

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

Transmission of tuberculosis and predictors of large clusters within three years in an urban setting in Japan: a population-based molecular epidemiological study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029295
Article Type:	Research
Date Submitted by the Author:	24-Jan-2019
Complete List of Authors:	Izumi, Kiyohiko; The Research Institute of Tuberculosis, Murase, Yoshiro; The Research Institute of Tuberculosis Uchimura, Kazuhiro; The Research Institute of Tuberculosis Kaebeta, Aya; Shinjuku Public Health Center Ishihara, Keiko; Shinjuku Public Health Center Kaguraoka, Sumi; Shinjuku Public Health Center Takii, Takemasa; The Research Institute of Tuberculosis Ohkado, Akihiro; The Research Institute of Tuberculosis
Keywords:	RFLP, clustering rate, homeless, foreign-born

1		
2		
3		
4		
5		
6	1	Title
7		
8	2	Transmission of tuberculosis and predictors of large clusters within three years in an urban setting in
9	-	Transmission of tuberculous and predictors of large clusters within three years in an arban setting in
10	0	
11	3	Japan: a population-based molecular epidemiological study
12		
13	4	
14		
15	5	Authors and affiliations
16	0	
17	0	
18	6	1. Kiyohiko Izumi. Department of Epidemiology and Clinical Research, The Research Institute of
19		
20	7	Tuberculosis, Japan Anti- Tuberculosis Association, Tokyo, Japan. Email: kizumi95@gmail.com
21		
22	8	2. Yoshiro Murase. Department of Mycobacterium Reference and Research, The Research
23	-	
24	9	Institute of Tuberculosis, Japan Anti- Tuberculosis Association, Tokyo, Japan. Email:
25	9	institute of Tuberculosis, Japan Anti- Tuberculosis Association, Tokyo, Japan. Email.
26		
27	10	ymurase@jata.or.jp
28		
28	11	3. Kazuhiro Uchimura. Department of Epidemiology and Clinical Research, The Research Institute
30		
30	12	of Tuberculosis, Japan Anti- Tuberculosis Association, Tokyo, Japan. Email: <u>uchimura@jata.or.jp</u>
32	14	or rubereulosis, sapar Anti Tubereulosis Association, Tokyo, sapan. Email. <u>uenintra@jata.or.jp</u>
33	10	
33 34	13	4. Aya Kaebeta. Shinjuku Public Health Center. Email: aya.kaebeta@city.shinjuku.lg.jp
35	14	5. Keiko Ishihara. Shinjuku Public Health Center. Email: keiko.ishihara@city.shinjuku.lg.jp
36		
37	15	6. Sumi Kaguraoka. Shinjuku Public Health Center. Email: sumi.kaguraoka@city.shinjuku.lg.jp
38		
39	16	7. Takemasa Takii. The Research Institute of Tuberculosis, Japan Anti- Tuberculosis Association,
40	10	7. Takemasa Takii. The Research institute of Tuberculosis, Japan Anti- Tuberculosis Association,
41		
42	17	Tokyo, Japan. Email: t-takii@jata.or.jp
43		
44	18	8. Akihiro Ohkado. Department of Epidemiology and Clinical Research, The Research Institute of
45		
46	19	Tuberculosis, Japan Anti- Tuberculosis Association, Tokyo, Japan. Graduate School of Biomedical
47	10	rubereulosis, supun Anti-rubereulosis Association, rokyo, supun. Oradaate senoor or biomeaicar
48	20	
49	20	Sciences, Nagasaki University. Email: ohkadoa@jata.or.jp
50		
51	21	
52		
53	22	Corresponding Author
54		
55	23	Kiyohiko Izumi
56	40	
57	a í	
58	24	Department of Epidemiology and Clinical Research, Research Institute of Tuberculosis, Japan Anti-
59		
60		

Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, JAPAN

KEY WORDS: RFLP, clustering rate, homeless, foreign-born

Tel:+81-42-4935711

Fax: +81-42-492-4600

Email: kizumi95@gmail.com

2 3 4	
5 6 7	25
7 8 9	26
10 11	27
12 13	28
14 15 16	29
17 18	30
19 20	31
21 22 23	32
24 25	
26 27 28	
28 29 30	
31 32	
33 34	
35 36 37	
38 39	
40 41	
42 43 44	
45 46	
47 48	
49 50 51	
51 52 53	
54 55	
56 57	
58 59	

60

1

Ing rate, homel

60

BMJ Open

2		
2		
4		
5		
6	33	ABSTRACT
7		
8	34	Objective: Molecular epidemiology study is a promising tool to understand tuberculosis transmission
9 10		
10	35	dynamics but has not been sufficiently conducted in Asian countries. The aim of this study was to
12		
13	36	estimate the proportion of TB cases attributable to recent transmission and to identify the risk
14		
15	37	factors of genotype clustering and the development of large clusters within three years in urban
16		
17 18	38	setting in Japan.
18 19		
20	39	Design and setting: Long-term cross-sectional observational study combining the characteristics of
21		
22	40	culture-positive TB patients notified to Shinjuku City, Tokyo (2002-2013) with the genotype data of
23		
24	41	Mycobacterium tuberculosis.
25 26		
20	42	Primary outcome measure: Genotype clustering rate and association between genotype clustering
28		
29	43	status and explanatory variables.
30		
31	44	Results: Among 1,025 cases, 515 (50.2%) were in 113 genotype clusters. The overall clustering rate
32 33		
33 34	45	was 39.2%. The rate was significantly higher in patients aged <40 years (adjusted odds ratio (aOR)
35	40	
36	46	=1.73, 95%Cl=1.23-2.44) , native Japanese (aOR=3.90, 95%Cl=2.27-6.72), fulltime worker (aOR=1.63,
37	4 77	OF (CL 1 17 2 27) and nort time (daily worker (cOD 2 20 OF (CL 1 25 2 50)) these receiving public
38	47	95%CI=1.17-2.27) and part-time/daily worker (aOR=2.20, 95%CI=1.35-3.58), those receiving public
39	48	assistance (aOR=1.81, 95%CI=1.15-2.84), and the homeless (aOR=1.63, 95%CI=1.02-2.62). A
40 41	40	assistance (aux-1.01, 95%cl-1.15-2.04), and the nonneless (aux-1.05, 95%cl-1.02-2.02). A
41	49	significant predictor of large genotype clusters within three years was a registration interval ≤ 2
43	40	significant predictor of large genotype clusters within three years was a registration interval sz
44	50	months between the first two cases in a cluster.
45	00	month's between the mist two cases in a cluster.
46	51	Conclusion: Our results indicated that a large proportion of culture-positive TB patients were
47 49	01	contraction our results indicated that a harge proportion of calcule positive 12 patients were
48 49	52	involved in the recent TB transmission chain. Foreign-born persons still have a limited impact on
50		······································
51	53	transmission in the Japanese urban setting. Intensified public health interventions including active
52		
53	54	case finding need to focus on those with socioeconomic risk factors that are significantly associated
54		
55 56	55	with tuberculosis transmission and clusters with shorter registration intervals between the first two
57		
58	56	cases.
59		
60		

57 Word Count in Abstract= 255 words

to peet teries only

3 4		
5		
6 7	59	Article Summary
8 9	60	Strengths and limitations of this study
10 11	61	This study is a one of the longest population-based studies on the molecular epidemiology for
12 13 14	62	culture-positive notified tuberculosis patients in an Asian large urban setting.
15 16	63	Interview conducted by the experienced public health nurses at the Public Health Center using
17 18	64	standardized questionnaire provided high data quality and less interviewer bias.
19 20	65	We may have underestimated genotype clustering due to the large population flow in and out of the
21 22	66	city.
23 24 25	67	
26 27	68	Funding statement
28 29	69	This research was supported by the Research Program on Emerging and Re-emerging Infectious
30 31	70	Diseases from the Japan Agency for Medical Research and Development, AMED No. JP18fk0108041.
32 33 34	71	Competing interests: None declared.
35 36	72	Competing interests: None declared.
37 38	73	
39 40	74	Patient consent: Not required.
41 42 43	75	
44 45	76	Data sharing statement: Due to data restrictions, we are unable to share any aspect of the data.
46 47	77	
48 49 50	78	Word count: 2,683 words
50 51 52	79	
53 54		
55 56		
57 58		
59 60		-
		5

80 INTRODUCTION

Tuberculosis (TB) remains a major public health threat worldwide. An estimated 10 million people developed TB, and one million died from TB in 2016 worldwide¹. Although the majority of cases have been reported in TB high-burden countries, TB remains a persistent health problem in low- and middle- burden countries, because it is concentrated in specific vulnerable and hard-to-reach populations, such as homeless people and foreign-born persons from TB high-burden countries². These specific high-risk populations tend to live in large cities where they are seeking jobs, which potentially poses challenges to TB control in urban areas^{3,4}. Many TB low- and middle- burden countries have recently adopted TB elimination strategies^{2,5}, which emphasize the importance of molecular epidemiology in TB control especially in urban areas^{2,4}.

TB molecular genotyping using restriction fragment length polymorphisms (RFLPs) and, recently, variable numbers of tandem repeats (VNTR) combined with epidemiological information identifies TB cases possibly involved in the same chain of transmission⁶. This method differentiates recent transmission or endogenous reactivation from remote infection, and therefore has revealed that a substantial proportion of TB cases are due to recent transmission in TB low-burden countries^{7–9}. This method also identifies the proportion of cases attributable to recent transmission and determines the risk factors for transmission. Moreover, the factors predicting large TB genotype clusters have been investigated by evaluating the characteristics of the first two cases in the same genotype cluster^{10–13}. These predictors included socially vulnerable populations and shorter intervals between the registration dates of the first two cases. However, these population-based molecular epidemiological studies were limited in some European countries and U.S. and have not been sufficiently conducted in Asian countries.

BMJ Open

In Japan, a TB middle-burden country, newly notified TB cases have been decreasing from 32,828 (25.8 per 100,000 populations) in 2002 to 17,625 (13.9 per 100,000 populations) in 2016¹⁴, while TB outbreaks have been constantly occurring at approximately 40 events annually over the last decade. This suggests that TB transmission may be occurring in some groups such as homeless people, who constitute a high-risk group for recent TB transmission in urban areas¹⁵. Considering the steady increase in the proportion of TB cases among foreign-born individuals in Japan (7.9% of all cases in 2016¹⁶), transmission between foreign-born persons and local residents must be monitored. In light of Japan's transition towards becoming a low-burden country, understanding TB transmission patterns has become increasingly important. However, few population-based molecular epidemiological studies have identified the transmission patterns and their risk factors. Additionally, no study has attempted to evaluate the factors predicting the development of large clusters in Japan.

Therefore, we aimed to estimate the proportion of TB cases attributable to recent transmission, to identify the risk factors for recent transmission, and to predict the risk factors for the development of large clusters in the urban setting.

120 METHODS

121 Study population

We included all culture-positive TB patients notified in Shinjuku City from September 2002 to December 2013 as eligible study population in this cross-sectional observational study. This study was part of a population-based study on DNA fingerprinting surveillance of *M. tuberculosis* in Shinjuku City started in 2002. Shinjuku City (18.3 km²) is one of the most populous (342,867 residents in 2018¹⁷) cities in Tokyo and it's TB notification rate was 33.7 per 100,000 people in 2016¹⁸, which was higher than the rates in Tokyo and the nation (17.2 and 13.9, respectively¹⁴). Experienced public

 $\mathbf{7}$

4		
5 6 7	128	health nurses at the Shinjuku Public Health Center (PHC) interviewed and collected information from
8 9	129	all culture-positive TB patients at the time of registration using standardized questionnaire to avoid
10 11	130	possible interviewer bias. Study variables and definitions are described in Table 1.
12 13 14	131	
15 16	132	Patient and public involvement
17	133	Patients or the public were not involved in the design of this study.
18 19 20	134	
21 22	135	DNA fingerprinting and genotype cluster
23 24	136	Clinical isolates from each of the enrolled TB patients were sent to the Research Institute of
25 26 27	137	Tuberculosis (RIT), Tokyo, where the TB strains were subjected to DNA fingerprinting using insertion
27 28 29	138	sequence 6110 by RFLP (IS6110-RFLP) analysis ¹⁹ . IS6110-RFLP and spoligotyping were the standard
30 31	139	methods used in the Shinjuku PHC and were available throughout the study period. The Shinjuku
32 33	140	PHC switched from RFLP to VNTR a few years ago, but many TB cases had RFLP profiles. Thus, we
34 35 36	141	employed RFLP due to the sufficient sample size. A genotype cluster was defined as \geq 2 isolates with
37 38	142	either (1) \geq 6 IS6110 bands with identical band patterns or (2) <6 IS6110 bands with both identical
39 40	143	IS6110 band patterns and spoligotyping patterns. Details on the data collection and genotyping
41 42	144	method were previously described ¹⁵ .
43 44 45	145	
46 47	146	Data analysis
48 49	147	We calculated the genotype clustering rate by the "n-1 method" according to the formula $\{(n - c)/N\}$,
50 51	148	where <i>N</i> is the total number of cases sampled, <i>c</i> is the number of clusters, and <i>n</i> is the total number
52 53 54	149	of cases in the clusters ⁹ . We also calculated the cumulative clustering rate by calculating the
54 55 56	150	clustering rate in 2002 and then adding the TB patients every year up to 2013. The characteristics of
57 58 59 60	151	clustered cases, which were the cases belonging to any genotype clusters, were compared with those

BMJ Open

with unique strain patterns using χ^2 tests. We performed univariate logistic regression to identify risk factors for genotype clustering using odds ratios (ORs) and multivariate logistic regression including variables selected by the stepwise maximum-likelihood estimation with a significance level of less than 0.2 using adjusted ORs (aORs). Potential interactions were assessed using likelihood ratio tests.

