
<tr>
<td>5. Test for Connexin 26 and 30 mutations</td>
<td></td>
</tr>
<tr>
<td>6. Ophthalmology referral</td>
<td></td>
</tr>
<tr>
<td>7. Congenital cytomegalovirus (cCMV) testing</td>
<td></td>
</tr>
<tr>
<td>8. Screening for other congenital infections—rubella, toxoplasma, syphilis</td>
<td></td>
</tr>
<tr>
<td>9. Urine examination—dipstick for blood and protein</td>
<td></td>
</tr>
</tbody>
</table>

Blood tests
- Full blood count, haemoglobinopathy screening, dipstick for blood and protein
- Immune disease screen, metabolic screen, vestibular investigations and clinical photography

Nearly doubles by 9 years of age as more children with PHI are identified. Those identified later include false-negative cases from the Newborn Hearing Screening Programme (NHSP), children with acquired hearing loss and those with progressive deafness.

National survey of aetiologic investigations for deafness in children

National survey of aetiologic investigations for deafness in children

<table>
<thead>
<tr>
<th>Box 2</th>
<th>Level 2 investigations (investigations to be offered in specific conditions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 2 investigations</td>
<td></td>
</tr>
<tr>
<td>1. Imaging—CT scan of petrous temporal bones, renal ultrasound</td>
<td></td>
</tr>
<tr>
<td>2. ECG</td>
<td></td>
</tr>
<tr>
<td>3. Genetics—test for mitochondrial mutation m.1555 A&gt;G, chromosomal abnormalities or microdeletions, Pendrin gene in cases of dilated vestibular aqueduct (DVA) and/or Mondini anomaly, referral to clinical geneticist</td>
<td></td>
</tr>
<tr>
<td>4. Blood tests—full blood count, haemoglobinopathy screening, urea and electrolytes, thyroid function tests</td>
<td></td>
</tr>
<tr>
<td>5. Other investigations in specific situations, for example, autoimmune disease screen, metabolic screen, vestibular investigations and clinical photography</td>
<td></td>
</tr>
</tbody>
</table>

Parker et al. in 1999 reported a survey of clinical geneticists, in which they noted a great variation both in the services provided and in the recurrence risks quoted in isolated cases of childhood deafness. They sent postal questionnaires to 79 consultant clinical geneticists based at 26 centres across the UK. Just over half the respondents would ask for parental audiograms and only

throat (ENT) consultants and community paediatricians in audiology working in Wales. They found that community paediatricians reported higher usage of visual and developmental assessment, but less of imaging and ECG, whereas ENT consultants were less likely than other specialists to request ECG and urine analysis. They also found that community paediatricians performed more Level 2 investigations, mainly haematology, biochemistry and serology. Their study recommended greater use of ECG, urine analysis and ophthalmology referral.

Yoong and Spencer audited local performance against national guidelines for aetiological investigation of permanent childhood hearing impairment in Bradford. They found that almost 42% of the children were not offered imaging and about 20% were not referred to ophthalmology. They concluded that factors responsible for non-adherence to guidelines were lack of funding and parental choice.

Wilson et al. studied the current practice of aetiological investigation of children with bilateral severe-to-profound sensorineural hearing loss (SNHL) in Wales by sending postal questionnaires to all ear, nose and
around 10% requested imaging. In their survey, the commonest specific investigations requested were ECG, ophthalmological review, thyroid function tests, virology for congenital infection and urine analysis. They acknowledged the need to improve existing clinical and social understanding of childhood hearing impairment.

There has been no study which has looked at the practice and adherence to aetiological investigation guidelines across the country by specialty and geography. This study is a survey of current practice highlighting variations from the guidelines and recording differences in practice across the country together with possible reasons.

**RESULTS**

A total of 52 responses were obtained; 50 online and two postal responses, giving a response rate of 52%. The postal responses were received from respondents having technical problems with the online questionnaire. Responses were received from all strategic health authorities (SHA) with London and the North West returning more responses than other regions (10 each).

The respondents were grouped into five different specialties on the basis of their response to the mandatory question regarding their specialty. There were 15 paediatricians, 11 paediatricians in audiology, 8 community paediatricians, 8 audiovestibular physicians and 10 ENT surgeons.

