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ABSTRACT
Objectives  To assess the potential impacts of successive 
lockdown-easing measures in England, at a point in the 
COVID-19 pandemic when community transmission levels 
were relatively high.
Design  We developed a Bayesian model to infer incident 
cases and reproduction number (R) in England, from 
incident death data. We then used this to forecast excess 
cases and deaths in multiple plausible scenarios in which 
R increases at one or more time points.
Setting  England.
Participants  Publicly available national incident death 
data for COVID-19 were examined.
Primary outcome  Excess cumulative cases and deaths 
forecast at 90 days, in simulated scenarios of plausible 
increases in R after successive easing of lockdown in 
England, compared with a baseline scenario where R 
remained constant.
Results  Our model inferred an R of 0.75 on 13 May 
when England first started easing lockdown. In the most 
conservative scenario modelled where R increased to 
0.80 as lockdown was eased further on 1 June and then 
remained constant, the model predicted an excess 257 
(95% CI 108 to 492) deaths and 26 447 (95% CI 11 105 
to 50 549) cumulative cases over 90 days. In the scenario 
with maximal increases in R (but staying ≤1), the model 
predicts 3174 (95% CI 1334 to 6060) excess cumulative 
deaths and 421 310 (95% CI 177 012 to 804 811) cases. 
Observed data from the forecasting period aligned most 
closely to the scenario in which R increased to 0.85 on 1 
June, and 0.9 on 4 July.
Conclusions  When levels of transmission are high, even 
small changes in R with easing of lockdown can have 
significant impacts on expected cases and deaths, even if 
R remains ≤1. This will have a major impact on population 
health, tracing systems and healthcare services in 
England. Following an elimination strategy rather than one 
of maintenance of R ≤1 would substantially mitigate the 
impact of the COVID-19 epidemic within England.

INTRODUCTION
As countries around the world negotiated 
the first wave of the COVID-19 pandemic, 
governments had to make critical deci-
sions about when and how they eased the 
lockdown measures instituted to control 
the pandemic. Given the significant risks 
of a resurgence of the pandemic and the 

consequent implications, these decisions have 
had important consequences on pandemic 
control following easing of lockdown restric-
tions globally.

Different countries eased lockdown in 
different ways and at different points in their 
epidemic trajectory.1 The UK imposed lock-
down relatively late in its epidemic trajec-
tory and began easing lockdown relatively 
early, when community transmission levels 
(incident cases) were still high.2 By contrast, 
Germany, Denmark, Italy and Spain started 
easing lockdown when incident cases and 
deaths were at much lower levels. However, 
despite mitigation strategies such as test, trace 

Strengths and limitations of this study

►► This study provides urgently needed information 
about the potential impact of successive lockdown-
easing measures in England when community 
transmission of SARS-CoV-2 is relatively high.

►► We use a robust Bayesian model based on Office of 
National Statistics-registered deaths in England, to 
infer incident cases and reproduction number and 
then forecast deaths and cases considering multiple 
plausible scenarios of increase in reproduction num-
ber with successive easing of lockdown in England.

►► Our study focuses on the impact of easing lockdown 
in the conservative scenario when R is maintained 
at or below 1 in line with stated government pol-
icy, showing that even this scenario would result 
in substantial excess of cases and deaths relative 
to a baseline scenario of not easing lockdown or 
elimination.

►► The excess cumulative cases are likely to be sensi-
tive to the specified infection fatality ratio, although 
this is not expected to materially change the results 
and inferences. We have assumed a constant in-
fection fatality rate across time, which would not 
account for changes in the age composition of the 
infected cases over time.

►► The model inference is dependent on reliable report-
ed statistics on incident deaths. Underestimation of 
recent registered deaths would lead to more con-
servative R inference, and underestimation of the 
impact of easing lockdown.
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and isolation systems in place, countries like Germany saw 
increases in reproduction number (R) after easing lock-
down, with increases to above 1 in June.3 South Korea and 
China too saw a resurgence in new cases after easing their 
lockdowns and went on to put in place localised restric-
tions to control the spread of infections.

Several experts, including the UK government's Scien-
tific Advisory Group for Epidemics (SAGE), cautioned 
against easing lockdown in May 2020,2 when commu-
nity transmission was still high, warning that this could 
overwhelm the still nascent testing and contact tracing 
services that could mitigate the impact of easing lock-
down and greatly impact the health service. Nevertheless, 
the UK proceeded with easing lockdown with the stated 
aim of doing so while keeping R ≤1. On 13 May, people 
who could not work from home were asked to return 
to work. On 1 June, schools were reopened, outdoor 
markets and showrooms opened and households were 
allowed to meet in socially distanced groups of six. On 15 
June, non-essential businesses, including the retail sector, 
were opened. In the week of 29 June, a surge in cases 
was reported in Leicester, England, leading to the reim-
position of restrictive measures and concern that other 
regions in England may experience similar increases in 
case numbers.4 Nevertheless, the government went ahead 
with the next planned easing of lockdown on 4 July, when 
pubs, cafes and hotels opened.