Additionally, we compared the characteristics of the first two cases in each genotype cluster to predict the risk factors for the development of a large cluster within three years. For this purpose, a cluster episode was defined as newly arising genotype clusters in and after 2003 without any TB cases of that genotype notified prior to that year. We classified cluster episodes into two groups according to the system in a previous study¹⁰; (1) "large clusters within three years," were cluster episodes with five or more cases (large clusters) occurring within three years, and (2) "small clusters and large clusters after three years," were cluster episodes with two to four cases (small clusters) and cluster episodes that became large clusters after three years. We identified the first two cases in each cluster episode and compared their characteristics between these two groups. We performed univariate and multivariate logistic regression analyses to identify predictors of the development of large clusters within three years.

A *p*-value of 0.05 was set as the statistically significant level. If there are variables with missing values
exceeding 5%, the multiple imputation method is considered. We used Stata version 12 (Stata Corp.,
College Station, TX, USA) for the statistical analysis. Written informed consent was waivered because
DNA fingerprinting analysis was part of the routine TB control activities in Shinjuku City. However,
oral informed consent was obtained after the PHC staff gave a thorough explanation of study
objectives and confidentiality. The study protocol was approved by the Institutional Review Board of
the Research Institute of Tuberculosis (RIT/IRB27-9).

2 3	
4	
5 6	
6 7	
8 9	
10	
11 12	
13	
14 15	
16	
17 18	
19	
20 21	
22	
20 21 22 23 24	
24 25	
26 27	
27	
29 30	
31	
32 33	
34 35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	
47	
48 49	
50	
51 52	
53	
54 55	
56	
57 58	
59	
60	

1 2

> 176177RESULTS 178Study population and clustering rate 179 In total, 1,885 TB patients were notified in Shinjuku City during the study period, and 1,310 were 180culture-positive cases (Figure 1). Of those, 285 patients were excluded from the analysis, mainly due 181to the unavailability of culture-positive isolates and lack of implementation of RFLP. Finally, 1,025 182(78.2%) patients were included in the analysis. Figure 2 shows the cumulative number of TB patients 183 and clustering rates from 2002 to 2013. The number gradually increased over a decade, while the 184cumulative clustering rates sharply increased in the first four years, from 10% in 2002 to 28% in 2005, 185with an average percent change of +43%; the clustering rates continues to increase but at a slower 186rate, from 30% in 2006 to 39% in 2013, with an average percent change of +4.2%. 187188We identified a total of 113 genotype clusters consisting of 515 (50.2%) patients (Figure 1), and the 189genotype clustering rate was 39.2%. The average cluster size was 4.56 cases (range 2-30). There were

19057 (50.4%) genotype clusters consisting of only two TB patients, and 36 (31.9%) genotype clusters 191had five or more TB patients. We further investigated the status of homelessness and place of birth 192among genotype clustered cases. Of the 113 genotype clusters, 45 (39.8%) comprised only 193nonhomeless individuals, 7 (6.2%) only homeless individuals, and 61 (54.0%) both homeless and 194nonhomeless individuals (mixed cluster). We compared the characteristics of nonhomeless patients 195in clusters of only nonhomeless patients and those in mixed clusters. While the finding was not 196statistically significant (Pearson χ^2 test, p=0.17) proportion of nonhomeless patients receiving public 197 assistance in the latter group (13.8%) was higher than those in the former group (8.8%). There were 198 no differences between the two groups regarding sex, age, and place of birth. Of the 113 genotype 199clusters, 94 (83.2%) consisted of only individuals born in Japan, 2 (1.8%) consisted of only foreign-

BMJ Open

1		
2 3		
4		
5 6 7	200	born individuals, and 17 (15.0%) consisted of both.
8 9	201	
10 11	202	Factors associated with genotype clustering
12 13 14	203	Clustered cases were significantly more likely to be male (OR=1.62), Japan-born (OR=3.74), receiving
15 16	204	public assistance (OR=2.25), homelessness (OR=2.45), misusing alcohol (OR=1.37), and engaging in
17 18	205	fulltime work (OR=1.53), part-time/daily work (OR=2.29), and Jobless aged 15-59-year-old (OR=2.05)
19 20 21	206	(Table 2). A significant interaction among the explanatory variables was not identified. The
21 22 23	207	multivariate analysis demonstrated that the factors associated with genotype clustering were age
24 25	208	<40 years old (aOR=1.73, 95%CI=1.23-2.44), Japan-born (aOR=3.90, 95%CI=2.27-6.72), engaging in
26 27	209	fulltime work (aOR=1.63, 95%CI=1.17-2.27) and part-time/daily work (aOR=2.20, 95%CI=1.35-3.58),
28 29 30	210	receiving public assistance (aOR=1.81, 95%CI=1.15-2.84), and homelessness (aOR=1.63, 95%CI=1.02-
31 32	211	2.62)(Table 3).
33 34	212	
35 36	213	We further investigated the temporal trends in the characteristics of genotype clustered cases. The
37 38 39	214	number of all homeless cases and their proportion among all study cases decreased (Figure 3A and
40 41	215	Figure 3B), while the proportion of genotype clustered cases among the homeless increased over
42 43	216	time (Figure 3B). No typical trend was observed among those who were foreign-born, receiving
44 45	217	public assistance, misusing alcohol, and occupation (data not shown).
46 47 48	218	
49 50	219	Factors associated with large genotype clustering within three years
51 52	220	We identified 104 genotype cluster episodes according to the definition. Of these, 14 were "large
53 54	221	clusters within three years", which was equivalent to 13.5% (14/104) of all genotype clusters and
55 56 57	222	48.3% (14/29) of large genotype clusters, and 90 clusters were "small clusters and large clusters after
58 59	223	three years". The univariate analysis indicated that clusters with registration intervals of 0-2 months
60		11

were 9.51 times more likely to become large genotype clusters within three years compared with
 clusters with registration intervals of ≥12 months (Table 4). After selecting variables by the stepwise
 method, only the variable of registration interval remained for the multivariate model.

DISCUSSION

In this long-term population-based study, we included 1,025 patients and identified a total of 113 genotype clusters, and the genotype clustering rate was 39.2%. Our results indicated that clustered cases were more likely to have socioeconomic risk factors, namely, being homeless, receiving public assistance, and having an unstable job at tuberculosis diagnosis. A shorter registration interval between the first two cases was a statistically significant predictor of the development of a large genotype cluster within three years.

236 Clustering rate

We identified 515 (50.2%) genotype clustered cases and estimated a clustering rate of 39.2%. The rate was the same as the pooled clustering rate (40.9%) reported in the meta-analysis of populationbased studies of TB low-incidence countries²⁰. However, it was different from previous estimates in Japanese studies, which were 27.6% in Shinjuku and 24.6% in Osaka^{15,21}. As the meta-regression analysis clarified that longer study durations increase the clustering rate²⁰, this difference could be due to shorter study durations together with smaller sample sizes in the previous studies (388 patients in five years and 195 patients in one year, respectively). In our study, the cumulative clustering rate rapidly increased in the first four years and increased more slowly thereafter, which is a similar trend to studies in the U.S. and Malawi^{22,23}.

Factors associated with genotype clustering

BMJ Open

Our results indicated that clustered cases were more likely to have socioeconomic risk factors, namely, being homeless, receiving public assistance, and having an unstable job at TB diagnosis. Similarly, previous studies suggested that being homeless significantly contributed to clustering in Shinjuku City¹⁵ and other counties²⁰. In our study, more than half of the genotype clusters were mixtures of nonhomeless and homeless patients. Moreover, the nonhomeless patients in the mixed clusters tended to be financially unstable, with a higher proportion receiving public assistance than those among clusters of only nonhomeless cases, which could imply that relatively poor nonhomeless patients share activity spaces with homeless patients, such as urban areas around the large train stations that were reported as significant hotspots for homeless patients in Shinjuku City²⁴. An analysis of the time trend of clusters involving the homeless showed that the proportion of clustered cases among the total homeless patients increased over the study period. These findings could suggest that contact investigations of homeless TB patients need to be actively expanded to possible contact persons who are nonhomeless, especially those who are in financial difficulty.

The meta-analysis based on studies in European countries where foreign-born patients substantially contribute to TB epidemiology reported the range of the proportion of mixed clusters composed of native and foreign-born patients (0% to 36.5%) and concluded that foreign-born patients did not have a significant influence on TB in the native population²⁵. In our study, the proportion of mixed clusters (15.0%) fell into this range. Thus, the impact of TB transmission between native and foreign-born populations was probably still limited in this urban setting²⁶. However, considering the recent increase in immigrant TB patients in urban cities, TB transmission between native and foreign-born populations needs to be closely monitored.

Factors associated with large genotype clustering within three years

> A shorter registration interval (≤ 2 months) was a significant predictor of the development of a large genotype cluster within three years, which is compatible with findings of previous studies in the Netherlands and London^{10,12}. Therefore, when TB patients with identical genotypes have shorter registration intervals, thorough active case findings need to be considered to investigate potential infection sources and infected patients to prevent further transmission. On the other hand, it is difficult to assume that the first patient infected the second patient because the window of two months seems too short. Thus, we think that there may be a true but unidentified first case that our study did not identify. A cluster episode was defined as a cluster without any TB patients in 2002 and at least two patients with identical genotypes in and after 2003. Therefore, a possible true first case may have been registered before 2002, which was outside of our study period, or registered outside of Shinjuku City.

284 Limitations

Our study has some limitations. First, the study population consisted only of TB patients living in Shinjuku City. Considering the large population flow in and out of the city, as we mentioned above, we potentially missed patients living outside of the city who shared TB strain types with patients living in the city. Actually, previous Japanese studies reported that there are clusters with TB patients living across broad geographic areas²⁷. Consequently, we may have underestimated genotype clustering. Second, even TB patients with identical genotyping patterns may not suggest recent transmission if the strain is a nationwide endemic TB strain²⁸. As a result, this could have led to an overestimated clustering rate. Lastly, IS6110 RFLP has relatively lower discriminatory power compared with VNTR²⁹, which may have led to overestimation.

295 Conclusion

BMJ Open

This study is a one of the longest-term studies on molecular epidemiology for notified tuberculosis patients in an Asian large urban setting. Our results indicated that a large proportion of culture-positive TB patients were involved in the recent TB transmission chain. Homeless persons were involved in more than half of the genotype clusters. For foreign-born persons, they still have a limited impact on transmission in the Japanese urban setting, but considering recent increases in foreign-born TB patients, transmission between native and foreign-born populations should be routinely evaluated. Intensified public health interventions, such as active case findings, may focus on those who have socioeconomic risk factors that are significantly associated with TB transmission and clusters with shorter registration intervals between the first two cases, which are predictors of the development of large clusters within three years.