Of the nine items listed in the level 1 investigations category, all respondents except one ENT surgeon indicated they would routinely take a detailed paediatric and family history. This ENT surgeon commented that he/she would do a routine ENT examination, but the paediatrician in the joint clinic also routinely saw the child. Apart from one each of audiovestibular physician, community paediatrician, ENT surgeon and paediatrician, all others indicated they would do a clinical examination including developmental assessment routinely.

The level 1 investigations showing the most variations between specialties for being requested routinely were family audiograms, Connexin testing and MRI scan of inner ears, with MRI having the maximum variation across specialties. Table 1 summarises the frequency with which the level 1 investigations were requested routinely by different specialists.

Overall, audiovestibular physicians and paediatricians in audiology were more likely to request level 1 investigations routinely as compared to other specialties. This

<table>
<thead>
<tr>
<th>Specialty</th>
<th>Family audio (%)</th>
<th>Ophthalmology (%)</th>
<th>Urine dipstick (%)</th>
<th>Serology (%)</th>
<th>Connexin (%)</th>
<th>MRI (%)</th>
<th>Cytomegalovirus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paediatricians</td>
<td>67</td>
<td>93</td>
<td>80</td>
<td>67</td>
<td>93</td>
<td>33</td>
<td>67</td>
</tr>
<tr>
<td>Paediatricians in audiology</td>
<td>91</td>
<td>91</td>
<td>73</td>
<td>82</td>
<td>82</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>ENT surgeons</td>
<td>50</td>
<td>90</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Audiovestibular physicians</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>88</td>
<td>100</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>Community paediatricians</td>
<td>75</td>
<td>100</td>
<td>88</td>
<td>75</td>
<td>100</td>
<td>63</td>
<td>75</td>
</tr>
</tbody>
</table>

ENT, ear, nose and throat.
difference was statistically significant (Fisher-Freeman-Halton exact test, \( p=0.008 \)). The analysis was done by assigning the respondents to two groups, those requesting eight or more level 1 investigations routinely (first group), and those requesting seven or less routinely (second group). Of the total of 19 audi vestibular physicians and paediatricians in audiology, 14 were in the first group and 5 in the second. Of the 33 respondents from other specialties, only 11 were in first group, but 22 were in the second group. A contingency table analysis with \( \chi^2 \) and Fisher-Freeman-Halton exact test showed this difference to be statistically significant, with a \( p \) value of 0.005 (\( \chi^2=7.864535 \)) and 0.0089, respectively. The Fisher-Freeman-Halton exact test is more accurate as the numbers in the groups are relatively small.

Geographically, of the 20 respondents from North West and London, 10 made routine requests for level 1 investigations, whereas only 10 of the 32 respondents from the other regions did likewise. Analysis similar to that done for the specialties, showed this difference to also be statistically significant (\( \chi^2 \) (\( \hat{x}^2 \))=9.437037, \( p=0.002 \)). All the respondents (100%) from the North West and London reported requesting family audiograms routinely, compared to little more than one-half to two-third from other regions. The most striking difference was for the routine use of imaging, with none of the respondents from the South West requesting this routinely, compared to more than 80% from North West and London doing so (table 2).

**DISCUSSION**

Early identification of hearing loss and intervention results in a significantly better outcome for language development.\(^7\) With the implementation of the NHSP not only are more children with PHI being identified,\(^8\) the age at identification of the hearing loss has also reduced significantly.\(^9\) Looking for the cause of PHI in children can be a challenging but rewarding exercise, both for the parents and clinician.\(^10\) The yield from investigations is variable; the aetiology can remain unknown in about 40% cases,\(^11\) but as our knowledge increases this figure should decrease.\(^10\) A multidisciplinary and systematic approach increases the yield from investigations.\(^12\)

The results from this study show a good awareness towards the importance of taking a detailed paediatric and family history and also carrying out a thorough examination, including developmental examination. There appeared to be major disparity between specialists in requesting family audiograms. One reason for this difference is a lack of resources in some parts of the country as indicated by comments from some of the respondents. One respondent stated that there was an ongoing negotiation and business case with the commissioners for family audiogram. Another respondent indicated that there were funding implications with family audiograms as only the patient would be paid for on payment by result (PBR). The other reason could be a lack of awareness of the importance of certain investigations such as family audiograms. Age-appropriate hearing assessment of first-degree relatives has been recommended even if there are no concerns, as unsuspected abnormalities may be uncovered and the configuration of the audiogram may also show a similar pattern among family members.\(^2\)