As the country proceeded to rapidly ease lockdown, it 
was vital to understand and quantify the potential impact 
of this so as best inform public health strategy. In June 
2020, we modelled these impacts across a range of plau-
sible scenarios over the 90-day period from 1 June to 29 
August. Using an epidemiological model of COVID-19 
spread with Bayesian inference, we inferred parameters 
of the epidemic in England using daily death data from 
the Office of National Statistics (ONS). We estimated the 
time-varying R and daily cases, and then used these to 
forecast cases and deaths in several plausible scenarios in 
which R increased with the easing of lockdown, partic-
ularly focusing on those in which R remained  ≤1, and 
contrasted these with elimination strategies that aim to 
suppress R as much as possible.

During the manuscript review process, we were able to 
examine the observed data that accrued through the orig-
inal forecasting period and compare it against the model 
predictions.

METHODS
The original model inference and forecasting were 
carried out in June 2020 and the model development is 
described below. Following this, we describe the compar-
ison of the model predictions from the original forecasts 
with the observed data from the forecasting period.

Data for model development
In order to model the impact of easing lockdown, we 
needed to know the levels of transmission and growth 

parameters of the regional epidemic. Given the limited 
community testing and case detection in the UK, incident 
case numbers at that point were likely to be substantially 
underestimated. We therefore based our model on the 
number of incident deaths by date of occurrence, which 
is likely to be more reliable.5 Incident deaths are a func-
tion of incident cases in the previous weeks and the repro-
duction rate of the epidemic, and both these parameters 
can be inferred from the death data.5 We included data 
until 12 June for England, as released by the ONS on 30 
June 2020 (25th week of published data).6 These data 
are based on deaths registered by 27 June. As reporting 
delays mean that more recent deaths are underestimated, 
we only considered deaths up to 12 June.

Patient and public involvement
As only publicly available aggregate incident death statis-
tics were used, there was no direct patient or public 
involvement.

PRIMARY OUTCOMES
We assessed the excess cumulative predicted cases and 
deaths, over a 90-day period from 1 June. We assumed 
different scenarios of changing R at the points of lock-
down easing, in comparison with a baseline scenario in 
which R remained constant during this period.

Estimation of incident cases
Incident cases and time-varying R numbers were esti-
mated using a Bayesian model, similar to that previously 
described by Flaxman et al,5 accounting for the delay 
between onset of infection and death. The number of 
infected individuals is modelled using a discrete renewal 
process, as has been described before.5 This is related 
to the commonly used Susceptible–Infected–Recovered 
model, but is not expressed in differential form.

We modelled cases from 30 days prior to the first day 
that 10 cumulative deaths were observed in England, 
similar to previous methods.5 The numbers of incident 
cases for the first 6 days of this period were set as parame-
ters to be estimated by the model (table 1).

Subsequent incident case numbers would then be a 
function of these initial cases and estimated R values. We 
assumed a serial interval (SI) with a lognormal distribu-
tion with mean 4.7 and SD of 2.9 days, as in Nishiura et al.7 
The SI was discretised as follows:

	﻿‍
gs =
ˆ s

t=s−1

g
(
t
)

dt
‍�

For s=1,2…N, where N is the total number of intervals 
(each interval being 1 day) estimated. We estimated the 
distribution for 201 days, to align with the 111 days of 
data up to 29 May, plus 90 days of forecasting. Given an SI 
distribution, the number of infections Ct on a given day 
t is given by the following discrete convolution function:

‍
ct = Rt

t−1∑
j=0

cjgt−j
‍
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The incident cases on a given day t are therefore a 

function of R at point t and incident cases up to time t−1, 
weighted by the distribution of the SI.

Estimation of time-varying reproduction number
The baseline reproduction number (R0), and the subse-
quent time-varying effective reproduction number (Rt) 
were estimated up to 12 June. We allowed Rt to change on 
at least three points: (1) 16 March, when the UK first intro-
duced social distancing measures; (2) 23 March, when 
lockdown measures came into place with stay-at-home 
instructions and closures of schools and non-essential 
businesses; and (3) 13 May, the first easing of lockdown. 
We also considered models in which Rt was allowed to 
change on 1 June. Given the limited death data, that is, 
only up to 12 June, we were unlikely to be able to esti-
mate changes in Rt after 13 May with sufficient certainty. 
Observed deaths from 1 June are likely to be a function of 
cases 2–3 weeks prior to this, and were unlikely to reflect 
changes in Rt from 1 June.

Model selection
We assessed and compared models that allowed Rt to 
change at the four points described above (model 1), 
with more flexible models that allowed more frequent 
changes (models 2 and 3), as follows:
1.	 Model 1: 16 March, 23 March, 13 May and 1 June.
2.	 Model 2: every week from the beginning of the model-

ling period, including on 16 March, 23 March, 13 May 
and 1 June.