Review only

2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
13 14 15 16	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25 26	
20 27	
∠/ ว0	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
47 48	
48 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

307 ACKNOWLEDGMENTS

- 308 We would like to thank the Shinjuku Public Health Center staff for collecting the data.
- 310 **Author Statement:** Authors roles
- 311 KIz: concept of study, statistical analysis, interpretation of data, drafting and finalization of the
- 312 manuscript

309

- 313 YM: genotyping analysis, interpretation of data and finalization of the manuscript
- 314 KU: concept of study, interpretation of data and finalization of the manuscript
- 315 AK: concept of study, collection of data, and finalization of the manuscript
- 316 KIs: concept of study, collection of data, and finalization of the manuscript
- 317 SK: concept of study, collection of data, and finalization of the manuscript
- 318 TT: interpretation of data and finalization of the manuscript
- 319 AK: concept of study, interpretation of data, drafting and finalization of the manuscript
- 320
- 321
- 322

1 2			
3 4			
5 6 7	323	Refer	rence
8 9	324	1.	World Health Organization. Global Tuberculosis Report 2017.; 2017. doi:WHO/HTM/TB/2017.23.
10 11	325	2.	Lönnroth K, Migliori GB, Abubakar I, et al. Towards tuberculosis elimination: An action
12 13 14	326		framework for low-incidence countries. <i>Eur Respir J</i> . 2015;45(4):928-952.
15 16	327		doi:10.1183/09031936.00214014.
17 18	328	3.	de Vries G, Aldridge RW, Cayla J a, et al. Epidemiology of tuberculosis in big cities of the
19 20	329		European Union and European Economic Area countries. Euro Surveill Bull Eur sur les Mal
21 22 23	330		Transm = Eur Commun Dis Bull. 2014;19(9):1-8.
24 25	331	4.	Hest NA, Aldridge RW, de Vries G, et al. Tuberculosis control in big cities and urban risk groups in
26 27	332		the European Union: A consensus statement. Euro Surveill. 2014;19(9):1-13. doi:10.2807/1560-
28 29	333		7917.ES2014.19.9.20728.
30 31 32	334	5.	Jereb JA. Progressing toward tuberculosis elimination in low-incidence areas of the United
33 34	335		States. Recommendations of the Advisory Council for the Elimination of Tuberculosis. MMWR
35 36	336		Recomm reports. 2002;51(RR-5):1-14.
37 38	337	6.	Borgdorff MW, van Soolingen D. The re-emergence of tuberculosis: What have we learnt from
39 40	338		molecular epidemiology? Clin Microbiol Infect. 2013;19(10):889-901. doi:10.1111/1469-
41 42 43	339		0691.12253.
44 45	340	7.	Alland D, Kalkut GE, Moss AR, et al. Transmission of tuberculosis in New York City. An analysis by
46 47	341		DNA fingerprinting and conventional epidemiologic methods. 1994;330(D):1710-1716.
48 49 50	342	8.	van Soolingen D, Borgdorff MW, de Haas PE, et al. Molecular epidemiology of tuberculosis in the
50 51 52	343		Netherlands: a nationwide study from 1993 through 1997. J Infect Dis. 1999;180:726-736.
53 54	344		doi:10.1086/314930.
55 56	345	9.	PM S, PC H, SP S, et al. The epidemiology of tuberculosis in San Francisco. A population-based
57 58 59	346		study using conventional and molecular methods. N Engl J Med. 1994.
59 60			

Page 18 of 37

BMJ Open

1			
2			
3 4			
4 5			
6 7	347	10.	Hamblion EL, Le Menach A, Anderson LF, et al. Recent TB transmission, clustering and predictors
8 9	348		of large clusters in London, 2010-2012: Results from first 3-years of universal MIRU-VNTR strain
10 11	349		typing. <i>Thorax</i> . 2016;71(8):749-756. doi:10.1136/thoraxjnl-2014-206608.
12 13	350	11.	Driver CR, Macaraig M, McElroy PD, et al. Which patients' factors predict the rate of growth of
14 15 16	351		Mycobacterium tuberculosis clusters in an urban community? Am J Epidemiol. 2006;164(1):21-
17 18	352		31. doi:10.1093/aje/kwj153.
19 20	353	12.	Kik S V., Verver S, Van Soolingen D, et al. Tuberculosis outbreaks predicted by characteristics of
21 22 23	354		first patients in a DNA fingerprint cluster. Am J Respir Crit Care Med. 2008;178(1):96-104.
24 25	355		doi:10.1164/rccm.200708-1256OC.
26 27	356	13.	Althomsons SP, Kammerer JS, Shang N, Navin TR. Using Routinely Reported Tuberculosis
28 29	357		Genotyping and Surveillance Data to Predict Tuberculosis Outbreaks. <i>PLoS One</i> . 2012;7(11):1-8.
30 31 32	358		doi:10.1371/journal.pone.0048754.
33 34	359	14.	The Research Institute of Tuberculosis J. Statistics of TB 2016.
35 36	360		http://www.jata.or.jp/rit/ekigaku/en/statistics-of-tb/. Accessed June 20, 2018.
37 38 39	361	15.	Ohkado A, Nagamine M, Murase Y, et al. Molecular epidemiology of Mycobacterium
40 41	362		tuberculosis in an urban area in Japan, 2002-2006. Int J Tuberc Lung Dis. 2008;12(5):548-554.
42 43	363	16.	Tuberculosis Surveillance Center. Tuberculosis in Japan – Annual Report 2017. Tokyo, Japan:
44 45	364		Department of Epidemiology and Clinical Research, the Research Institute of Tuberculosis; 2017.
46 47 48	365	17.	Shinjuku city. Description of Shinjuku.
49 50	366		http://www.foreign.city.shinjuku.lg.jp/en/aramashi/aramashi_1/. Accessed January 9, 2018.
51 52	367	18.	Shinjuku City. Tuberculosis Statistics in Shinjuku City 2017 [Japanese].; 2018.
53 54	368	19.	Van Embden JDA, Cave MD, Crawford JT, et al. Strain identification of Mycobacterium
55 56 57	369		tuberculosis by DNA fingerprinting: Recommendations for a standardized methodology. J Clin
58 59 60	370		<i>Microbiol</i> . 1993;31(2):406-409. doi:10.1128/JCM.39.4.1683.2001.

BMJ Open

2			
4 5			
6 7	371	20.	Fok A, Numata Y, Schulzer M, FitzGerald MJ. Risk factors for clustering of tuberculosis cases: A
8 9	372		systematic review of population-based molecular epidemiology studies. Int J Tuberc Lung Dis.
10 11	373		2008;12(5):480-492.
12 13 14	374	21.	Wada T, Maeda S, Hase A, Kobayashi K. Evaluation of variable numbers of tandem repeat as
15 16	375		molecular epidemiological markers of Mycobacterium tuberculosis in Japan. J Med Microbiol.
17 18	376		2007;56(8):1052-1057. doi:10.1099/jmm.0.46990-0.
19 20	377	22.	Ellis B a, Crawford JT, Braden CR, McNabb SJN, Moore M, Kammerer S. Molecular epidemiology
21 22	378		of tuberculosis in a sentinel surveillance population. <i>Emerg Infect Dis</i> . 2002;8(11):1197-1209.
23 24 25	379		doi:10.3201/eid0811.020403.
26 27	380	23.	Glynn JR, Crampin AC, Yates MD, et al. The Importance of Recent Infection with Mycobacterium
28 29	381		tuberculosis in an Area with High HIV Prevalence: A Long-Term Molecular Epidemiological Study
30 31	382		in Northern Malawi. <i>J Infect Dis</i> . 2005;192(3):480-487. doi:10.1086/431517.
32 33 34	383	24.	Izumi K, Ohkado A, Uchimura K, et al. Detection of tuberculosis infection hotspots using activity
35 36	384		spaces based spatial approach in an urban Tokyo, from 2003 to 2011. PLoS One. 2015;10(9):1-
37 38	385		16. doi:10.1371/journal.pone.0138831.
39 40	386	25.	Sandgren A, Schepisi MS, Sotgiu G, et al. Tuberculosis transmission between foreign- and native-
41 42 43	387		born populations in the EU/EEA: A systematic review. <i>Eur Respir J</i> . 2014;43(4):1159-1171.
44 45	388		doi:10.1183/09031936.00117213.
46 47	389	26.	MURASE Y, OHKADO A, WATANABE Y, et al. Transmission dynamics of mycobacterium
48 49	390		tuberculosis between foreign-nationals and Japanese tuberculosis patients living in Shinjuku-
50 51 52	391		City, Tokyo, Japan. <i>Kekkaku</i> . 2017;92(5):431-439.
53 54	392	27.	Murase Y, Izumi K, Ohkado A, et al. Prediction of local transmission of mycobacterium
55 56	393		tuberculosis isolates of a predominantly Beijing lineage by use of a variable-number tandem-
57 58	394		repeat typing method incorporating a consensus set of hypervariable loci. J Clin Microbiol.
59 60			

1			
2 3			
4 5			
6 7	395		2018;56(1):1-11. doi:10.1128/JCM.01016-17.
8 9	396	28.	Wada T, Iwamoto T, Tamaru A, et al. Clonality and micro-diversity of a nationwide spreading
10 11 12	397		genotype of Mycobacterium tuberculosis in Japan. <i>PLoS One</i> . 2015;10(3):1-13.
12 13 14	398		doi:10.1371/journal.pone.0118495.
15 16	399	29.	Murase Y, Mitarai S, Sugawara I, Kato S, Maeda S. Promising loci of variable numbers of tandem
17 18	400		repeats for typing Beijing family Mycobacterium tuberculosis. J Med Microbiol. 2008;57(7):873-
19 20 21	401		880. doi:10.1099/jmm.0.47564-0.
21 22 23	402		880. doi:10.1099/jmm.0.47564-0.
24 25	403		
26 27			
28			
29			
30 31			
32			
33			
34 25			
35 36			
37			
38			
39			
40			
41 42			
43			
44			
45			
46 47			
47			
49			
50			
51 52			
53			
54			
55			
56 57			
57 58			
50 59			
60			
			20

TABLE

Table 1. Study variables and definitions

Category	Variables	Definition				
Demographic factors	Sex	Men or women				
	Age	Age as years old at registration (\geq 40 or <40)				
	Country of birth	Japan-born or foreign-born persons				
Social factors	Occupation	Fulltime, Part-time/daily worker, jobless under 60 years old,				
Social factors		others (including infant, student, housewife, retired, unknown)				
	Receipt of public assistance	Those who receive government welfare benefits for those who				
		household income is below the minimum living expense				
		registration				
	Homelessness status	Those whose legal address is unknown or not stable at least in				
		last two years at registration				
	Alcohol misuse	Those who have excessive drinking practice judged by the pul				
		health nurses				
Clinical factors	Site of disease	Those who have pulmonary or extra pulmonary disease				
	Cavity lesions	Those who have cavity lesions in lung field on chest radiography				
	Courtum amoor microscopy	Those who have positive or negative result in sputum smear				
	Sputum smear microscopy	microscopy test				
	Past TB history	Those who have history of past TB treatment				
	Status of diabetes mellitus	Those who have diabetes mellitus status by the patient's self-				
	Status of diabetes mellitus	report				
Others	Mode of detection	Those who found through active case finding conducted by publ				
Guers		health centers				

1 2 3		
4 5 6		A time between the onset of symptoms and the initial doctor visit
7 8 9	Status of patient delay	longer than two months
10 11 12	Status of doctor delay	A time between the initial doctor visit and diagnosis longer than one month
13 14 15 16		A time between onset of symptoms and TB diagnosis longer than
17 18 19	Status of total delay	three months
20 21 22	Registration interval	The duration in months between the registration dates of the first two cases in each of the genotype clusters
23 <u>406</u> 25	No.	
26 407 27 28		
29 408 30 31 32 33 34		
35 36 37 38 39		
40 41 42 43 44		
45 46 47 48 49		
50 51 52 53		
54 55 56 57		
58 59 60		22

$409 \qquad {\rm Table \ 2. \ Factors \ associated \ with \ TB \ genotype \ clustering; \ univariable \ logistic \ regression \ analysis, \ RFLP,}$

410 Shinjuku 2002–2013

	Total number of	Clustered		OR	(95% CI)	p-valu
	cases (N=1025),	cases				
	n	(N=515),				
	~	n (%)				
Age (years old)	1025					
≥40	754	371	(49.2)	Reference		
<40	271	144	(53.1)	1.17	(0.88-1.56)	0.267
Sex	1025					
Female	248	102	(41.1)	Reference		
Male	777	413	(53.2)	1.62	(1.20-2.19)	0.001**
Country of birth	1025					
Foreign	95	22	(23.2)	Reference		
Japan	930	493	(53.0)	3.74	(2.25-6.44)	<0.001
Occupation	1025					
Fulltime worker	313	165	(52.7)	1.53	(1.15-2.05)	0.004**
Part-time/daily	96	60	(62.5)	2.29	(1.45-3.61)	<0.001
worker						
Jobless aged 15-59-	172	103	(59.9)	2.05	(1.43-2.94)	<0.001
year-old						
Others [†]	444	187	(42.1)	Reference		
Public Assistance [‡]	1024					
No	720	319	(44.3)	Reference		

195 (64.1)

349 (45.0)

2.25

Reference

304

1025

776

Page	24	of	37
, age	~ .	<u> </u>	

(1.69-3.00)

<0.001***

1 2 3 4 5		
6 7	Yes	
8 9	Homelessness	
10 11	No	
12 13 14	Yes	
14 15 16	Alcohol misuse §	
17 18	No	
19 20	Yes	
21 22	TB site	
23 24 25	Extra-pulmonary	
26 27	Pulmonary	
28 29	Cavity lesions	
30 31	No	
32 33 34	Yes	
35 36	Smear results	
37 38	Negative	
39 40	Positive	
41 42 43	Past TB history	
44 45	New	
46 47	Retreatment	
48 49	DM	
50 51 52	No	
52 53 54	Yes	
55 56	Active case finding	
57 58	No	
59 60		

249	166	(66.7)	2.45	(1.80-3.34)	<0.001***
1025					
761	367	(48.2)	Reference		
264	148	(56.1)	1.37	(1.02-1.83)	0.028*
1024					
80	32	(40.0)	Reference		
944	482	(51.1)	1.56	(0.96-2.58)	0.058
1023					
565	271	(48.0)	Reference		
458	243	(53.1)	1.23	(0.95-1.58)	0.105
1024					
406	192	(47.3)	Reference		
618	322	(52.1)	1.21	(0.94-1.57)	0.132
989					
880	441	(50.1)	Reference		
109	59	(54.1)	1.17	(0.77-1.79)	0.429
1005					
832	421	(50.6)	Reference		
173	86	(49.7)	0.97	(0.69-1.36)	0.831
1025					
842	412	(48.9)	Reference		
					24