The frequency of routinely testing for congenital cytomegalovirus (cCMV) appears to be less than optimal across all the specialist subgroups. CMV is the most common cause of congenital infections in humans\(^13\) and is a leading cause of non-hereditary SNHL.\(^14-15\) Children with both symptomatic and asymptomatic congenital CMV can develop SNHL.\(^16\) The hearing loss can be progressive or of delayed onset.\(^16\) Not diagnosing cCMV infection can have important implications as parents may not be counselled about the chance of concurrent disabilities. Another important reason for diagnosing cCMV is that early antiviral therapy has been shown to prevent onset or deterioration of hearing loss in both symptomatic\(^17\) and asymptomatic\(^18\) cCMV infections. Therefore, routine testing for cCMV is important. The diagnosis of cCMV can also be made retrospectively from the child’s dried blood spot (DBS or Guthrie card). This has been shown to be a valid and effective method, with the added advantage that diagnosis can be made after many years as the Guthrie card can be stored for long periods.\(^19\)

The most common cause of genetic deafness is mutations in the Gap Junction Beta 2 gene (GJB2), located on chromosome 13q and encoding the protein GJB2.
Connexin 26,20–21 The 35 delG mutation is the common-
est22–23 and has been reported to account for more than
80% of the GJB2 mutations in the Caucasian popula-
tion.24 Homozygotes for the c.35delG mutation have
been reported to have more significant hearing impair-
ment than other genotypes.21 25 In this study, all audio-
estibular physicians and community paediatricians and
most of the paediatricians and paediatricians in audi-
ology would offer Connexin testing routinely, but only
half of ENT surgeons did so. Not diagnosing a case of
genetic deafness such as GJB2 would mean that parents
may not be counselled about the high risk of recurrence
in future pregnancies.

The level 1 investigation which seemed to demonstrate
the maximum variation according to specialty was MRI
scan of Internal Auditory Meati (IAM). Whereas all audio-
estibular physicians and three-quarters of paediatricians
in audiology offered this routinely, only two-thirds of com-
munity paediatricians, a third of paediatricians and a fifth
of ENT surgeons did so. This finding is quite different
from that of Wilson et al.,4 who found that community paedi-
atricians requested imaging less often than ENT sur-
geons. Local policy and funding seems to be one of the
factors influencing the decision of not offering routine
imaging, especially from the community as three commu-
nity paediatricians commented about the difficulty in
arranging MRI scans. Decision of the individual clinician
was another factor as five ENT surgeons commented that
they would arrange for the MRI scan only if cochlear
implantation was being considered. However, imaging has
been shown to have a high diagnostic yield in the investiga-
tion of PHI in children26 and MRI is a level 1 investigation.
High-resolution MRI has the added advantage of screen-
ing the central nervous system (CNS), enabling other
neuro-developmental abnormalities to be detected.27
Characteristic findings on MRI can also lead to a retro-
spective diagnosis of congenital CMV.29 A dilated vestibul-
ar aqueduct (DVA) is the commonest abnormality noted
on imaging.2 The hearing loss in DVA can be progressive
or there may be sudden drops in hearing triggered by
minor head trauma.29 Identification of a DVA thus enables
the clinician to give parents information on prognosis and
to discuss important management strategies such as avoid-
ing contact sports which have a risk of head trauma. DVA
may also be associated with thyroid disease in Pendred syn-
drome and parents need to be counselled about this.
Therefore, the use of MRI need not be limited to cases
only where cochlear implantation is being considered, but
should be offered to all children with permanent
severe-to-profound hearing loss.