3.	 Model 3: 16 March, 23 March and 13 May, and every 
week between 23 March and 13 May, that is, during 
lockdown.

For each model, we used the R package loo to calcu-
late expected log pointwise predictive density (ELPD) 
using leave-one-out (LOO) cross-validation individually 
for each left-out data point based on the model fit to the 
other data points. We then calculated between-model 
differences in ELPDs, to assess whether particular models 
predicted data better than others, as discussed previously.8 
As the assumptions in estimation of ELPD may be violated 
given these are time-series data, and therefore correlated, 
we also compared the root mean squared errors (RMSEs) 
across models to assess fit. The final model used was 
arrived upon based on these comparisons, prioritising 
differences in ELPD, as this has been used in a similar 
context to assess change points, previously.9 We assessed 

whether models were significantly different (ELPD differ-
ence/SE of difference >2). When models were not statisti-
cally significantly different in performance, for simplicity, 
we prioritised the model where the least number of 
parameters needed estimation.

In addition, we also compared model 1 (four change 
points) with models where each of the change points was 
left out in turn, as done by Dehning et al,9 to assess if these 
dates do correspond to change points in Rt.

Estimation of deaths
Incident deaths from COVID-19 are a function of the 
infection fatality rate (IFR), the proportion of infections 
that result in death and incident cases that have occurred 
over the past 2–3 weeks. For observed daily deaths (Dt) for 
days t ∈ 1, …, n, the expectation of observed daily deaths 
(dt) is given by:

dt=E(Dt)
As described in Flaxman et al,5 we model the number of 

observed daily deaths Dt as following a negative binomial 

distribution with mean dt and variance ‍dt + d2
t
ψ ‍, where ψ 

follows a half normal distribution:

‍Dt ∼ Negative Binomial (dt, dt + d2

ψ )‍,
where ψ ∼ Normal+ (0,5).
Similar to estimation of incident cases, deaths at time 

point t (dt) were modelled as a function of incident cases 
up to time t−1, weighted by the distribution of time of 
infection to time of death (﻿‍π‍). The ﻿‍ π‍ distribution was 
modelled as the sum of the distribution of infection onset 
to symptom onset (the incubation period), and the distri-
bution of symptom onset to death. As has been previously 
done,5 both of these were modelled as gamma distribu-
tions with means of 5.1 days (coefficient of variation 0.86) 
and 18.8 days (coefficient of variation 0.45), respectively, 
as follows:

	﻿‍ π ∼ IFR ∗
(
Gamma

(
5.1, 0.86

)
+ Gamma

(
18.8, 0.45

))
‍�

IFR was assumed to be 1.1%, based on the most 
recent estimates from the University of Cambridge MRC 
nowcasting and forecasting model.10 This estimate is in 
line with estimates from Flaxman et al (Imperial), of 1% 
that have been widely used in modelling of COVID-19 
deaths across the UK.5 These estimates are based on those 
reported by Verity et al,11 during early epidemiological 
inference from the outbreak in Wuhan, and are corrected 
for age structure and contact patterns for the UK, as 
previously outlined.5 Misspecification of the IFR estimate 

Table 1  Parameters estimated by Bayesian model

Variable Parameter No Priors

ct, where t=1…6 Number of initial cases on first 6 days 6 Exponential(1.0/tau)

R0 Baseline reproduction number 1 Normal(2.4,0.5)

Rt Time-varying effective reproduction number 9 Normal(0.8,0.25)

ϕ Variance parameter for negative binomial distribution of deaths 1 Normal(0,5)

τ Parameter in prior of ct 1 Exponential(0.03)
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would lead to biased inference of case numbers, but not 
deaths, as this can be considered as a scaling factor, that 
is, used first to estimate the cases, which are then used 
to accurately predict observed deaths and future deaths 
based on different scenarios. Therefore, the predicted 
death numbers can be thought of as independent of 
these estimates. For simplicity, we consider a fixed IFR 
over time.

To discretise the time to death distribution, we esti-
mated the probability of death within each discrete time 
interval (1 day), conditional on surviving previous inter-
vals. First, we calculate the hazard (ht), the instantaneous 
probability of failure (ie, dying) within a time interval, as 
follows:

	﻿‍
ht =

´ s+0.5
t=s−0.5

π
(
t
)

dt

1 − πs−0.5 ‍�

As the denominator excludes individuals who have 
died, this ensures that ht is calculated only among those 
surviving. The probability of survival within each interval 
is:

	﻿‍ st = 1 − ht ‍�

The cumulative survival probability of surviving up to 
the interval t−1 is therefore:

	﻿‍
ST>t−1 =

t−1∏
j=1

sj
‍�

where T is the time of death of an individual. In other 
words, the cumulative probability of survival up to interval 
t is simply the product of survival within each interval 
up to t−1, where the probability of survival within each 
interval (st) is 1−ht, where ht is the probability of dying 
within that interval.