۲	/es	183	103	(56.3)	1.34	(0.96-1.88)	0.071
Pat	ient delay	1000					
<	<2m	773	377	(48.8)	Reference		
≥	≥2m	227	127	(55.9)	1.33	(0.98-1.82)	0.057
Doc	ctor delay	1018					
<	<1m	799	415	(51.9)	Reference		
2	:1m	219	97	(44.3)	0.74	(0.54-1.00)	0.04
Tot	al delay	997					
<	<3m	777	382	(49.2)	Reference		
≥	:3m	220	122	(55.5)	1.29	(0.94-1.76)	0.09
411	RFLP: restriction	fragment length polymorp	ohism,	OR: odd	s ratio, CI: co	nfidence interv	al, TB:
412	tuberculosis, DM:	diabetes mellitus, *p<0.05,	**p<0.	01, ***p<	:0.001		
413	[†] Occupation of ot	thers includes infant, studen	it, hous	ewife, ret	ired, and unkn	own.	
414	[‡] Public Assistanc	e refers to government we	elfare b	enefits fo	or those whose	e household inc	ome is
415	below the minimu	ım living expense.					
416	[§] Alcohol misuse i	means excessive drinking pr	actice	judged by	the public he	alth nurses conc	ducting
417	the interviews.						
418							
419							

420 Table 3. Factors associated with TB clustering; multivariate logistic regression analysis, RFLP, Shinjuku

421 2002–2013

Variables		aOR	(95% CI)	p-val
Age (years old)	≥40	Reference		
	<40	1.73	(1.23-2.44)	0.002**
Country of birth	Foreign	Reference		
	Japan	3.90	(2.27-6.72)	<0.001*
Occupation	Fulltime worker	1.63	(1.17-2.27)	0.004**
	Part-time/daily worker	2.20	(1.35-3.58)	0.002**
	Jobless aged 15-59-year-old	1.32	(0.88-1.97)	0.180
	Others [†]	Reference		
Public Assistance [‡]	No	Reference		
	Yes	1.81	(1.15-2.84)	0.011*
Homeless	No	Reference		
	Yes	1.63	(1.02-2.62)	0.042*
Alcohol misuse §	No	Reference		
	Yes	1.29	(0.79-2.11)	0.311
Active case finding	No	Reference		
	Yes	1.39	(0.98-1.99)	0.066

422 RFLP: restriction fragment length polymorphism, aOR: adjusted odds ratio, CI: confidence interval,

423 *p<0.05, **p<0.01, ***p<0.001

424 [†]Occupation of others includes infant, student, housewife, retired, and unknown.

^{\ddagger} Public Assistance refers to government welfare benefits for those whose household income is

426 below the minimum living expense.

2 3		
4 5		
6 7	427	$\ensuremath{\$}^{\$}$ Alcohol misuse means excessive drinking practice judged by the public health nurses conducting
8 9	428	the interviews.
10 11	429	
12 13		
14 15		
16 17		
18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31		
32 33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		
		07

Table 4. Analysis of factors associated with large genotype clusters within three years using the

431 characteristics of the first two cases in each TB genotype cluster; univariable and multivariable

432 logistic regression, RFLP, Shinjuku 2003–2013 (N=104 cluster episodes)

	Lorgo	aluatoro	Small	clusters	Univar	iate logistic regre	ession
	Large		and	large			
Variable	within	3 years	cluste	rs after 3			
	(N=14),	years	(N=90),	OR	(95% CI)	p Value
	n (%)†		n (%) [;]				
Sex							
No male	1	(7.1)	4	(4.4)	Ref		
≥One male	13	(92.9)	86	(95.6)	0.60	(0.06-5.84)	0.664
Age							
No cases <40 years	8	(57.1)	57	(63.3)	Ref		
At least one case <40 years	6	(42.9)	33	(36.7)	1.30	(0.41-4.06)	0.657
Japanese							
Non-Japan born	0	(0.0)	2	(2.2)	Ref		
≥One case Japan born	14	(100.0)	88	(97.8)	NA		
Full- and part-time/daily worker							
No case being full- and part-time/daily worker	6	(42.9)	35	(38.9)	Ref		
≥One case being full- and part-time/daily worker	8	(57.1)	55	(61.1)	0.85	(0.27-2.65)	0.778
Public Assistance							
No case with public assistance	5	(35.7)	41	(45.6)	Ref		
≥One case with public assistance	9	(64.3)	49	(54.4)	1.51	(0.47-4.85)	0.492
Homeless							

No case with currently homeless	6	(42.9)	45	(50.0)	Ref		
≥One case with currently homeless	8	(57.1)	45	(50.0)	1.33	(0.43-4.15)	0.62
Alcohol misuse							
No case with alcohol misuse	5	(35.7)	48	(53.3)	Ref		
≥One case with alcohol misuse	9	(64.3)	42	(46.7)	2.06	(0.64-6.62)	0.22
Cavity lesions							
No case with cavity	2	(14.3)	24	(26.7)	Ref		
≥One case with cavity	12	(85.7)	66	(73.3)	2.18	(0.45-10.47)	0.33
Smear results							
No case with smear positive		(7.1)	12	(13.3)	Ref		
≥One case with smear positive	13	(92.9)	78	(86.7)	2.00	(0.24-16.71)	0.52
Past TB history							
No case with past TB history	11	(78.6)	69	(76.7)	Ref		
≥One case with past TB history	3	(21.4)	21	(23.3)	0.90	(0.23-3.52)	0.87
DM							
No case with DM	9	(64.3)	57	(63.3)	Ref		
≥One case with DM	5	(35.7)	33	(36.7)	0.96	(0.30-3.11)	0.94
Active case finding							
No case found through active case finding	8	(57.1)	53	(58.9)	Ref		
≥One case found through active case finding	6	(42.9)	37	(41.1)	1.07	(0.34-3.35)	0.90
Patient delay							
No case with patient delay	9	(64.3)	55	(61.1)	Ref		
≥One case with patient delay	5	(35.7)	35	(38.9)	0.87	(0.27-2.82)	0.82

No case with doctor delay		10	(71.4)	57	(63.3)	Ref		
≥One case with doctor delay			(28.6)	33	(36.7)	0.69	(0.20-2.38)	0.558
Total	delay							
No case with total delay			(71.4)	53	(58.9)	Ref		
≥One case with total delay			(28.6)	37	(41.1)	0.57	(0.17-1.97)	0.376
Regis	tration interval							
0-2 months between first two cases			(50.0)	13	(14.4)	9.51	(2.16-41.89)	0.003
3-5 months between first two cases			(14.3)	5	(5.6)	7.07	(0.95-52.77)	0.057
6-11 months between first two cases			(14.3)	19	(21.1)	1.86	(0.29-12.00)	0.514
≥12 months between first two cases		3	(21.4)	53	(58.9)	Ref		
433	Note. After selecting variables for multi	variate l	ogistic reg	ression l	by the step	owise meth	nod, only the	
434	variable of registration interval remained in the model. Thus, the table shows only the result of							
435	univariate logistic regression.							
436	RFLP: restriction fragment length polymorphism, OR: odds ratio, aOR: adjusted odds ratio, CI:							
437	confidence interval, TB: tuberculosis, DM: diabetes mellitus, Ref: reference, NA: not applicable,							
438	*p<0.05, **p<0.01							
439	† "Large clusters within three years" were cluster episodes with five or more cases (large clusters)							
440	within three years							
441	[‡] "Small clusters and large clusters after three years", which were cluster episodes with two to four							

- 442 cases (small clusters) and cluster episodes that became large clusters after three years.

2		
3		
4		
5		
6	445	Figure legend
7		
8	446	
9		
10	447	Figure 1. Number of reported cases of TB, including culture-positive cases, strain-typed cases and
11	111	
12	110	construct dustors Chiniulus 2002 2012
13	448	genotype clusters, Shinjuku, 2002–2013
14 15	1.10	
15 16	449	RFLP: restriction fragment length polymorphism, TB: tuberculosis
16 17		
18	450	
19		
20	451	Figure 2. Cumulative clustering rate, RFLP, Shinjuku 2002–2013
20		
22	452	RFLP: restriction fragment length polymorphism
23		
24	453	
25	100	
26	454	Figure 3. Time series of the number (A) and proportion (B) of clustered homeless cases, RFLP,
27	404	Figure 5. Time series of the number (A) and proportion (b) of clustered nonneless cases, KFLP,
28	4 ~ ~	
29	455	Shinjuku 2003-2012
30		
31	456	RFLP: restriction fragment length polymorphism
32		
33	457	Note. The 2002 and 2013 data were omitted because of the small total number of cases (31 and 23
34 25		
35 36	458	cases, respectively). The percentage of clustered cases among the homeless was calculated as the
30 37		
38	459	number of clustered homeless cases divided by the number of all homeless cases, and the
39		
40	460	percentage of the homeless among all study cases was calculated as the number of homeless cases
41		
42	461	divided by the number of all study cases.
43	101	
44		divided by the number of all study cases.
45		
46		
47		
48		
49		
50		
51		
52		
53 54		
54 55		
55 56		
50 57		
58		
59		
60		

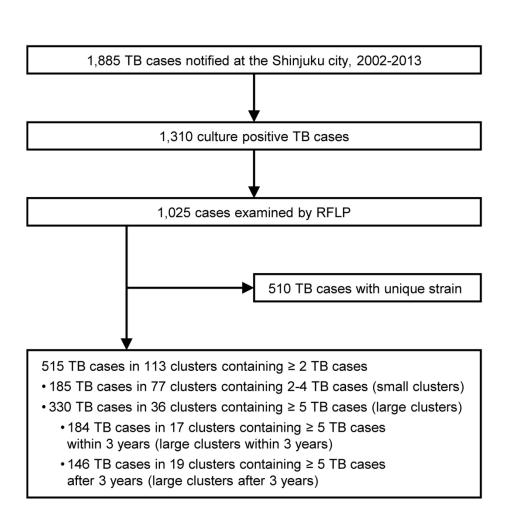
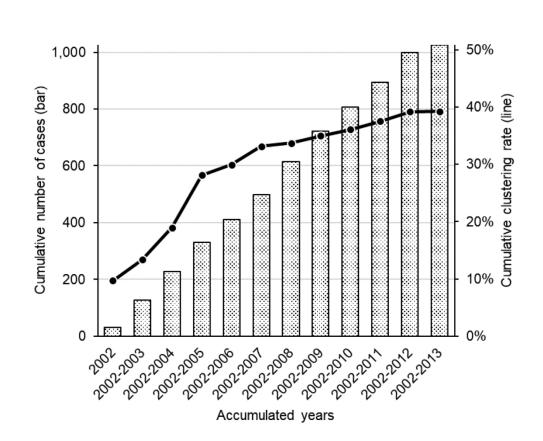
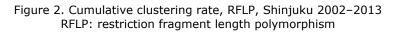




Figure 1. Number of reported cases of TB, including culture-positive cases, strain-typed cases and genotype clusters, Shinjuku, 2002–2013 RFLP: restriction fragment length polymorphism, TB: tuberculosis

90x90mm (600 x 600 DPI)

90x90mm (600 x 600 DPI)

BMJ Open: first published as 10.1136/bmjopen-2019-029295 on 9 May 2019. Downloaded from http://bmjopen.bmj.com/ on April 18, 2024 by guest. Protected by copyright.

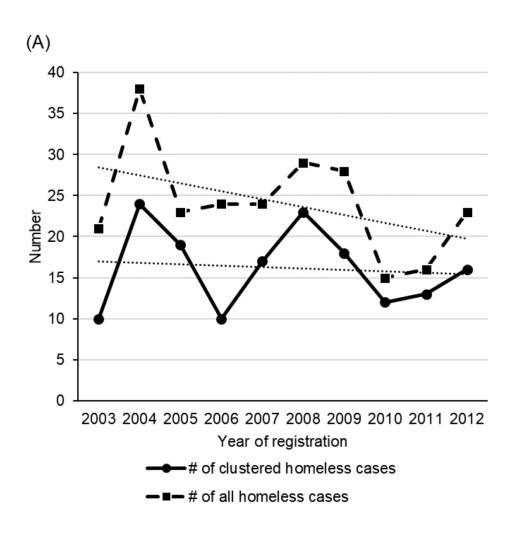
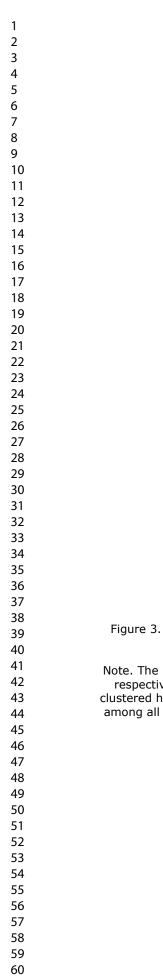



Figure 3. Time series of the number (A) and proportion (B) of clustered homeless cases, RFLP, Shinjuku 2003-2012

RFLP: restriction fragment length polymorphism

Note. The 2002 and 2013 data were omitted because of the small total number of cases (31 and 23 cases, respectively). The percentage of clustered cases among the homeless was calculated as the number of clustered homeless cases divided by the number of all homeless cases, and the percentage of the homeless among all study cases was calculated as the number of homeless cases divided by the number of all study cases.