Most of the respondents routinely referred children
with PHI for an ophthalmological assessment. This
finding is in contrast to the finding of Wilson et al.4 that
a greater need for routine ophthalmological referral was
needed. This may reflect a better understanding of the
role and importance of various investigations, possibly
contributed to by the NHSP ‘aetiological investigations’
courses over the years. The NHSP Quality Assurance
(QA) team visits to local NHSP sites would also have
helped to improve the understanding of the role of the
various aetiological investigations. Documents such as
Quality standards in vision care for deaf children and
young people (2009) published jointly by the the
National Deaf Children’s Society (NDCS) and Sense,
add weight to the importance of checking the visual
status of children with PHI.30

All audiovestibular physicians and most community
paediatricians routinely requested urinalysis or urine
dipsticks, but less than two-thirds of ENT surgeons did
likewise. This finding was similar to that of Wilson et al.4
However, the importance of routine urine analysis in the
investigation of PHI in the neonatal period can be
debated. The average age of presentation with deafness
in Alport syndrome is reported to be 11 years,31 a
routine urinalysis in the neonate would not necessarily
identify this condition and it would need to be repeated
in mid-childhood, especially if no cause for the hearing
loss has been found or if the hearing loss is progressive.

A bogus question; positron emission tomography
(PET) was added to the list of investigations in the ques-
tionnaire to increase the validity of the responses. A PET
scan is not listed in the investigations recommended in
the national guidelines and currently does not form a
part of the investigation for PHI in children. Therefore,
if any of the respondents had indicated they would offer
this routinely, the validity of the rest of their responses
could be questioned. However, none of the 52 respon-
dents indicated they would offer a PET scan routinely.

For the question ‘Would your answers have been the
same for a child with Unilateral severe-to-profound deaf-
ness?’, 59% answered ‘no’ and 41% ‘yes’. For the ques-
tion ‘Would your answers have been the same for a child
with mild-to-moderate degree of hearing loss?’, 62%
answered ‘no’ and 38% ‘yes’. There are now guidelines
for investigation of unilateral and mild-to-moderate sen-
sorineural hearing loss32, but these guidelines are not
evidence based.

One of the limitations of the study was the response
rate of 52%. However, this response rate could be con-
sidered quite acceptable as often the response rate to
questionnaires without personal (face to face or tele-
phone) contact with the respondent can be as low as
20%.33 One reason for non-response could be due to
the method by which the questionnaires had to be dis-
btributed. The questionnaires were sent electronically
to all the clinical NHSP leads. However, the clinical lead
may not be the person carrying out the investigation in
all areas. Even though the covering letter accompanying
the questionnaire requested the clinical lead to forward
the questionnaire to the appropriate individual, this may
not have happened in all cases, thereby reducing the
response. Another factor could be that those who
responded to the survey are the ones more likely to be
carrying out the investigations as per the national guide-
lines and those who do not comply with the guidelines
not responding. Therefore, the real proportion of
families offered the full battery of level 1 investigations may be even lower than shown in this survey.

The main limitation of this study was that the MRC Hearing & Communication group, which sent out the questionnaires on behalf of the authors, could not divulge details about the number of recipients in each SHA or provide us with a breakdown of the specialty of all the recipients as they felt this would be a breach of confidentiality. It was not possible for the authors to find out this information as only the MRC Hearing & Communication group had the relevant database. The specialty of the responders was known as this was a mandatory question. Since the specialty of all the recipients was not known, it was difficult to know if any one specialty had a higher percentage of return rates than others, which might create a bias. However, since there was a fairly symmetrical mix of specialty among the responders, the chance of any bias towards any one particular specialty is unlikely. Similarly, the number of responses received from each SHA was known, but the exact number of recipients in each SHA was unknown. Therefore, it is not known if a higher percentage of recipients responded from any particular SHA. Again, as for the specialty of the recipients, since there was a good distribution of responses from the various SHAs, bias towards any particular SHA would not be likely.

This survey highlights the variations from the national guidelines for aetiological investigations of children with PHI. While in some cases this variation has been due to lack of resources, in others this seems to be due to individual choice of the clinician. It seems unlikely that unavailability of MRI scanning or genetic testing would be the only reason these are not offered in all cases. Similarly, not routinely requesting cCMV testing could be due to a lack of appreciation of the importance and implications of this, as it would be unlikely that access to cCMV testing is not available to all clinicians. Clinicians not offering the investigations according to guidelines by choice should be encouraged to change their practice so that the investigations offered for childhood PHI is standardised across the country. We also hope the findings of inequality, due to resources, between geographical regions highlighted in this study would give the clinicians a tool to argue for more funding and resources. Although, over the years the understanding of the role and importance of various investigations for deafness has increased, there is a need for further improvement.