Given this, we now estimate the probability of death 
within interval t, conditional on surviving up to t−1 as:

	﻿‍ ωt = P (T = t
�� T > t − 1

)
= ST>t−1 ∗ ht ‍�

Here, ﻿‍ ω‍ represents the discretised distribution of 
infection onset to death, with the probability of death 
within interval t conditional on surviving previous inter-
vals. Deaths can therefore be calculated as a function of 
incident cases of infection within previous intervals, as 
follows:

	﻿‍
dt =

t−1∑
j=0

cjωt−j
‍�

Here, the number of deaths within interval t (on a 
given day) is a sum of the number of daily cases up to the 
previous day, with previous cases weighted by the discre-
tised probability distribution of time from onset of infec-
tion to death.

Estimated parameters and model priors
We estimated the set of model parameters θ={c1−6, R0, Rt, 
ϕ, τ} using Bayesian inference with Markov chain Monte 
Carlo (MCMC) (table  1). We estimated the number 
of cases in the first 6 days of the modelled period, as 

subsequent cases are simply a function of cases on these 
days, the SI and Rt. As described above, R0 was constrained 
up to 16 March and then again after 13 May. For the 
period prior to 16 March, we assigned a normal prior 
for R0 with mean 2.5 and SD 0.5. For the period that Rt 
was allowed to vary, that is, every week from 16 March 
until 13 May, we assigned a normal prior with a mean 
0.8 and SD 0.25. These priors are based on estimates of 
time-changing Rt from the University of Cambridge MRC 
biostatistics nowcasting and forecasting models10 and 
SAGE estimates of R,12 and consistent with Flaxman et al.5 
For the number of cases on day 1, we assigned a prior 
exponential distribution:

	﻿‍
y ∼ exponential

(
1
τ

)
‍�

where‍τ ∼ exponential
(
0.03

)
‍

Model estimation
Parameters were estimated using the Stan package in R 
with MCMC algorithms used to approximate a posterior 
distribution of parameters by randomly sampling the 
parameter space. We used 4 chains with 1000 warm up 
samples (which were discarded), and 3000 subsequent 
samples in each chain (12 000 samples in total) to approx-
imate a posterior distribution using the Gibbs sampling 
algorithm. From these, we obtained the best-fit values and 
the 95% credible intervals (CIs) for all parameters. We 
used these parameters to estimate the number of incident 
cases and deaths in England. We examined the fit-of-the-
model predicted deaths to the observed daily deaths from 
the ONS, and also the consistency of the model parame-
ters with known values in the literature, estimated from 
global data. We assessed the distribution of R-hat values 
for all parameters, to assess convergence between chains.

Sensitivity analyses
We carried out sensitivity analyses using uninformative 
priors for R0 and Rt, to examine the sensitivity of Rt esti-
mates to prior specification. We also examined the impact 
of the SI by comparing the baseline model (SI of mean 4.7 
and SD 2.9 days) with a longer SI modelled as a gamma 
distribution with mean 6.5 and coefficient of variation of 
0.72, as estimated by Chan et al.13

Forecasting cases and deaths
All forecasts were carried out up to 90 days (29 August 
2020) after 1 June. We considered a set of scenarios in 
which Rt increased from baseline on 1 June and then 
remained constant, as well as those in which further 
increases in Rt occur on 15 June and 4 July. We considered 
an increase in Rt of up to 0.25 in increments of 0.05, this 
being a plausible degree of change in response to easing 
lockdown, based on the empirical data from other coun-
tries,3 14 as well as the modelling by UK SAGE.15 Finally, 
for comparison with a strategy of elimination, namely 
suppressing Rt to the lowest level possible before easing 
lockdown measures, as has been done in South Korea, 
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New Zealand and Australia, we also modelled scenarios 
with Rt values of 0.6 and 0.7.

For each of these scenarios, we predicted the number 
of incident cases and incident deaths, using the func-
tions from the inference model above. Briefly, cases are a 
function of Rt, incident cases on previous days and the SI 
discretised distribution:

	﻿‍
ct = Rt

t−1∑
j=0

cjgt−j
‍�

Deaths are a function of incident cases over previous 
weeks, and the distribution of onset of infection to death 
times:

	﻿‍
dt =

t−1∑
j=0

cjωt−j
‍�

All scenarios were compared with a baseline scenario of 
no change in Rt from 13 May onwards.

Comparison of model predictions with observed data
The observed death data for daily deaths in England up 
to 28 August as obtained from the ONS (from data up to 
11 September) were plotted against the original model 
predictions from June, and the RMSE was calculated 
between the observed data and the predicted deaths in 
the different modelled scenarios. The model was rerun 
with these data, to infer values of Rt until 28 August. As 
the purpose of this exploratory model was inference of 
parameters, Rt was allowed to change weekly from 16 
March, as well as at time points of easing lockdown: 13 
May, 1 June, 15 June and 4 July as in the original fore-
casting and 25 July (gyms and pools reopened), and 
15 August (casinos, bowling alleys and soft play areas 
reopened). Where these dates fell on the weekly change 
point, they were not included separately.