90x90mm (600 x 600 DPI)

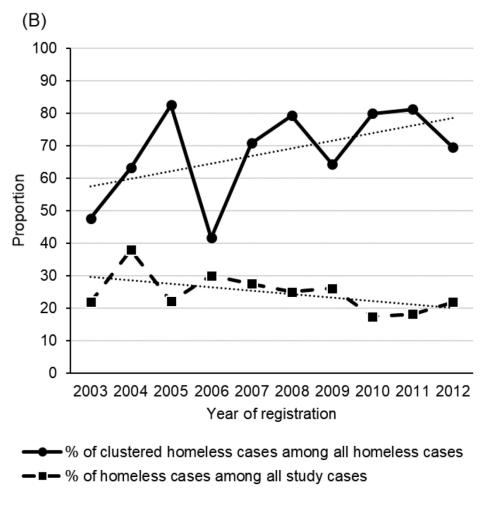


Figure 3. Time series of the number (A) and proportion (B) of clustered homeless cases, RFLP, Shinjuku 2003-2012

RFLP: restriction fragment length polymorphism

Note. The 2002 and 2013 data were omitted because of the small total number of cases (31 and 23 cases, respectively). The percentage of clustered cases among the homeless was calculated as the number of clustered homeless cases divided by the number of all homeless cases, and the percentage of the homeless among all study cases was calculated as the number of homeless cases divided by the number of all study

cases.

90x90mm (600 x 600 DPI)

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was advection (b)	3
Introduction		2011	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods		D A de	
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Table 1
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	6 *We took all eligible study participants in Shinjuku city.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Table 1
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	8
		(d) If applicable, describe analytical methods taking account of sampling strategy	Not Applicable

36/bmjopen-20°

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

36/bmjopen-2

ight.

		(e) Describe any sensitivity analyses	Not Applicable
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine \ddot{b} for eligibility,	8-9
		confirmed eligible, included in the study, completing follow-up, and analysed	Figure 1
		(b) Give reasons for non-participation at each stage	8-9
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Table 1
		(b) Indicate number of participants with missing data for each variable of interest	N in tables
Outcome data	15*	Report numbers of outcome events or summary measures	Tables, 9-10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision $\ddot{\Xi}$ (eg, 95% confidence	Tables
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Tables
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not Applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Table 4
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of a palyses, results from similar studies, and other relevant evidence	11-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	11-14
Other information		24 5	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	4

Transmission of tuberculosis and predictors of large clusters within three years in an urban setting in Tokyo, Japan: a population-based molecular epidemiological study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029295.R1
Article Type:	Research
Date Submitted by the Author:	27-Mar-2019
Complete List of Authors:	Izumi, Kiyohiko; The Research Institute of Tuberculosis, Murase, Yoshiro; The Research Institute of Tuberculosis Uchimura, Kazuhiro; The Research Institute of Tuberculosis Kaebeta, Aya; Shinjuku Public Health Center Ishihara, Keiko; Shinjuku Public Health Center Kaguraoka, Sumi; Shinjuku Public Health Center Takii, Takemasa; The Research Institute of Tuberculosis Ohkado, Akihiro; The Research Institute of Tuberculosis
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Public health
Keywords:	RFLP, clustering rate, homeless, foreign-born

BMJ Open

1		
2		
3		
4		
5		
6	1	Title
7		
8	2	Transmission of tuberculosis and predictors of large clusters within three years in an urban setting in
9		
10 11	3	Tokyo, Japan: a population-based molecular epidemiological study
12		
13	4	
14		
15	5	Authors and affiliations
16	0	
17	6	1. Kiyohiko Izumi. Department of Epidemiology and Clinical Research, The Research Institute of
18	0	1. Rivoliko izulili. Department of Epidemiology and clinical Research, the Research institute of
19	7	Tubergularis Japan Anti Tubergularis Association Talua Japan Empily kinymi05@gmail.com
20	7	Tuberculosis, Japan Anti- Tuberculosis Association, Tokyo, Japan. Email: kizumi95@gmail.com
21	0	2. Visiting Manage Developed of Manahastation Defension and Developed The Developed
22	8	2. Yoshiro Murase. Department of Mycobacterium Reference and Research, The Research
23 24	0	
24 25	9	Institute of Tuberculosis, Japan Anti- Tuberculosis Association, Tokyo, Japan. Email:
26		
27	10	ymurase@jata.or.jp
28		
29	11	3. Kazuhiro Uchimura. Department of Epidemiology and Clinical Research, The Research Institute
30		
31	12	of Tuberculosis, Japan Anti- Tuberculosis Association, Tokyo, Japan. Email: <u>uchimura@jata.or.jp</u>
32		
33	13	4. Aya Kaebeta. Shinjuku Public Health Center. Email: aya.kaebeta@city.shinjuku.lg.jp
34		
35	14	5. Keiko Ishihara. Shinjuku Public Health Center. Email: keiko.ishihara@city.shinjuku.lg.jp
36		
37 38	15	6. Sumi Kaguraoka. Shinjuku Public Health Center. Email: sumi.kaguraoka@city.shinjuku.lg.jp
30 39		
40	16	7. Takemasa Takii. The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association,
41		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
42	17	Tokyo, Japan. Email: t-takii@jata.or.jp
43	11	
44	18	8. Akihiro Ohkado. Department of Epidemiology and Clinical Research, The Research Institute of
45	10	8. Akining Onkado. Department of Epidemiology and clinical Research, the Research institute of
46	19	Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan. Graduate School of Biomedical
47	19	Tuber culosis, Japan Anti-Tuber culosis Association, Tokyo, Japan. Graduate School of Biomedical
48	20	Colonada Nacadali University Encolly able das Olata ar in
49	20	Sciences, Nagasaki University. Email: ohkadoa@jata.or.jp
50	01	
51 52	21	
53	22	
55	22	Corresponding Author
55	-	
56	23	Kiyohiko Izumi
57		
58	24	Department of Epidemiology and Clinical Research, Research Institute of Tuberculosis, Japan Anti-
59		
60		
		1

rg rate, homel

Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, JAPAN

KEY WORDS: RFLP, clustering rate, homeless, foreign-born

Tel: ±81-42-4935711

Fax: +81-42-492-4600

Email: kizumi95@gmail.com

25
26
27
28
29
30
31
32

BMJ Open

3		
4		
5		
6 7	33	ABSTRACT
8 9	34	Objective: Molecular epidemiology is a promising tool for understanding tuberculosis transmission
10 11	35	dynamics but has not been sufficiently utilized in Asian countries including Japan. The aim of this
12 13 14	36	study was to estimate the proportion of TB cases attributable to recent transmission and to identify
15 16	37	risk factors of genotype clustering and the development of large clusters within three years in an
17 18	38	urban setting in Japan.
19 20	39	Design and setting: Long-term cross-sectional observational study combining the characteristics of
21 22	40	culture-positive TB patients notified in Shinjuku City, Tokyo (2002-2013), with genotype data of
23 24 25	41	Mycobacterium tuberculosis.
26 27	42	Primary outcome measure: Genotype clustering rate and association between genotype clustering
28 29	43	status and explanatory variables.
30 31 32	44	Results: Among 1,025 cases, 515 (50.2%) were localized within 113 genotype clusters. The overall
33 34	45	clustering rate was 39.2%. Significantly higher rates were found in patients aged <40 years (adjusted
35 36	46	odds ratio (aOR)=1.73, 95% CI=1.23-2.44), native Japanese individuals (aOR=3.90, 95% CI=2.27-6.72),
37 38	47	fulltime workers (aOR=1.63, 95% CI=1.17-2.27), part-time/daily workers (aOR=2.20, 95% CI=1.35-
39 40 41	48	3.58), individuals receiving public assistance (aOR=1.81, 95% CI=1.15-2.84), and homeless people
42 43	49	(aOR=1.63, 95% CI=1.02-2.62). A significant predictor of large genotype clusters within three years
44 45	50	was a registration interval \leq 2 months between the first two cases in a cluster.
46 47	51	Conclusion: Our results indicated that a large proportion of culture-positive TB patients were
48 49 50	52	involved in the recent TB transmission chain. Foreign-born persons still have a limited impact on
50 51 52	53	transmission in the Japanese urban setting. Intensified public health interventions, including the
53 54	54	active case finding, need to focus on individuals with socioeconomic risk factors that are significantly
55 56	55	associated with tuberculosis transmission and clusters with shorter registration intervals between
57 58 59	56	the first two cases.

Word Count in Abstract= 261 words

to peet teries only

59	Article Summary
60	Strengths and limitations of this study
61	 This study is one of the longest population-based studies focusing on the molecular
62	epidemiology of culture-positive notified tuberculosis patients in a large Asian urban setting
63	
64	
65	
66	
67	
68	Funding statement
69	This research was supported by the Research Program on Emerging and Re-emerging Infection
70	Diseases from the Japan Agency for Medical Research and Development (AMED No. JP18fk010804
71	
72	Competing interests: None declared.
73	
74	Patient consent: Not required.
75	
76	Data sharing statement: Due to data restrictions, we are unable to share any aspect of the data.
77	
78	Word count: 2,776 words
79	

80	INTRODUCTION
----	--------------

Tuberculosis (TB) remains a major public health threat worldwide. In 2017, an estimated 10 million people worldwide developed TB, and 1.27 million died from TB¹. Although the majority of cases have been reported in countries with a high TB burden, TB remains a persistent health problem in low-and medium-burden countries because it is concentrated in specific vulnerable and hard-to-reach populations, such as homeless people and foreign-born persons from TB high-burden countries². These specific high-risk populations tend to live in large cities where they are seeking jobs, which potentially poses challenges to the control of TB in urban areas^{3,4}. Many countries with a low or medium TB burden have recently adopted TB elimination strategies^{2,5}, which emphasizes the importance of molecular epidemiology in TB control, particularly in urban areas^{2,4}.

TB molecular genotyping using restriction fragment length polymorphisms (RFLPs) and, more recently, variable numbers of tandem repeats (VNTRs) combined with epidemiological information identifies TB cases that are likely involved in the same transmission chain⁶. This method differentiates recent transmission or endogenous reactivation from remote infection and has therefore revealed that a substantial proportion of TB cases are due to recent transmission in low-TB-burden countries⁷⁻ ⁹. This method also identifies the proportion of cases attributable to recent transmission and determines the risk factors for transmission. Moreover, various factors predicting large TB genotype clusters, including socially vulnerable populations and shorter intervals between the registration dates of the first two cases, have been investigated by evaluating the characteristics of the first two cases in the same genotype cluster^{10–13}. These population-based molecular epidemiological studies were conducted in some European countries^{8,10,12}, the U.S.^{7,9,11} and some Asian countries^{14–19}.

In Japan, a country with a medium TB burden, the number of newly notified TB cases decreased from

BMJ Open

32,828 (25.8 per 100,000 populations) in 2002 to 17,625 (13.9 per 100,000 populations) in 2016²⁰, but the central government has constantly been reported of TB outbreaks by local governments at a rate of approximately 40 events annually over the last decade. This information suggests that TB transmission might be occurring in some groups, such as homeless people, who constitute a high-risk group for recent TB transmission in urban areas¹⁴. Considering the steady increase in the proportion of TB cases among foreign-born individuals in Japan (7.9% of all cases in 2016²¹), transmission between foreign-born persons and local residents must be monitored. In addition, in light of Japan's transition toward becoming a low-TB-burden country, understanding TB transmission patterns has become increasingly important. However, few population-based molecular epidemiological studies have identified the transmission patterns in Japan and their risk factors. Additionally, no study has attempted to evaluate the factors predicting the development of large clusters in Japan. Therefore, we aimed to estimate the proportion of TB cases attributable to recent transmission, to identify the risk factors for recent transmission, and to predict the risk factors for the development of large clusters in an urban setting.

2 120

METHODS

122 Study population

We included all culture-positive TB patients notified in Shinjuku City from September 2002 to December 2013 as the eligible study population in this cross-sectional observational study. This study forms part of a population-based study on DNA fingerprinting surveillance of *M. tuberculosis* in Shinjuku City that was started in 2002. Shinjuku City (18.3 km²) is one of the most populous (342,867 residents in 2018²²) cities in Tokyo, and its TB notification rate in 2016 was 33.7 per 100,000 people²³,

which was higher than the rates in Tokyo and the nation (17.2 and 13.9, respectively²⁰). Experienced public health nurses at the Shinjuku Public Health Center (PHC) interviewed and collected information from all culture-positive TB patients at the time of registration using a standardized questionnaire to avoid possible interviewer bias. The study variables and definitions are described in Table 1. Patient and public involvement Neither the patients nor the public were involved in the design of this study. DNA fingerprinting and genotype cluster Clinical isolates from each of the enrolled TB patients were sent to the Research Institute of Tuberculosis (RIT), Tokyo, where the TB strains were subjected to DNA fingerprinting using insertion sequence 6110 by RFLP (IS6110-RFLP) analysis²⁴. One clinical isolate per person was used for the clustering analysis. IS6110-RFLP and spoligotyping are the standard methods used in the Shinjuku PHC and were available throughout the study period. The Shinjuku PHC switched from RFLP to VNTR a few years ago, but the RFLP profiles of many TB cases were available. Thus, we employed RFLP due to the sufficient sample size. A genotype cluster was defined as a group of TB patients whose isolates showed either (1) ≥ 6 identical IS6110 band patterns or (2) <6 identical IS6110 band patterns confirmed by identical spoligotyping patterns. The data collection and genotyping methods were previously described in detail¹⁴. Data analysis We calculated the genotype clustering rate by the "n-1 method" according to the formula $\{(n - c)/N\}$, where N is the total number of cases sampled, c is the number of clusters, and n is the total number

BMJ Open

of cases in the clusters⁹. We also calculated the cumulative clustering rate by calculating the clustering rate in 2002 and then adding the TB patients every year up to 2013. The characteristics of clustered cases, which were the cases belonging to any genotype clusters, were compared with those with unique strain patterns through χ^2 tests. We performed univariate logistic regression to identify risk factors for genotype clustering using odds ratios (ORs) and multivariate logistic regression using adjusted ORs (aORs). Any potential interactions were assessed using likelihood ratio tests.

