Knowledge about epilepsy among health professionals: a cross-sectional survey in São Paulo, Brazil

Rodrigo Luiz Vancini,1 Ana Amélia Benedito-Silva,2 Bolivar Saldanha Sousa,1 Sergio Gomes da Silva,1 Maria Iones Souza-Vancini,3 Cássia Regina Vancini-Campanharo,4 Francisco Romero Cabral,5 Cristiano de Lima,6 Claudio Andre Barbosa de Lira7

ABSTRACT
Objective: To evaluate the epilepsy knowledge among health professionals in São Paulo, Brazil.
Design: This is a cross-sectional study.
Participants: Professionals with academic degrees in physical education (n=134), nutrition (n=116), medicine (n=100), psychology (n=53), nursing (n=122) and physiotherapy (n=99) who lived in São Paulo City, Brazil.
Primary and secondary outcome measures: Knowledge of health professionals about epilepsy.
Methods: Professionals with academic degrees in physical education (n=134), nutrition (n=116), medicine (n=100), psychology (n=53), nursing (n=122) and physiotherapy (n=99) who lived in São Paulo City, Brazil, were invited to participate in the study. The subjects (n=624) answered a questionnaire composed of 25 simple closed-ended questions from three areas: personal, educational and knowledge.
Results: Out of all subjects, 88.5% (n=552) had a postgraduate education, while 11.5% (n=72) had only an undergraduate degree. The authors found that physical educators, nutritionists and physiotherapists received lower scores on their epilepsy knowledge than other health professionals.
Conclusions: Health professionals are considered better-educated group inside the society, especially with regards to healthcare issues. Thus, it is important they also have an accurate and correct knowledge about epilepsy. The findings of the present study indicate an imperative improvement in education about epilepsy, as well as an inclusion of formal programmes for epilepsy education especially for non-medical professionals. An improvement in epilepsy education might contribute to an improvement in epilepsy care and management.

INTRODUCTION
Affecting approximately 50 million people worldwide, epilepsy is one of the most common and most serious neurological conditions.1 Epilepsy is a disorder of the brain characterised by a continuous predisposition to generate epileptic seizures, normally leading to neurobiologic, cognitive, psychological and social consequences. To be diagnosed epileptic, one normally has to have suffered at least one epileptic seizure.2 This is characterised by a transient occurrence of signs and/or symptoms due to abnormal, excessive or synchronous neuronal activity in the brain.2 The most common risk factors for epilepsy development are cerebrovascular disease, brain tumours, alcohol, traumatic head injuries,
malformations of cortical development, genetic inheritance and infections of the central nervous system. In Latin America, the incidence of epilepsy is around 78–190 new cases per 100 000 habitants per year, and the average prevalence is approximately 18 cases per 1000 habitants. The high incidence and prevalence of epilepsy have a great influence on socioeconomic factors and contribute to an increase in direct economic costs, such as medical expenses for drugs and hospitalisations, and indirect costs, such as from the loss of productive capacity, economic production by unemployment, sick license or premature death.

The occurrence of seizures is often associated with an imbalance between inhibitory and excitatory neurotransmission, mainly in favour of the latter. Seizures in epilepsy are usually divided into two groups: partial and generalised. Partial, or focal, seizures have clinical or electroencephalogram evidence of local onset and may spread to other parts of the brain during a seizure, whereas generalised seizures begin simultaneously in both cerebral hemispheres.

The socio-cultural, economical and medical impact of epilepsy represents an important public health problem. It has influence on the emotional behaviour, ability to work, family stability and self-esteem of the people with epilepsy. Sometimes the social discrimination against persons with epilepsy may be more devastating than the condition itself. Fear and stigma are common among the general population and are shared by 40% of health staff. There is evidence that attitudes towards people with epilepsy are influenced by the degree of knowledge a person has of the disease. Vancini et al. found a low knowledge of epilepsy in physical educators, mainly on aspects of pathophysiology and treatment procedures. In primary schoolteachers, some incorrect procedures used when attending a person that is having a seizure have been related to misconceptions. These misconceptions were associated with poor educational programmes for epilepsy. In contrast, higher levels of education are positively correlated with awareness, knowledge and attitude concerning epilepsy. Unfortunately, many of the misconceptions about epilepsy that are prevalent in the local population are also present in health professionals and school-teachers. Taking into account that epilepsy management must be done by a multidisciplinary team, an evaluation of the knowledge about epilepsy among different health professionals could contribute to an improvement in epilepsy care/management. Thus, the present study was designed to evaluate the epilepsy knowledge among health professionals.