RESULTS
Model selection and model inferences
Model 3, which allowed weekly changes in Rt during lock-
down, produced the best fit to the data (online supple-
mental table 1), with estimation of fewer parameters 
compared with model 2. This was therefore used as the 
primary model and unless otherwise stated, all inferences 
described subsequently are from this model.

We inferred R0 of 3.65 (95% CI 3.36 to 3.96), consistent 
with previous estimates within the UK.5 The Rt is estimated 
to have declined substantially following initiation of social 
distancing and lockdown measures, reaching a low of 0.66 
(95% CI 0.34 to 1.04) during the week 30 March–5 April 
2020. The most recent Rt from 13 May is estimated as 0.752 
(95% CI 0.50 to 1.00) (figure 1). The alternative models 
allowing change of Rt on 1 June inferred a very similar 
Rt for 1−12 June suggesting that there were insufficient 
data to accurately infer any changes to Rt following the 
easing of lockdown on 1 June. On examining the impact 
of constraining Rt on model fit at any of the four change 
points, this appears greatest for 16 March (when social 

distancing measures were put into place) (online supple-
mental table 2) with only modest impacts on model fit of 
constraining Rt on 23 March and 13 May, and no impact 
on constraining Rt on 1 June.

The model showed a good fit to the observed distribu-
tion of deaths up to 12 June (figure 2). R-hat estimates 
were <1.05 for all estimated parameters (online supple-
mental figure 1). LOO cross-validation also supported 
a good model fit, with the shape parameter k <0.5 for 
all values (online supplemental figure 2). The median 
number of incident cases inferred on 1 June was 4317/
day (95% CI 2062 to 8155), which was broadly consis-
tent with the estimates from the ONS survey for England 
based on a random sample of the population within the 
same time period.

Forecasts of lockdown-easing scenarios
In the baseline forecasting scenario where Rt remained 
constant (Rtest=0.75) through the 90-day forecasting 
period (1 June–29 August 2020), the model predicted 
48 501 (46 170–50 989) cumulative deaths in England 
(online supplemental table 4). By comparison, the ONS 
reported 46 539 cumulative deaths up to 12 June in 
England (registered up to 27 June).

In the scenarios where Rt increased on 1 June and then 
remained constant, for increases from the median 0.75–
0.80, 0.85, 0.90, 0.95 and 1, the model predicted median 

Figure 1  Estimated time-varying reproduction number 
(Rt) for England. The figure shows the Rt estimated by 
model 3 (blue) with 95% credible intervals (CIs) (grey) with 
a serial interval of mean 4.7 and SD 2.9 days. From 3.65 
(95% CI 3.36 to 3.96), Rt drops on 16 March and 23 March 
(indicated by vertical dashed lines) when social distancing 
and lockdown were instituted, reaching a low of 0.66 (95% CI 
0.34 to 1.04) in the week of 30 March. The last estimated Rt is 
0.75 (95% CI 0.50 to 1.00) following 13 May.
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excess deaths of 257 (95% CI 108 to 492), 632 (95% CI 
265 to 1208), 1173 (95% CI 493 to 2240), 1971 (95% CI 
828 to 3764) and 3174 (95% CI 1334 to 6060), respec-
tively. Increases of Rt to 1.05 and 1.1, with resultant expo-
nential growth, led to excess median deaths of 5017 (95% 
CI 2109 to 9578) and 7878 (95% CI 3313 to 15 037), 
respectively (figure 3 and online supplemental table 4).

In scenarios where Rt increased on 1 June, 15 June 
and 4 July, we found that compared with the baseline 
scenario, modest increases of Rt to 0.80, 0.85 and 0.90 
on these dates, respectively, would lead to 508 (95% CI 
213 to 972) excess deaths. If Rt increased to 0.90, 0.95 

and 1 at these time points, then excess estimated deaths 
increase to 1848 (95% CI 776 to 3534). In these scenarios, 
Rt remains ≤1 (figures 3–5 and online supplemental table 
4). Increases of Rt above 1 at any point resulted in rapid 
increases in cases and deaths, with between 3600 and 13 
000 excess deaths in different scenarios for Rt rising up 
to between 1 and 1.2, predicting a second wave of the 
epidemic within England (figures  4 and 5 and online 
supplemental table 4).

Even in the conservative scenario where Rt increased 
from 0.75 to 0.80 on 1 June and then remained constant 
thereafter, the model predicted an excess of 26 447 (95% 
CI 11 105 to 50 549) cumulative cases over 90 days. On 
the other hand, the scenario with the largest changes in 
Rt, but still remaining  ≤1, predicted an excess of up to 
421 310 (95% CI 177 012 to 804 811) (figures 6–8 and 
online supplemental table 4). For scenarios where Rt rose 
beyond 1 (up to 1.2), we would expect between 540 000 
and 2.8 million excess cases, in line with a second wave 
(online supplemental table 4).