Additionally, we compared the characteristics of the first two cases in each genotype cluster to identify risk factors for the development of a large cluster within three years. For this purpose, a cluster episode was defined as a newly arising genotype cluster in or after 2003 without any TB cases of that genotype notified prior to that year. We classified cluster episodes into the following two groups according to a system developed in a previous study¹⁰: (1) "large clusters within three years" were cluster episodes with five or more cases (large clusters) occurring within three years and (2) "small clusters and large clusters after three years" were cluster episodes with two to four cases (small clusters) and cluster episodes that became large clusters after three years. We identified the first two cases in each cluster episode based on the notification date and compared their characteristics between these two groups. We performed univariate and multivariate logistic regression analyses to identify predictors of the development of large clusters within three years.

A p-value of 0.05 was set as the level indicating statistical significance. For variables with more than 5% missing values, the multiple imputation method was considered. The variables used for multivariate logistic regressions were selected by the stepwise maximum-likelihood estimation with a significance level of less than 0.2. We used Stata version 12 (Stata Corp., College Station, TX, USA) for the statistical analyses. Written informed consent was waived because DNA fingerprinting

analysis forms part of the routine TB control activities in Shinjuku City. However, oral informed consent was obtained after the PHC staff provided a thorough explanation of the study objectives and confidentiality. The study protocol was approved by the Institutional Review Board of the Research Institute of Tuberculosis (RIT/IRB27-9).

- 181 RESULTS
- 182 Study population and clustering rate

In total, 1,885 TB patients in Shinjuku City were notified during the study period, and 1,310 were culture-positive cases (Figure 1). Of these, 285 patients were excluded from the analysis, mainly due to the unavailability of culture-positive isolates and the lack of implementation of RFLP. As a result, 1,025 (78.2%) patients were included in the analysis. Figure 2 shows the cumulative number of TB patients and the clustering rates from 2002 to 2013. The number of TB cases gradually increased over the tested decade. In contrast, the cumulative clustering rates sharply increased in the first four years, from 10% in 2002 to 28% in 2005, with an average percent change of +43%, and then continued to increase at a slower rate, from 30% in 2006 to 39% in 2013, with an average percent change of +4.2%.

We identified a total of 113 genotype clusters consisting of 515 (50.2%) patients (Figure 1). The genotype clustering rate was 39.2%, and the average cluster size was 4.56 cases (range 2-30). Fiftyseven (50.4%) genotype clusters consisted of only two TB patients, and 36 (31.9%) genotype clusters had at least five TB patients. We further investigated the homelessness status and place of birth of the patients in the genotype clusters. Of the 113 genotype clusters, 45 (39.8%) comprised only nonhomeless individuals, seven (6.2%) included only homeless individuals, and 61 (54.0%) contained both homeless and nonhomeless individuals (mixed cluster). We compared the characteristics of the

Page 11 of 37

BMJ Open

nonhomeless patients in the clusters of only nonhomeless patients with those in the mixed clusters, and although the finding was not statistically significant (Pearson χ^2 test, p=0.17), the proportion of nonhomeless patients receiving public assistance in the latter group (13.8%) was higher than that in the former group (8.8%). No differences in sex, age, and place of birth were found between the two groups. Of the 113 genotype clusters, 94 (83.2%) consisted of only individuals born in Japan, two (1.8%) consisted of only foreign-born individuals, and 17 (15.0%) consisted of both individuals born in Japan and foreign-born individuals.

Factors associated with genotype clustering

The clustered cases were significantly more likely to consist of male individuals (OR=1.62, 95% CI=1.20-2.19), Japan-born individuals (OR=3.74, 95% CI=2.25-6.44), individuals receiving public assistance (OR=2.25, 95% CI=1.69-3.00), homeless individuals (OR=2.45, 95% CI=1.80-3.34), individuals who misuse alcohol (OR=1.37, 95% CI=1.02-1.83), individuals engaging in fulltime work (OR=1.53, 95% CI=1.15-2.05) and part-time/daily work (OR=2.29, 95% CI=1.45-3.61), and jobless individuals aged 15-59 years (OR=2.05, 95% CI=1.43-2.94) (Table 2). A significant interaction among the explanatory variables was not detected. The multivariate analysis demonstrated that the factors associated with genotype clustering were age <40 years (aOR=1.73, 95% CI=1.23-2.44), born in Japan (aOR=3.90, 95% CI=2.27-6.72), working fulltime (aOR=1.63, 95% CI=1.17-2.27), having part-time/daily work (aOR=2.20, 95% CI=1.35-3.58), receiving public assistance (aOR=1.81, 95% CI=1.15-2.84), and homelessness (aOR=1.63, 95% CI=1.02-2.62)(Table 3).

Factors associated with large genotype clustering within three years

We identified 104 genotype cluster episodes according to the definition. Of these, 14 were "large clusters within three years", which was equivalent to 13.5% (14/104) of all the genotype clusters and

48.3% (14/29) of the large genotype clusters, and 90 clusters were "small clusters and large clusters
after three years". The univariate analysis indicated that clusters with registration intervals of 0-2
months were 9.51 times more likely to become large genotype clusters within three years compared
with clusters with registration intervals of ≥12 months (Table 4). After selecting variables using the
stepwise method, only the "registration interval" variable remained for the multivariate model.

DISCUSSION

In this long-term population-based study, we included 1,025 patients, identified a total of 113 genotype clusters, and obtained a genotype clustering rate of 39.2%. Our results indicated that the clustered cases were more likely to have certain socioeconomic predictive factors, namely, being homeless, receiving public assistance, and having an unstable job, at the time of tuberculosis diagnosis. A shorter registration interval between the first two cases was a statistically significant predictor of the development of a large genotype cluster within three years.

238 Clustering rate

We identified 515 (50.2%) genotype clustered cases and estimated a clustering rate of 39.2%. The rate was the same as the pooled clustering rate (40.9%) obtained in a previous meta-analysis of population-based studies of countries with a low TB incidence¹⁹ but differed from previous estimates obtained in Japanese studies, which were 27.6% in Shinjuku and 24.6% in Osaka^{14,25}. Because the meta-regression analysis clarified that longer study durations are associated with an increased clustering rate¹⁹, this difference could be due to shorter study durations combined with the smaller sample sizes of the previous studies (388 patients in five years and 195 patients in one year, respectively). In our study, as expected, the cumulative clustering rate rapidly increased in the first four years and increased more slowly thereafter, which is similar to the trend observed in the

1 2		
3 4		
5 6 7	248	previous studies ^{26,27} .
8 9	249	
10 11	250	Factors associated with genotype clustering
12 13	251	Our results indicated that the clustered cases were more likely to have socioeconomic predictive
14 15 16	252	factors, namely, being homeless, receiving public assistance, and having an unstable job, at the time
17 18	253	of TB diagnosis. Similarly, previous studies suggested that being homeless significantly contributed
19 20	254	to clustering in Shinjuku City ¹⁴ and other counties ¹⁹ . In our study, more than half of the genotype
21 22 23	255	clusters were mixtures of nonhomeless and homeless patients. Moreover, the nonhomeless patients
24 25	256	in the mixed clusters tended to be financially unstable, and a higher proportion of these patients
26 27	257	were receiving public assistance compared with the proportion among clusters of only nonhomeless
28 29	258	cases, which could imply that relatively poor nonhomeless patients share activity spaces with
30 31 32	259	homeless patients, such as urban areas around the large train stations that were reported to be
33 34	260	significant hotspots for homeless patients in Shinjuku City ²⁸ . These findings could suggest that
35 36	261	contact investigations of homeless TB patients need to be actively expanded to possible contact
37 38	262	persons who are not homeless, particularly those who are facing financial difficulty.
39 40	263	
41 42 43	264	A meta-analysis based on studies conducted in European countries where foreign-born patients
44 45	265	substantially contribute to TB epidemiology found that the proportion of mixed clusters composed
46 47	266	of native and foreign-born patients ranged from 0% to 36.5% and concluded that foreign-born
48 49 50	267	patients did not have a significant influence on TB in the native population ²⁹ . In our study, the
51 52	268	proportion of mixed clusters (15.0%) fell into this range. Thus, the impact of TB transmission between
53 54	269	native and foreign-born populations likely remains limited in this urban setting ³⁰ . However,
55 56	270	considering the recent increase in immigrant TB patients in urban cities, TB transmission between
57 58 59	271	native and foreign-born populations needs to be closely monitored.
60		

13

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14 15	
15 16 17	
17	
18	
19	
20	
21 22	
22	
24	
25	
26	
27	
28 29	
30	
31	
32	
33	
34 25	
35 36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54	
55 56	
50 57	
58	
59	
60	

272

273 Factors associated with large genotype clustering within three years

274A shorter registration interval (≤2 months) was identified as a significant predictor of the 275development of a large genotype cluster within three years, which is compatible with findings of 276previous studies conducted in the Netherlands and London^{10,12}. Therefore, when TB patients with 277identical genotypes have shorter registration intervals, a thorough active case findings need to be 278performed to investigate the potential infection sources and infected patients in order to prevent 279further transmission. However, it is difficult to assume that the first patient infected the second 280patient because a window of two months appears too short. Thus, we believe that a true but 281unidentified first TB case was not identified in our study. A cluster episode was defined as a cluster 282without any TB patients in 2002 and at least two patients with identical genotypes in and after 2003. 283Therefore, a possible true first TB case might have been registered before 2002, which was outside 284of our study period, or registered outside of Shinjuku City.

285

286 Limitations

287Our study has some limitations. First, the study population consisted only of TB patients living in 288Shinjuku City. Considering the large population flow in and out of the city, as mentioned above, we 289potentially missed patients living outside of the city who shared TB strain types with patients living 290in the city. In fact, previous Japanese studies reported clusters with TB patients living across broad 291geographic areas³¹. Consequently, we may have underestimated the identified genotype clusters. 292Second, even the existence of TB patients with identical genotyping patterns may not suggest recent 293transmission if the strain is a nationwide endemic TB strain³², which could have led to an 294overestimated clustering rate. Third, IS6110 RFLP has relatively lower discriminatory power 295compared with VNTR³³ and whole-genome sequencing^{34,35}, which might have led to overestimation.

BMJ Open

Lastly, information of epidemiological linkage among TB patients was not available in our study. Therefore, we could not assess and discuss the current practices involving epidemiological investigations done by the public health center, which could weaken the programmatic implications of our results.

301 Conclusion

This study constitutes a one of the longest-term studies on the molecular epidemiology of notified TB patients in a large Asian urban setting. Our results indicated that a large proportion of culture-positive TB patients were involved in the recent TB transmission chain. Homeless persons were found to be involved in more than half of the genotype clusters. Foreign-born persons continue to have a limited impact on TB transmission in the Japanese urban setting, but considering recent increases in foreign-born TB patients, transmission between native and foreign-born populations should be routinely evaluated. Intensified public health interventions, such as active case findings, should focus on those with socioeconomic risk factors that are significantly associated with TB transmission and clusters with shorter registration intervals between the first two cases because these variables could serve as predictors of the development of large clusters within three years.