METHODS

Subjects with academic degrees in physical education (n=134), nutrition (n=116), medicine (n=100), psychology (n=53), nursing (n=122) and physiotherapy (n=99) who lived in São Paulo City, Brazil, were recruited from community using different sources of advertisement (ie, internet, local newspapers, magazine and billboards in universities, clinics, hospitals and gyms) (table 1 summarises the general characteristics of the health professionals). The inclusion criteria to participate in the study were professionals with at least an undergraduate degree in physical education, nutrition, medicine,

Table 1 Demographic characteristics of the health professionals

<table>
<thead>
<tr>
<th>Gender</th>
<th>Physical education (n=134)</th>
<th>Nursing (n=122)</th>
<th>Physiotherapy (n=99)</th>
<th>Medicine (n=100)</th>
<th>Nutrition (n=116)</th>
<th>Psychology (n=53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>93 (69)</td>
<td>13 (11)</td>
<td>38 (38)</td>
<td>69 (69)</td>
<td>9 (8)</td>
<td>5 (9)</td>
</tr>
<tr>
<td>Female</td>
<td>41 (31)</td>
<td>109 (89)</td>
<td>61 (62)</td>
<td>31 (31)</td>
<td>107 (92)</td>
<td>48 (91)</td>
</tr>
<tr>
<td>Age (mean ± SD)</td>
<td>26.7±4.6</td>
<td>28.7±6.3</td>
<td>26.2±5.0</td>
<td>32.9±10.3</td>
<td>26.0±5.2</td>
<td>30.0±8.7</td>
</tr>
</tbody>
</table>

Table 2 Questions that composed the epilepsy knowledge test

<table>
<thead>
<tr>
<th>Question</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q9</td>
<td>The epilepsy is a contagious disease</td>
</tr>
<tr>
<td>Q10</td>
<td>The epilepsy is a brain chronic disease that cannot be cured or controlled</td>
</tr>
<tr>
<td>Q11</td>
<td>Seizure occurs when an abnormal electric discharge happen in the brain</td>
</tr>
<tr>
<td>Q12</td>
<td>The epilepsy is the most common chronic neurological disorder in the world</td>
</tr>
<tr>
<td>Q13</td>
<td>The epilepsy can affect people of all races, genders, socioeconomic conditions and regions</td>
</tr>
<tr>
<td>Q14</td>
<td>In developing countries like Brazil, epilepsy affects a smaller number of people</td>
</tr>
<tr>
<td>Q15</td>
<td>People with epilepsy have more difficulties of learning</td>
</tr>
<tr>
<td>Q16</td>
<td>People with epilepsy will never be allowed to drive</td>
</tr>
<tr>
<td>Q17</td>
<td>People with epilepsy cannot drink alcoholic beverages</td>
</tr>
<tr>
<td>Q18</td>
<td>People with epilepsy cannot practice any physical activity</td>
</tr>
<tr>
<td>Q19</td>
<td>The epilepsy can have a genetic cause</td>
</tr>
<tr>
<td>Q20</td>
<td>Brain tumour can cause epilepsy</td>
</tr>
<tr>
<td>Q21</td>
<td>Malnutrition is one cause of epilepsy</td>
</tr>
<tr>
<td>Q22</td>
<td>The epilepsy is caused by brain trauma</td>
</tr>
<tr>
<td>Q23</td>
<td>Brain infections can cause epilepsy</td>
</tr>
<tr>
<td>Q24</td>
<td>For epilepsy, the ideal treatment is the use of drugs</td>
</tr>
<tr>
<td>Q25</td>
<td>Alternative therapies such as acupuncture can be used in the treatment of epilepsy</td>
</tr>
</tbody>
</table>
psychology, nursing or physiotherapy. The participants were informed of the intent of the study, and informed written consent was obtained from each participant before data collection. The university ethics committee approved all procedures involved in this study.