Forecasts from an elimination scenario
Compared with the baseline scenario of Rt staying at 0.75, 
we found that maintaining Rt at 0.60 and 0.70 would result 
in 44 302 (95% CI -84 684 to -18 600) and 19 968 (95% CI 
-38 168 to -8384) fewer cumulative cases, and 462 (95% CI 
-884 to -194) and 204 (95% CI -389 to -86) fewer deaths 
over the modelled 90-day period, respectively (figures 3 
and 6, online supplemental table 4).

Robustness of model in sensitivity analyses
Using uninformative (no prior specified) priors for Rt did 
not materially alter the median estimates of Rt, although 
uncertainty around estimates was predictably increased 
(online supplemental figure 3). This suggests our esti-
mates are robust to the priors specified.

Using a longer SI leads to an increase in the estimated 
R0, although subsequent estimates following easing of 

Figure 2  Model fit to observed death data. Daily deaths 
predicted by model 3 (blue) with 95% credible intervals (grey) 
show a good fit to the observed deaths from the ONS (red). 
ONS, Office of National Statistics.

Figure 3  Predicted deaths with Rt increasing on 1 June. (A) The model compared scenarios in which Rt increases to 0.80 
(light green), 0.85 (green), 0.90 (dark blue), 0.95 (red), 1 (purple) and 1.05 (brown) and then remains constant for the 90-day 
forecasting period. The comparator baseline scenario is of Rt remaining at 0.75 (black) and two elimination strategies of 
Rt reducing to 0.7 (yellow) and 0.6 (light blue) were also considered. Vertical dashed lines represent time points of easing 
lockdown. (B,C) The incident and cumulative deaths increase in all scenarios in which Rt increases and reduces in the two 
elimination scenarios. Rt, time-varying reproduction number.
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lockdown remain broadly comparable (online supple-
mental figure 4). This model is comparable with the 
primary model with regard to fit to observed deaths 
(online supplemental figure 5), although we note that 
predicted excess deaths and cases in all scenarios where 
Rt <1.1 are higher than in the primary model with shorter 
SI (online supplemental table 4), suggesting the primary 
model is likely to be conservative.

Comparison of model predictions with observed data
The observed cases and deaths are plotted against the 
modelled scenarios in figure  9. Among the scenarios 
studied, the observed daily deaths seems to align most 
closely with the scenario in which R values are 0.85, 0.85 
and 0.9 at the three change points. The RMSE between 
the observed and predicted deaths is lowest for this 
scenario (online supplemental table 3). The inferred Rt 
values concur with this (although uncertainty estimates 
are wide), and also suggest that it is in late July that Rt 
started to creep above 1 (figure  10). We also note that 

the observed cumulative deaths by 28 August represent 
an excess of 1291 deaths over our baseline scenario.

DISCUSSION
In this paper, we describe a Bayesian model for infer-
ring incident cases and reproduction numbers from 
daily death data, and for forecasting the impact of future 
changes in R. Our findings provide important quantifica-
tion of the likely impact of relaxing lockdown measures 
in England, and to our knowledge, this is the first study to 
have comprehensively assessed this through several plau-
sible scenarios. We show that even in scenarios in which R 
remains ≤1 (in line with the UK government’s stated aim), 
small increases in Rt from lifting lockdown measures can 
lead to a substantial excess of deaths with 3174 (95% CI 
1334 to 6060) in the most severe scenario modelled.

Our model inferences are robust to modelling assump-
tions of specified priors for Rt. We note, however, that 

Figure 4  Predicted deaths in scenarios of Rt increase on 1 and 15 June compared with baseline scenario. (A) The model 
compared scenarios in which Rt increases to 0.80 (light green), 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 1.05 (brown) 
and then further by 0.05 on 15 June and then remaining constant for the 90-day forecasting period. The comparator baseline 
scenario is of Rt remaining at 0.75 (black). Vertical dashed lines represent time points of easing lockdown. (B,C) The incident 
and cumulative deaths increase in all scenarios in which Rt increases. Rt, time-varying reproduction number.

Figure 5  Predicted deaths in scenarios of Rt increase on 1 June, 15 June and 4 July compared with baseline scenario. (A) 
The model compared scenarios in which Rt increases to 0.80 (light green), 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 
1.05 (brown) and then further by 0.05 on 15 June and then again by 0.05 on 3 July before remaining constant for the 90-day 
forecasting period. The comparator baseline scenario is of Rt remaining at 0.752 (black). Vertical dashed lines represent time 
points of easing lockdown. (B,C) The incident and cumulative deaths increase in all scenarios in which Rt increases. Rt, time-
varying reproduction number.
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using a longer SI would result in higher numbers of 
excess deaths for each scenario, suggesting that our 
primary scenario is conservative (online supplemental 
tables 3 and 4). Our estimated Rt of 0.75 following 13 
May is consistent with estimates from the SAGE group 
advising government at the time.12 We assessed increases 
in Rt that were entirely plausible, given the data from 
other European countries that have started easing lock-
down.3 Our model predicted a substantial excess of cases 
and deaths in several scenarios where R remained ≤1, as 
well as scenarios where R increased up to 1.2. When we 
compared our predictions with the observed data from 
the original forecasting period, we found that these 
aligned most closely to the scenario in which R increased 
to 0.85 on 1 June, and then to 0.9 on 4 July. In contrast, 
our model showed that had an elimination strategy been 
pursued and Rt suppressed to 0.6 or 0.7, this could have 
prevented a median estimated 462 and 204 deaths, and 
44 302 and 19 968 cases, respectively, from the baseline 
scenario.