2	
3	
4	
5	
6	
7	
8	
9	
10	
12 13 14 15 16	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	

313 ACKNOWLEDGMENTS

- 314 We would like to thank the Shinjuku Public Health Center staff for collecting the data.
- 316 **Author Statement:** Authors roles
- 317 KIz: conception of study, statistical analysis, interpretation of data, and drafting and finalization of
 - 318 the manuscript

315

- 319 YM: genotyping analysis, interpretation of data, and finalization of the manuscript
- 320 KU: conception of study, interpretation of data, and finalization of the manuscript
- 321 AK: conception of study, collection of data, and finalization of the manuscript
- 322 KIs: conception of study, collection of data, and finalization of the manuscript
- 323 SK: conception of study, collection of data, and finalization of the manuscript
- 324 TT: interpretation of data and finalization of the manuscript
 - 325 AO: conception of study, interpretation of data, and drafting and finalization of the manuscript

326

- 327
- 328

BMJ Open

2 3			
4 5			
6 7	329	Refer	rences
8 9	330	1.	World Health Organization. Global Tuberculosis Report 2018. Geneva; 2018. doi:ISBN 978 92 4
10 11	331		156539 4.
12 13 14	332	2.	Lönnroth K, Migliori GB, Abubakar I, et al. Towards tuberculosis elimination: An action
14 15 16	333		framework for low-incidence countries. <i>Eur Respir J</i> . 2015;45(4):928-952.
17 18	334		doi:10.1183/09031936.00214014.
19 20	335	3.	de Vries G, Aldridge RW, Cayla J a, et al. Epidemiology of tuberculosis in big cities of the
21 22	336		European Union and European Economic Area countries. Euro Surveill Bull Eur sur les Mal
23 24 25	337		Transm = Eur Commun Dis Bull. 2014;19(9):1-8.
26 27	338	4.	Hest NA, Aldridge RW, de Vries G, et al. Tuberculosis control in big cities and urban risk groups in
28 29	339		the European Union: A consensus statement. Euro Surveill. 2014;19(9):1-13. doi:10.2807/1560-
30 31	340		7917.ES2014.19.9.20728.
32 33 34	341	5.	Jereb JA. Progressing towards tuberculosis elimination in low-incidence areas of the United
35 36	342		States. Recommendations of the Advisory Council for the Elimination of Tuberculosis. MMWR
37 38	343		Recomm reports. 2002;51(RR-5):1-14.
39 40	344	6.	Borgdorff MW, van Soolingen D. The re-emergence of tuberculosis: What have we learnt from
41 42 43	345		molecular epidemiology? Clin Microbiol Infect. 2013;19(10):889-901. doi:10.1111/1469-
43 44 45	346		0691.12253.
46 47	347	7.	Alland D, Kalkut GE, Moss AR, et al. Transmission of tuberculosis in New York City. An analysis by
48 49	348		DNA fingerprinting and conventional epidemiologic methods. 1994;330(D):1710-1716.
50 51	349	8.	van Soolingen D, Borgdorff MW, de Haas PE, et al. Molecular epidemiology of tuberculosis in the
52 53 54	350		Netherlands: a nationwide study from 1993 through 1997. J Infect Dis. 1999;180:726-736.
55 56	351		doi:10.1086/314930.
57 58	352	9.	PM S, PC H, SP S, et al. The epidemiology of tuberculosis in San Francisco. A population-based
59 60			

1			
2			
3 4			
5 6	353		study using conventional and molecular methods. N Engl J Med. 1994.
7 8 9	354	10.	Hamblion EL, Le Menach A, Anderson LF, et al. Recent TB transmission, clustering and predictors
10 11	355		of large clusters in London, 2010-2012: Results from first 3-years of universal MIRU-VNTR strain
12 13	356		typing. <i>Thorax</i> . 2016;71(8):749-756. doi:10.1136/thoraxjnl-2014-206608.
14 15 16	357	11.	Driver CR, Macaraig M, McElroy PD, et al. Which patients' factors predict the rate of growth of
17 18	358		Mycobacterium tuberculosis clusters in an urban community? Am J Epidemiol. 2006;164(1):21-
19 20	359		31. doi:10.1093/aje/kwj153.
21 22 23	360	12.	Kik S V., Verver S, Van Soolingen D, et al. Tuberculosis outbreaks predicted by characteristics of
23 24 25	361		first patients in a DNA fingerprint cluster. Am J Respir Crit Care Med. 2008;178(1):96-104.
26 27	362		doi:10.1164/rccm.200708-1256°C.
28 29	363	13.	Althomsons SP, Kammerer JS, Shang N, Navin TR. Using Routinely Reported Tuberculosis
30 31 32	364		Genotyping and Surveillance Data to Predict Tuberculosis Outbreaks. PLoS One. 2012;7(11):1-8.
33 34	365		doi:10.1371/journal.pone.0048754.
35 36	366	14.	Ohkado A, Nagamine M, Murase Y, et al. Molecular epidemiology of Mycobacterium
37 38 30	367		tuberculosis in an urban area in Japan, 2002-2006. Int J Tuberc Lung Dis. 2008;12(5):548-554.
39 40 41	368	15.	Ohkado A, Murase Y, Mori M, et al. Transmission of specific genotype streptomycin resistant
42 43	369		strains of Mycobacterium tuberculosis in the Tokyo Metropolitan Area in Japan. BMC Infect Dis.
44 45	370		2009;9:138. doi:10.1186/1471-2334-9-138.
46 47 48	371	16.	Xu G, Mao X, Wang J, Pan H. Clustering and recent transmission of Mycobacterium tuberculosis
49 50	372		in a Chinese population. Infect Drug Resist. 2018;11:323-330.
51 52	373	17.	Yang C, Shen X, Peng Y, et al. Transmission of Mycobacterium tuberculosis in China: a
53 54	374		population-based molecular epidemiologic study. <i>Clin Infect Dis</i> . 2015;61(2):219-227.
55 56 57	375		doi:10.1093/cid/civ255.
58 59 60	376	18.	Mears J, Abubakar I, Cohen T, McHugh TD, Sonnenberg P. Effect of study design and setting on

1 2			
3 4 5			
6 7	377		tuberculosis clustering estimates using Mycobacterial Interspersed Repetitive Units-Variable
8 9	378		Number Tandem Repeats (MIRU-VNTR): A systematic review. BMJ Open. 2015;5(1).
10 11	379		doi:10.1136/bmjopen-2014-005636.
12 13	380	19.	Fok A, Numata Y, Schulzer M, FitzGerald MJ. Risk factors for clustering of tuberculosis cases: A
14 15 16	381		systematic review of population-based molecular epidemiology studies. Int J Tuberc Lung Dis.
10 17 18	382		2008;12(5):480-492.
19 20	383	20.	The Research Institute of Tuberculosis J. Statistics of TB 2016.
21 22	384		http://www.jata.or.jp/rit/ekigaku/en/statistics-of-tb/. Accessed June 20, 2018.
23 24 25	385	21.	Tuberculosis Surveillance Center. <i>Tuberculosis in Japan – Annual Report 2017</i> . Tokyo, Japan:
25 26 27	386		Department of Epidemiology and Clinical Research, the Research Institute of Tuberculosis; 2017.
28 29	387	22.	Shinjuku city. Description of Shinjuku.
30 31	388		http://www.foreign.city.shinjuku.lg.jp/en/aramashi/aramashi_1/. Accessed January 9, 2018.
32 33 34	389	23.	Shinjuku City. Tuberculosis Statistics in Shinjuku City 2017 [Japanese].; 2018.
34 35 36	390	24.	Van Embden JDA, Cave MD, Crawford JT, et al. Strain identification of Mycobacterium
37 38	391		tuberculosis by DNA fingerprinting: Recommendations for a standardized methodology. J Clin
39 40	392		Microbiol. 1993;31(2):406-409. doi:10.1128/JCM.39.4.1683.2001.
41 42	393	25.	Wada T, Maeda S, Hase A, Kobayashi K. Evaluation of variable numbers of tandem repeat as
43 44 45	394		molecular epidemiological markers of Mycobacterium tuberculosis in Japan. J Med Microbiol.
46 47	395		2007;56(8):1052-1057. doi:10.1099/jmm.0.46990-0.
48 49	396	26.	Ellis B a, Crawford JT, Braden CR, McNabb SJN, Moore M, Kammerer S. Molecular epidemiology
50 51	397		of tuberculosis in a sentinel surveillance population. Emerg Infect Dis. 2002;8(11):1197-1209.
52 53 54	398		doi:10.3201/eid0811.020403.
55 56	399	27.	Glynn JR, Crampin AC, Yates MD, et al. The Importance of Recent Infection with Mycobacterium
57 58	400		tuberculosis in an Area with High HIV Prevalence: A Long-Term Molecular Epidemiological Study
59 60			
			19

2 3 4			
5			
6 7	401		in Northern Malawi. <i>J Infect Dis</i> . 2005;192(3):480-487. doi:10.1086/431517.
8 9	402	28.	Izumi K, Ohkado A, Uchimura K, et al. Detection of tuberculosis infection hotspots using activity
10 11	403		spaces based spatial approach in an urban Tokyo, from 2003 to 2011. PLoS One. 2015;10(9):1-
12 13 14	404		16. doi:10.1371/journal.pone.0138831.
15 16	405	29.	Sandgren A, Schepisi MS, Sotgiu G, et al. Tuberculosis transmission between foreign- and native-
17 18	406		born populations in the EU/EEA: A systematic review. <i>Eur Respir J</i> . 2014;43(4):1159-1171.
19 20 21	407		doi:10.1183/09031936.00117213.
21 22 23	408	30.	MURASE Y, OHKADO A, WATANABE Y, et al. Transmission dynamics of mycobacterium
24 25	409		tuberculosis between foreign-nationals and Japanese tuberculosis patients living in Shinjuku-
26 27	410		City, Tokyo, Japan. <i>Kekkaku</i> . 2017;92(5):431-439.
28 29 30	411	31.	Murase Y, Izumi K, Ohkado A, et al. Prediction of local transmission of mycobacterium
31 32	412		tuberculosis isolates of a predominantly Beijing lineage by use of a variable-number tandem-
33 34	413		repeat typing method incorporating a consensus set of hypervariable loci. J Clin Microbiol.
35 36	414		2018;56(1):1-11. doi:10.1128/JCM.01016-17.
37 38 39	415	32.	Wada T, Iwamoto T, Tamaru A, et al. Clonality and micro-diversity of a nationwide spreading
40 41	416		genotype of Mycobacterium tuberculosis in Japan. <i>PLoS One</i> . 2015;10(3):1-13.
42 43	417		doi:10.1371/journal.pone.0118495.
44 45 46	418	33.	Murase Y, Mitarai S, Sugawara I, Kato S, Maeda S. Promising loci of variable numbers of tandem
40 47 48	419		repeats for typing Beijing family Mycobacterium tuberculosis. J Med Microbiol. 2008;57(7):873-
49 50	420		880. doi:10.1099/jmm.0.47564-0.
51 52	421	34.	Nikolayevskyy V, Kranzer K, Niemann S, Drobniewski F. Whole genome sequencing of
53 54	422		Mycobacterium tuberculosis for detection of recent transmission and tracing outbreaks : A
55 56 57	423		systematic review. <i>Tuberculosis</i> . 2016;98:77-85. doi:10.1016/j.tube.2016.02.009.
58 59 60	424	35.	Jajou R, Neeling A De, Hunen R Van, et al. Epidemiological links between tuberculosis cases

1		
2		
3 4		
5		
6 7	425	identified twice as efficiently by whole genome sequencing than conventional molecular typing :
8 9 10	426	A population-based study. PLoS One. 2018;13(4):e0195413.
10 11 12	427	
13 14 15 16 17 18 19 20 21	428	
21 22 23 24		
25 26 27		
28		
29 30		
31		
32 33		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
43 44		
45		
46 47		
48		
49 50		
50		
52		
53 54		
55		
56 57		
57 58		
59		
60		
		21

TABLE

430 Table 1. Study variables and definitions

Category	Variables	Definition
Demographic factors	Sex	Men or women
	Age	Age at registration (≥40 or <40 years)
	Country of birth	Japan-born or foreign-born persons
Control for the sec	Occupation	Fulltime, part-time/daily worker, jobless under 60 year of a
Social factors		others (including infant, student, housewife, retired, and unk
	Receipt of public assistance	Those who were receiving government welfare benefits du
		household income that is below the minimum cost of liv
		registration
	Homeless status	Those whose legal address was unknown or unstable durin
		previous two or more years prior to registration
	Alcohol misuse	Those who tend to drink excessively, as judged by the public
		nurses
Clinical factors	Site of disease	Those who have pulmonary or extra pulmonary disease
	Cavity lesions	Those who have cavity lesions in lung field on chest radiograp
	C	Those who exhibit positive or negative results in the sputum
	Sputum smear microscopy	microscopy test
	Past TB history	Those with a history of past TB treatment
	Status of diabetes mellitus	Those with diabetes mellitus, as self-reported by the patient
Others		Those who were identified through active case finding condu
LITDORC	Mode of detection	

2 3 4			
5 6 7			A time between the onset of symptoms and the initial doctor visit
8 9		Status of patient delay	longer than two months
10 11 12		Status of doctor delay	A time between the initial doctor visit and diagnosis longer than
13 14			one month
15 16 17		Status of total delay	A time between the onset of symptoms and TB diagnosis longer
17 18 19			than three months
20 21 22		Registration interval	The duration in months between the registration dates of the first two cases in each of the genotype clusters
23 24	431	Ó	
25 26 27	432		
28 29	433		
30 31 32			
33 34			
35 36 37			
38 39			
40 41 42			
43 44			
45 46			
47 48 49			
50 51			
52 53 54			
55 56			
57 58			
59 60			23