CONCLUSIONS

In this study, variations from the national guidelines have been noted, both according to the specialty of the clinician and geographical region. Although some of the variations appear partly to be due to availability of local resources, there also seems to be a lack of awareness of the importance of some investigations. This study emphasises the need for greater understanding and availability among clinicians of the role of various investigations for PHI in children. Routine use of Connexin testing, MRI, cCMV testing and family audiograms should be encouraged.

Acknowledgements The authors would like to acknowledge the following: Ms Denise Duhaney, Newborn Hearing Screening Programme (NHSP) co-ordinator at the Medical Research Council Hearing & Communication Group for painstakingly collating the list of NHSP clinical leads and sending the questionnaire to them. Mr Andy Vail, medical statistician at Salford Royal NHS Foundation Trust for all the help and support provided with the statistical analysis. Mr Malcolm Wilson of the IT department at Bolton PCT for designing the online study questionnaire.

Contributors RR made substantial contributions to conception design, acquisition of data or analysis and interpretation of data and final approval of version to be published. BB was responsible for drafting the article or revising it critically for important intellectual content. JL was responsible for drafting the article or revising it critically for important intellectual content.

Competing interests None.

Ethics approval The Great Ormond Street Hospital for Children NHS Trust/ Institute of Child Health Research Ethics Committee.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Dataset and details of statistical analysis will be available from the corresponding author at shankarrangan@yahoo.co.uk. The presented data are anonymised and risk of identification is low.

REFERENCES

Which of the following would you offer to the parent of a child with bilateral severe-to-profound sensorineural deafness?

<table>
<thead>
<tr>
<th>Detailed paediatric history including family history of deafness</th>
<th>Routinely</th>
<th>Sometimes</th>
<th>Rarely</th>
<th>Not offered—clinicians choice</th>
<th>Not offered—other reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical examination including developmental assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family audiograms for first-degree relatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophthalmology referral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine for dipstix (haematuria, proteinuria)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serology/TORCH (Toxoplasma, Others - Syphilis, Rubella,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytomegalovirus, Herpes Simplex) investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haematology and biochemistry (full blood count, U &amp; E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid function tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology tests (eg, autoimmune markers, inflammatory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>markers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic screen Blood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### National survey of aetiological investigations for deafness in children

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Routinely</th>
<th>Sometimes</th>
<th>Rarely</th>
<th>Not offered—clinicians choice</th>
<th>Not offered—other reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood for Connexin mutation testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood for other mutations (eg, A1555G)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tests for CMV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guthrie card</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRI of Internal Auditory Meati</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT scan of petrous temporal bone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal ultrasound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical photography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromosomal studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET scan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Referral to Clinical Geneticist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vestibular investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Others: please list

Would your answers have been the same for a child with unilateral severe-to-profound deafness?

- Yes [ ]
- No [ ]

Would your answers have been the same for a child with other degrees of hearing loss (mild or moderate)?

- Yes [ ]
- No [ ]

Are there any investigations that you would like to do regularly, but cannot, due to non-availability of resources or other constraints. Please comment.

Any other comments

Designation of person filling the form (mandatory question)
Specialty of person filling the form (eg, audiovestibular physician, paediatrician, ear, nose and throat (ENT), etc) (mandatory question)

Email of the person filling the form

PCT or Strategic Health Authority covered (mandatory question)
Deafness in children: a national survey of aetiological investigations

Shankar Rangan, Bernie Borgstein and Janet Lowe

*BMJ Open* 2012 2:
doi: 10.1136/bmjopen-2012-001174

Updated information and services can be found at:
http://bmjopen.bmj.com/content/2/5/e001174

These include:

**References**
This article cites 29 articles, 8 of which you can access for free at:
http://bmjopen.bmj.com/content/2/5/e001174#BIBL

**Open Access**
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.

**Email alerting service**
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

**Topic Collections**
Articles on similar topics can be found in the following collections

- Health services research (1406)
- Paediatrics (612)

**Notes**

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/