Countries like Denmark and Germany started easing 
lockdown when community transmission was low and 
this likely mitigated increases in R with the lifting of lock-
downs, alongside the use of aggressive case detection and 
contact tracing approaches. The UK began to ease lock-
down when community transmission was still high (with 
daily estimated  >8000 cases and  >300 deaths) and still 
does not have a fully operational test, trace and isolate 
system at the time of writing, with the existing system over-
whelmed by incident cases. The UK’s current estimates 
of Rt still rely on incident deaths (as used by the MRC 
nowcasting and forecasting model, and SAGE),10 and 
therefore reflect community transmission from a median 
of 2–3 weeks ago.12 Easing lockdown in two weekly steps 
meant that by the time we detected the impact of one 
step, the next one had already been instituted and not 
unexpectedly mitigating these impacts was challenging. 
At the time lockdown was being rapidly eased, UK SAGE 
expressed concerns that increases in R up to 1.2 could 
continue undetected for longer periods of time.15

Figure 6  Predicted cases in scenarios of Rt increase on 1 June compared with baseline and elimination scenarios. (A) The 
model compared scenarios in which Rt increases to 0.80 (light green), 0.85 (green), 0.90 (dark blue), 0.95 (red), 1 (purple) and 
1.05 (brown) and then remains constant for the 90-day forecasting period. The comparator baseline scenario is of Rt remaining 
at 0.752 (black) and two elimination strategies of Rt reducing to 0.7 (yellow) and 0.6 (light blue) were also considered. Vertical 
dashed lines represent time points of easing lockdown. (B,C) The incident and cumulative cases increase in all scenarios in 
which Rt increases and reduces in the two elimination scenarios. Rt, time-varying reproduction number.

Figure 7  Predicted cases in scenarios of Rt increase on 1 June and 15 June compared with the baseline scenario. (A) The 
model compared scenarios in which Rt increases to 0.80 (light green), 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 1.05 
(brown) and then further by 0.05 on 15 June and then remaining constant for the 90-day forecasting period. The comparator 
baseline scenario is of Rt remaining at 0.752 (black). Vertical dashed lines represent time points of easing lockdown. (B,C) The 
incident and cases increase in all scenarios in which Rt increases. Rt, time-varying reproduction number.
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In September 2020, the UK is at point where commu-
nity transmission is once again high and it is clear that we 
have entered the second wave of the pandemic. Schools 
reopened in the second week of September, a move 
that is vitally important to children’s health and devel-
opment, but one that can potentially increase commu-
nity transmission. Cases and hospitalisations have been 
increasing exponentially, which has recently translated 
into an increase in weekly deaths. Using the best available 
confirmed COVID-19 case data in England published by 
the UK government on 21 September (which is likely 
an underestimate), we modelled the potential impact 
of increases in transmission on daily cases and deaths 
over the next 2 months, assessing different scenarios of 
increase in Rt. As Rt reaches 1.5, the daily deaths approach 
1000 by late November (figure  11). We note that the 
number of deaths forecast during this period could be 
overestimated if transmission is disproportionately higher 
among younger age groups, as overall IFR would be lower 
than the assumed 1%. However, as current data suggest, 

transmission is likely to spill over into more vulnerable 
and older age groups over time. This has profound impli-
cations for the health service and the limited ICU (Inten-
sive Care Unit) capacity available in the NHS (National 
Health Service), which is at great risk of being over-
whelmed. Our modelling suggests that small changes in 
Rt moving forward could have substantially large effects 
on case numbers and deaths, suggesting that mitigatory 
strategies implemented in a timely manner could have a 
large impact.

We acknowledge some important limitations of our 
model. The first is that it is based on a back calculation 
of cases based on incident deaths, which are likely to 
be underestimated due to reporting delays and under-
reporting. Second, our model is reliant on inferring 
cases and reproduction numbers, which depend on the 
assumed distributions of the SI and the time of onset 
to death distributions. Though we based our assump-
tions on the literature, misspecification of these would 
influence our estimates. While we have evaluated this, 

Figure 8  Predicted cases in scenarios of Rt increase on 1 June and 15 June and 4 July compared with the baseline scenario. 
(A) The model compared scenarios in which Rt increases to 0.80 (light green), 0.85 (green), 0.90 (blue), 0.95 (red), 1 (purple) and 
1.05 (brown) and then further by 0.05 on 15 June and then again by 0.05 on 3 July before remaining constant for the 90-day 
forecasting period. The comparator baseline scenario is of Rt remaining at 0.752 (black). Vertical dashed lines represent time 
points of easing lockdown. (B,C) The incident and cumulative cases increase in all scenarios in which Rt increases. Rt, time-
varying reproduction number.