A questionnaire composed of 25 simple close-ended questions, adapted from Dantas et al., Young et al., Millogo and Siranyan, Ab Rahman, Mecarelli et al. and Vancini et al., was applied. Questions were from three domains: personal (6 questions), educational (2 questions) and knowledge about epilepsy (17 questions). Questions in the personal and educational domains were evaluated separately. For the knowledge domain, an epilepsy knowledge test composed of 17 questions was created (see table 2), and a score was provided, varying from 0 (totally ill advised) to 10 (totally well informed). Additionally, the subjects were divided into two groups: those who declared YES to question 7 or 8 and NO to the same questions.

**Statistical analysis**

The results are presented as proportions (%). The comparisons between professions relative to the personal domain were made using the $\chi^2$ test. A one-way analysis of variance (one-way ANOVA) was used to compare the performance among professions on their epilepsy knowledge test, followed by a Tukey multiple comparisons test. Student t test for independent samples was used to compare the performance on the epilepsy knowledge test among professionals with (answer YES to question 7 and 8) and without (answer NO to question 7 and 8) access to information about epilepsy. The level of significance assumed in all tests was 5%.

**RESULTS**

Out of all individuals, 88.5% (n=552) had a post-graduate degree and 11.5% (n=72) had only an undergraduate degree. As seen in table 3, the answers given by professionals on the questions related to the

<table>
<thead>
<tr>
<th>Questions</th>
<th>Physical education (n=134)</th>
<th>Nursing (n=122)</th>
<th>Physiotherapy (n=99)</th>
<th>Medicine (n=100)</th>
<th>Nutrition (n=116)</th>
<th>Psychology (n=53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1. Were you afraid of living with a person with epilepsy?</td>
<td>4 (3)</td>
<td>2 (2)</td>
<td>0 (0)</td>
<td>6 (6)</td>
<td>8 (7)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>No</td>
<td>128 (96)</td>
<td>117 (97)</td>
<td>99 (100)</td>
<td>94 (94)</td>
<td>102 (89)</td>
<td>52 (98)</td>
</tr>
<tr>
<td>Don’t know</td>
<td>2 (1)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>4 (4)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Q2. Would you maintain a relationship with someone with epilepsy?</td>
<td>93 (69)</td>
<td>101 (84)</td>
<td>76 (77)</td>
<td>85 (85)</td>
<td>69 (61)</td>
<td>40 (76)</td>
</tr>
<tr>
<td>No</td>
<td>25 (19)</td>
<td>13 (11)</td>
<td>16 (16)</td>
<td>14 (14)</td>
<td>32 (28)</td>
<td>8 (15)</td>
</tr>
<tr>
<td>Don’t know</td>
<td>16 (12)</td>
<td>6 (5)</td>
<td>7 (7)</td>
<td>1 (1)</td>
<td>13 (11)</td>
<td>5 (9)</td>
</tr>
<tr>
<td>Q3. Have you ever seen a seizure?</td>
<td>89 (66)</td>
<td>110 (92)</td>
<td>71 (72)</td>
<td>95 (95)</td>
<td>58 (50)</td>
<td>31 (58)</td>
</tr>
<tr>
<td>No</td>
<td>44 (33)</td>
<td>10 (8)</td>
<td>28 (28)</td>
<td>5 (5)</td>
<td>56 (49)</td>
<td>21 (40)</td>
</tr>
<tr>
<td>Don’t know</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Q4. Did you have a friend or relative with epilepsy?</td>
<td>43 (32)</td>
<td>46 (38)</td>
<td>29 (29)</td>
<td>38 (38)</td>
<td>37 (32)</td>
<td>16 (30)</td>
</tr>
<tr>
<td>No</td>
<td>83 (62)</td>
<td>74 (62)</td>
<td>67 (68)</td>
<td>62 (62)</td>
<td>78 (68)</td>
<td>37 (70)</td>
</tr>
<tr>
<td>Don’t know</td>
<td>8 (6)</td>
<td>0 (0)</td>
<td>3 (3)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Q5. Have you already provided care to a person having a seizure?</td>
<td>42 (31)</td>
<td>87 (72)</td>
<td>44 (44)</td>
<td>83 (83)</td>
<td>15 (13)</td>
<td>9 (17)</td>
</tr>
<tr>
<td>No</td>
<td>92 (69)</td>
<td>33 (28)</td>
<td>55 (56)</td>
<td>17 (17)</td>
<td>100 (87)</td>
<td>44 (83)</td>
</tr>
<tr>
<td>Don’t know</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Q6. Have you provided service for people with epilepsy in your practice?</td>
<td>22 (17)</td>
<td>89 (75)</td>
<td>47 (48)</td>
<td>85 (85)</td>
<td>9 (8)</td>
<td>20 (38)</td>
</tr>
<tr>
<td>No</td>
<td>103 (79)</td>
<td>29 (25)</td>
<td>50 (52)</td>
<td>15 (15)</td>
<td>104 (92)</td>
<td>33 (62)</td>
</tr>
<tr>
<td>Don’t know</td>
<td>5 (4)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