Figure 9  Predicted deaths in different scenarios of Rt increase on 1 June, 15 June and 4 July compared with the baseline 
scenario, and real observed death data from the ONS (light green). The model compared scenarios in which Rt increases to 
different values on 1, 15 and 4 July with real observed deaths (light green). The comparator baseline scenario is of Rt remaining 
at 0.752 (black). Vertical dashed lines represent time points of easing lockdown. (B,C) The incident and cumulative deaths 
increase in all scenarios in which Rt increases. The daily deaths appear to fit best with the scenarios where Rts are between 0.85 
and 0.95 (dark blue, light blue and purple) during this period. ONS, Office of National Statistics; Rt, time-varying reproduction 
number.
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greater deviations from true estimates would make our 
forecasting less reliable. Third, similar to Flaxman et 
al,5 our model uses the IFR as a multiplier for the distri-
bution of time from infection to death, in the absence 
of reliable population-level case fatality rates (CFRs). 
While this would not affect the estimation of deaths, if 
the CFRs were higher (due to large proportions of cases 
being asymptomatic), then the predicted case numbers 
would be overestimated by our model. We note, however, 

that the estimate of IFR we used (1.1%) is consistent 
with the CFR estimated previously from Beijing16 and 
Flaxman et al.5 We have also, for simplicity, assumed that 
IFR remains constant throughout the pandemic and 
the forecasting period. Given that age is an important 
determinant of mortality, our model may not reflect the 
changes in the age composition of infected individuals, 
and changes in healthcare and treatments over time, 
influencing the accuracy of inference and forecasting. 
Unfortunately, the ONS does not provide age-stratified 
daily death data for England to allow us to model differ-
ences in age structure. We have, therefore, not consid-
ered these in our inference or forecasting. We note that 
if cases occur disproportionately in younger populations 
following easing of lockdown, excess deaths may be over-
estimated during our forecasting period. Fourth, we did 
not consider the impact of mitigatory measures in our 
current modelling. However, as we have seen, mitiga-
tory measures were implemented with significant delays 
from when community transmission increased, as many 
experts had expected. Nevertheless, if implemented 
with sufficient rigour and coverage, mitigatory measures 
would reduce the impact of the modelled scenarios. We 
note that our inferred Rt based on recent death data 
should reflect the impact of mitigatory measures, such 
as testing, contract tracing and isolating, as well as mask 
use, as inferred Rt values were allowed to change every 
week. Finally, we only modelled a limited set of scenarios, 
mainly restricted to those in which Rt remained  ≤1.2, 
but there are multiple possible scenarios that could be 
modelled. We note that the scenarios modelled are in 
line with Rt ranges that were subsequently inferred from 
current death data.

In summary, we show that increases in Rt as a result 
of easing lockdown would have a substantial impact 
on incident transmission and deaths for even modest 
increases that still maintain Rt ≤1, and an even greater 
impact should Rt rise above 1. This has subsequently 
been borne out by the observed data. Our findings and 
the observed data thus far argue strongly for a much 
more cautious approach in public health management, 
an urgent need for a properly functioning test, trace 
and isolate system, with adequate support for isolation,17 
robust mitigatory measures in schools18 and serious 
consideration of elimination strategy alongside vaccine 
roll-out to control the pandemic. Such a multipronged 
approach aimed at elimination is necessary and its value 
has been clearly demonstrated in terms of lower case 
numbers, fewer deaths and lower economic impacts in 
countries that have followed such strategies.19 This is 
all the more important given that continuing transmis-
sion has favoured adaptation of SARS-CoV-2, with emer-
gence of several variants of concern some of which are 
more transmissible, more able to escape immunity from 
vaccines or both. Elimination allows us to reduce uncer-
tainty associated with new variants and conserves vaccine 
effectiveness by preventing emergence of new variants 
that may threaten this.

Figure 10  Estimated time-varying reproduction number 
(Rt) for England. The figure shows the Rt estimated from the 
recent ONS death data (up to 11 September 2020) with 95% 
credible intervals (grey) with a serial interval of mean 4.7 and 
SD 2.9 days. We see a gradual upward trend in inferred Rt, 
with median Rt rising above 1 toward the end of July. ONS, 
Office of National Statistics.

Figure 11  Predicted cases and deaths at different Rt values 
from current case numbers in England as of 21 September 
2020. Figure 11 represents the predicted rise in cases based 
on different Rt values, and a serial interval of mean 4.7 
and SD 2.9 days. The case numbers were calculated as a 
moving 7-day average from the Public Health England data 
of confirmed cases within England up to 21 September. We 
project case and death numbers (assuming an IFR of 1%) 
from these incident case numbers, using different scenarios 
of Rt. We note that case numbers are likely underestimates, 
as the testing system within England is currently running at 
capacity, and not everyone with symptoms is able to access 
tests. IFR, infection fatality rate; Rt, time-varying reproduction 
number.
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