*To questions 6, four subjects did not answer.
†To questions 1–5, two subjects did not answer.
‡To question 6, four subjects did not answer.
§To question 6, two subjects did not answer.
¶To questions 1 and 2, two subjects did not answer.
**To questions 3–5, one subject did not answer.
††To Question 6, three subjects did not answer.
personal domain show that a majority (over 95%) reported having no fear of living with a person with epilepsy. While 84% and 85% of nurses and physicans would maintain a relationship with a person with epilepsy, only 61% of nutritionists would do the same. Probably due to the inherent characteristics of their professional activities, over 90% of nurses and physicians have seen an epileptic seizure, in contrast to 70% or less of other professionals. Around 30%–40% of the volunteers reported having a relative or friend with epilepsy. Again, due to professional activities, over 70% of physicians and nurses have rescued people with epilepsy compared with <20% of nutritionists and psychologists.

Table 4 shows the results related to the educational questions. While 75% of nurses and physicians had access to information on how to deal with epilepsy in their graduate studies, these values fall to half among physical educators and physiotherapists and below 25% when referring to answers by nutritionists and psychologists. With respect to having information about epilepsy (question 7), the results of the comparison between all categories of health professionals showed that there were significant differences between the groups (p < 0.001), with the exception of physical educators, who responded similarly to nutritionists (a to a), and the psychologists, who responded similarly to physiotherapists (b to b). As for having access to information about epilepsy during graduate study (question 8), there were statistically significant differences between all professionals (p < 0.001), with the exception of physiotherapists, who were similar to physical educators (c to c), and psychologists, who were similar to nutritionists (d to d).

The questions and results of the epilepsy knowledge test are shown in tables 2 and 5, respectively. Physicians obtained the highest scores, which were significantly different from the other professional categories. Nurses, physiotherapists and psychologists had intermediate performances with statistically similar results. Physical educators and nutritionists had statistically similar results and the worst performances. In regard to the epilepsy knowledge test, figure 1 shows, as expected, that professionals with access to epilepsy information presented statistically higher values than those without access to epilepsy information (6.2 ± 1.4 and 4.8 ± 1.6, respectively).

**DISCUSSION**

The Brazilian population is estimated to be around 191 million. Thus, we estimated that 1.91 million people have active epilepsy (prevalence of 1%) and that 9.55 million will have an epileptic seizure at some time in their lives (lifetime prevalence of 5%). So, an investigation of health professionals’ knowledge about epilepsy would be extremely important. Furthermore, to our knowledge, this is the first study to compare the knowledge of epilepsy among six different health professions. As mentioned before, some health professionals do not receive sufficient information or any formal instruction on epilepsy during their graduate study and training. This situation would prejudice the care/management of people with epilepsy.
We evaluated three fundamental points, such that the questionnaire was divided into the personal domain, educational domain and an epilepsy knowledge test. In relation to the personal domain, the vast majority (95%) of health professionals reported to not have fear of living with a person with epilepsy. However, these values decreased with respect to having a personal relationship with a person with epilepsy, mainly among the nutritionists (61%). Therefore, in general, most of the professionals interviewed presented good attitude towards epilepsy; these data are important since, despite the low level of knowledge presented by physical educators, nutritionists, physiotherapists and psychologists, their attitude towards the disease is similar to the professionals of medicine and nursing.

Due to the workplace and inherent characteristics of professional activities, physicians and nurses have seen seizures and rescued people with epilepsy more than other professional categories. This greater contact with patients, inherent in professional practice, was also reflected by the better performance obtained by these professionals in the epilepsy knowledge test. Concerning the educational domain, the physicians and nurses had also more access to information than the other professions.

There is not a specific system of classification for general knowledge. Because of this, we used a score that most educational institutions use to classify performance: very good (10.0–8.0), good (7.9–6.0), regular (5.9–4.0), bad (3.9–2.0) and very bad (1.9–0.0). Considering this classification, the physical educators (4.9), nutritionists (5.2) and physiotherapists (5.9) had regular performance and the psychologists (6.0), nurses (6.3) and physicians (7.2) had good performance. No health professional category in our study had a very good performance. These findings are in accordance with other studies showing an insufficient knowledge about epilepsy among professionals from different areas. It is important to note that, in accordance with these results, misconceptions could happen. For instance, Kankirawatana reports that 15% of schoolteachers were in favour of placing children with epilepsy in a special classroom. This attitude has been linked to a fear of seizures or a lack of information about how to manage them. The insufficient information about epilepsy among health professionals could also decrease the participation of persons with epilepsy in sports and leisure activities.

In our study, physical educators, nutritionists and physiotherapists received lower scores on their knowledge of epilepsy than the others health professionals. These results are probably a consequence of two hypotheses: (1) a considerable lack of information and any formal instruction on epilepsy during their graduate study and training and (2) these professionals are not usually included in a workplace of primary healthcare, such as health centres, clinics and hospitals; consequently, they might have less contact with people with epilepsy when compared with physicians and nurses as described in table 3 (questions 5 and 6). We suggest that the universities could provide increased information about this prevalent neurologic disorder. Another action should be taken by these professionals, who should be constantly updated on the field. It is important to point out that a guide may be needed to provide a more multidisciplinary approach.

![Figure 1](image-url) **Figure 1** Epilepsy knowledge test results (0–10) separated by professional categories without (n=176) or with (n=435) access to information about epilepsy. Data are the means ± SD. *p<0.05, Student t test.

Author affiliations
1Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
2Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
3Divisão de Urológia da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
4Departamento de Enfermagem, Universidade Federal de São Paulo, São Paulo, Brazil
5Instituto do Cérebro, Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
6Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
7Setor de Fisiologia Humana e o Exercício, Campus Jataí, Universidade Federal de Goiás (UFG), Jataí, Brazil

Acknowledgements Rodrigo Luiz Vancini received a fellowship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq-Brazil. The authors thank all subjects who volunteered their time to participate in this study.

Contributors RLV: study concept and design; data acquisition, analysis and interpretation and manuscript preparation. AAB-S and BSS: data analysis, interpretation and manuscript preparation. SGS and MIS-V: data acquisition and critical revision of the manuscript. CRV-C, FRC, CdL: data analysis, interpretation and critical revision of the manuscript.

Funding This research was conducted with the authors’ resources.

Competing interests None.

Patient consent Obtained.

Ethics approval Committee of Ethics in Research from UNIFESP (Federal University of São Paulo).

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data.

REFERENCES


Knowledge about epilepsy among health professionals: a cross-sectional survey in São Paulo, Brazil

Rodrigo Luiz Vancini, Ana Amélia Benedito-Silva, Bolivar Saldanha Sousa, Sergio Gomes da Silva, Maria Iones Souza-Vancini, Cássia Regina Vancini-Campanharo, Francisco Romero Cabral, Cristiano de Lima and Claudio Andre Barbosa de Lira

BMJ Open 2012 2:
doi: 10.1136/bmjopen-2012-000919

Updated information and services can be found at:
http://bmjopen.bmj.com/content/2/2/e000919

These include:
Supplementary Material
Supplementary material can be found at:
http://bmjopen.bmj.com/content/suppl/2012/04/21/bmjopen-2012-000919.DC1

References
This article cites 18 articles, 1 of which you can access for free at:
http://bmjopen.bmj.com/content/2/2/e000919#BIBL

Open Access
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/2/3/e000919corr1.full.pdf

Topic Collections
Articles on similar topics can be found in the following collections
Medical education and training (249)
Neurology (391)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
Correction

Vancini RL, Benedito-Silva AA, Sousa BS, et al. Knowledge about epilepsy among health professionals: a cross-sectional survey in São Paulo, Brazil. BMJ Open 2012;2:e000919. The author affiliation of Claudio Andre Barbosa de Lira and name citation in the PubMed database are not correct. Claudio Andre Barbosa de Lira’s affiliation should be “Setor de Fisiologia Humana e do Exercício” and his name should be cited as “de Lira CA”. We apologise for these errors.

BMJ Open 2012;2:e000919corr1. doi:10.1136/bmjopen-2012-000919corr1