434 Table 2. Factors associated with TB genotype clustering; univariable logistic regression analysis, RFLP,

435 Shinjuku, Tokyo, Japan, 2002–2013

	Total number of	Clustered		OR	(95% CI)	p-value
	cases (N=1025),	cases				
	n	(N=515),				
		n (%)				
Age (years)	1025					
≥40	754	371	(49.2)	Reference		
<40	271	144	(53.1)	1.17	(0.88-1.56)	0.267
Sex	1025					
Female	248	102	(41.1)	Reference		
Male	777	413	(53.2)	1.62	(1.20-2.19)	0.001**
Country of birth	1025					
Foreign	95	22	(23.2)	Reference		
Japan	930	493	(53.0)	3.74	(2.25-6.44)	<0.001*
Occupation	1025					
Fulltime worker	313	165	(52.7)	1.53	(1.15-2.05)	0.004**
Part-time/daily	96	60	(62.5)	2.29	(1.45-3.61)	<0.001*
worker						
Jobless (aged 15-59	172	103	(59.9)	2.05	(1.43-2.94)	<0.001*
years)						
Others [†]	444	187	(42.1)	Reference		
Public assistance [‡]	1024					
No	720	319	(44.3)	Reference		

Page 25 of 37

BMJ Open

Yes	304	195	(64.1)	2.25	(1.69-3.00)	<0.00
Homelessness	1025					
No	776	349	(45.0)	Reference		
Yes	249	166	(66.7)	2.45	(1.80-3.34)	<0.00
Alcohol misuse§	1025					
No	761	367	(48.2)	Reference		
Yes	264	148	(56.1)	1.37	(1.02-1.83)	0.028
TB site	1024					
Extrapulmonary	80	32	(40.0)	Reference		
Pulmonary	944	482	(51.1)	1.56	(0.96-2.58)	0.058
Cavity lesions	1023					
No	565	271	(48.0)	Reference		
Yes	458	243	(53.1)	1.23	(0.95-1.58)	0.105
Smear results	1024					
Negative	406	192	(47.3)	Reference		
Positive	618	322	(52.1)	1.21	(0.94-1.57)	0.132
Past TB history	989					
New	880	441	(50.1)	Reference		
Retreatment	109	59	(54.1)	1.17	(0.77-1.79)	0.429
DM	1005					
No	832	421	(50.6)	Reference		
Yes	173	86	(49.7)	0.97	(0.69-1.36)	0.831
Active case finding	1025					
No	842	412	(48.9)	Reference		

2 3 4								
5 6 7	Y	′es	183	103	(56.3)	1.34	(0.96-1.88)	0.071
, 8 9	Pati	ent delay	1000					
10 11	<	2 m	773	377	(48.8)	Reference		
12 13	≥	2 m	227	127	(55.9)	1.33	(0.98-1.82)	0.057
14 15 16	Doc	tor delay	1018					
17 18	<	:1 m	799	415	(51.9)	Reference		
19 20	≥	1 m	219	97	(44.3)	0.74	(0.54-1.00)	0.045*
21 22	Tota	al delay	997					
23 24 25	<	3 m	777	382	(49.2)	Reference		
26 27	≥	3 m	220	122	(55.5)	1.29	(0.94-1.76)	0.099
28 29	436	RFLP: restriction fr	agment length polymo	orphism,	OR: odds	s ratio, CI: co	nfidence interva	al, TB:
30 31	437	tuberculosis, DM: di	abetes mellitus, *p<0.05	5, **p<0.0	01, ***p<	0.001		
32 33 34	438	[†] Others includes infa	ant, student, housewife,	retired, a	ind unkno	own, and this po	opulation is cons	idered
35 36	439	to be as a low risk o	f infection.					
37 38	440	[‡] Public assistance r	efers to government w	velfare b	enefits d	ue to househo	old income belo	w the
39 40	441	minimum cost of livi	ing.					
41 42 43	442	§Alcohol misuse refe	ers to excessive drinking	g, as judg	ed by the	public health	nurses conducti	ng the
43 44 45	443	interviews.						
46 47	444							
48 49	445							
50 51 52								
53 54								
55 56								
57 58								
59 60								

1 2	
2 3	
-	
4 5	
6	
7	
8	
9	
10	
11	
11 12 13 14 15 16 17	
13 14 15 16 17	
14	
15	
10	
17	
19	
20	
20 21 22 23 24 25 26 27 28 29	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31 32	
32 33	
34	
34 35 36 37	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45 46	
46 47	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59 60	
60	

446 Table 3. Factors associated with TB genotype clustering; multivariate logistic regression analysis,

447 RFLP, Shinjuku, Tokyo, Japan, 2002–2013

Variables		aOR	(95% CI)	p-valu
Age (years)	≥40	Reference		
	<40	1.73	(1.23-2.44)	0.002**
Country of birth	Foreign	Reference		
	Japan	3.90	(2.27-6.72)	<0.001**
Occupation	Fulltime worker	1.63	(1.17-2.27)	0.004**
	Part-time/daily worker	2.20	(1.35-3.58)	0.002**
	Jobless (aged 15-59 years)	1.32	(0.88-1.97)	0.180
	Others [†]	Reference		
Public assistance [‡]	No	Reference		
	Yes	1.81	(1.15-2.84)	0.011*
Homeless	No	Reference		
	Yes	1.63	(1.02-2.62)	0.042*
Alcohol misuse§	No	Reference		
	Yes	1.29	(0.79-2.11)	0.311
Active case finding	No	Reference		
	Yes	1.39	(0.98-1.99)	0.066

448 RFLP: restriction fragment length polymorphism, aOR: adjusted odds ratio, CI: confidence interval,

449 *p<0.05, **p<0.01, ***p<0.001

450 [†]Others includes infant, student, housewife, retired, and unknown.

451 [‡]Public assistance refers to government welfare benefits due to a household income below the
452 minimum cost of living.

1 2 3		
4 5		
5 6 7	453	§Alcohol misuse refer to excessive drinking, as judged by the public health nurses conducting the
8 9	454	interviews.
10 11 12 13 14 15	455	
16 17 18 19 20 21		
22 23 24 25 26		
27 28 29 30 31		
32 33 34 35		
36 37 38 39		
40 41 42 43 44		
44 45 46 47 48		
49 50 51 52		
53 54 55		
56 57 58 59		
60		20

456 Table 4. Factors associated with large genotype clusters within three years using the characteristics

457 of the first two cases in each TB genotype cluster; univariable logistic regression, RFLP, Shinjuku,

458 Tokyo, Japan, 2003–2013 (N=104 cluster episodes)

		clusters	Small clusters		Univaria	te logistic regre	ession
	Large		and	large			
Variable	within 3 years (N=14), n (%) [†]		clusters after 3 years (N=90), n (%) [‡]		OR	(95% CI)	p Value
Sex							
No male patients	1	(7.1)	4	(4.4)	Ref		
≥One male patient	13	(92.9)	86	(95.6)	0.60	(0.06-5.84)	0.664
Age							
No patients <40 years of age	8	(57.1)	57	(63.3)	Ref		
At least one patient <40 years of age	6	(42.9)	33	(36.7)	1.30	(0.41-4.06)	0.657
Japanese							
No Japan-born patients	0	(0.0)	2	(2.2)	Ref		
≥One Japan-born patient	14	(100.0)	88	(97.8)	NA		
Full- and part-time/daily workers							
No patients with full- and part-time/daily	6	(42.9)	35	(38.9)	Ref		
employment							
≥One patient with full- and part-time/daily	8	(57.1)	55	(61.1)	0.85	(0.27-2.65)	0.778
employment							
Public assistance							
No patient receiving public assistance	5	(35.7)	41	(45.6)	Ref		

1
2
3
4 5
5 6
0
7 8
o 9
) 10
11
12
13
14
15
16
16 17
18
19
20
21
22
23
24
25
26
27
28
29
30 31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 52
52 53
53 54
54 55
55 56
50 57
58
59
60

1

≥One patient receiving public assistance	9	(64.3)	49	(54.4)	1.51	(0.47-4.85)	0.492
Homeless							
No patient who is currently homeless	6	(42.9)	45	(50.0)	Ref		
≥One patient who is currently homeless	8	(57.1)	45	(50.0)	1.33	(0.43-4.15)	0.62
Alcohol misuse							
No patient who misuses alcohol	5	(35.7)	48	(53.3)	Ref		
≥One patient who misuses alcohol	9	(64.3)	42	(46.7)	2.06	(0.64-6.62)	0.22
Cavity lesions							
No patients with a cavity	2	(14.3)	24	(26.7)	Ref		
≥One patient with a cavity	12	(85.7)	66	(73.3)	2.18	(0.45-10.47)	0.33
Smear results							
No patient with a positive smear	1	(7.1)	12	(13.3)	Ref		
≥One patient with a positive smear	13	(92.9)	• 78	(86.7)	2.00	(0.24-16.71)	0.52
Past TB history							
No patient with a past history of TB	11	(78.6)	69	(76.7)	Ref		
≥One patient with a past history of TB	3	(21.4)	21	(23.3)	0.90	(0.23-3.52)	0.87
DM							
No patient with DM	9	(64.3)	57	(63.3)	Ref		
≥One patient with DM	5	(35.7)	33	(36.7)	0.96	(0.30-3.11)	0.94
Active case finding							
No patient identified through active case finding	8	(57.1)	53	(58.9)	Ref		
≥One patient identified through active case	6	(42.9)	37	(41.1)	1.07	(0.34-3.35)	0.90
finding							
Patient delay							

.

3
4
5
6 7
7
8
9
10
11
12
13
14
13 14 15 16 17 18
17
18
19
20
21
20 21 22
13
24 25
25
26 27
27
29
30
31
32
33
34
35
36 37
37
38 39
39 40
40 41
42
43
44
45
46
47
48
49
50
51
52
53 54
54 55
56
50 57
58
59
60

No case with patient delay	9	(64.3)	55	(61.1)	Ref		
≥One case with patient delay	5	(35.7)	35	(38.9)	0.87	(0.27-2.82)	0.820
Doctors delay							
No case with doctor delay	10	(71.4)	57	(63.3)	Ref		
≥One case with doctor delay	4	(28.6)	33	(36.7)	0.69	(0.20-2.38)	0.558
Total delay							
No case with total delay	10	(71.4)	53	(58.9)	Ref		
≥One case with total delay	4	(28.6)	37	(41.1)	0.57	(0.17-1.97)	0.376
Registration interval							
0-2 months between first two cases	7	(50.0)	13	(14.4)	9.51	(2.16-41.89)	0.003**
3-5 months between first two cases	2	(14.3)	5	(5.6)	7.07	(0.95-52.77)	0.057
6-11 months between first two cases	2	(14.3)	19	(21.1)	1.86	(0.29-12.00)	0.514
≥12 months between first two cases	3	(21.4)	53	(58.9)	Ref		
59 Note. After the variables for multivariate	logistic	regression w	ere se	lected usir	ng the step	wise method,	
60 only the "registration interval" variable re	emained	d in the mode	el. Thu	s, the table	e shows on	ly the results	
61 of the univariate logistic regression.							
169 DELD, restriction fragment length nelw	marnhia		c ro+:	0 00Rt 0	diucted ed	de ratio Cla	

462 RFLP: restriction fragment length polymorphism, OR: odds ratio, aOR: adjusted odds ratio, CI:
463 confidence interval, TB: tuberculosis, DM: diabetes mellitus, Ref: reference, NA: not applicable,

464 *p<0.05, **p<0.01

465 ⁺"Large clusters within three years" refers to cluster episodes with five or more cases (large clusters)

466 within three years.

469

467 [‡]"Small clusters and large clusters after three years" refers to cluster episodes with two to four cases

468 (small clusters) and cluster episodes that became large clusters after three years.

2	
3	
4	
5	
6	
7	
8	
9 10	
10 11	
12	
13	
14	
12 13 14 15 16 17	
16	
17	
18	
19 20	
20	
22	
23	
24	
25	
26	
27 28	
28 29	
30	
31	
32	
33	
34 25	
35 36	
37	
38	
39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49	
50	
51 52	
52 53	
55	
55	
56	
57	
58	

470

to beet terien only

2 3		
4 5		
5 6 7	471	Figure legends
8 9	472	
10 11 12	473	Figure 1. Number of reported cases of TB, including culture-positive cases, strain-typed cases and
12 13 14	474	genotype clusters, in Shinjuku during 2002–2013
15 16	475	RFLP: restriction fragment length polymorphism, TB: tuberculosis
17 18	476	
19 20	477	Figure 2. Cumulative clustering rate (RFLP, Shinjuku 2002–2013)
21 22 23	478	RFLP: restriction fragment length polymorphism
	479	RFLP: restriction fragment length polymorphism

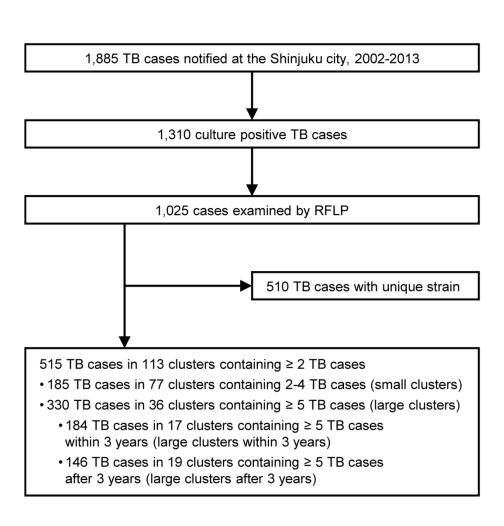
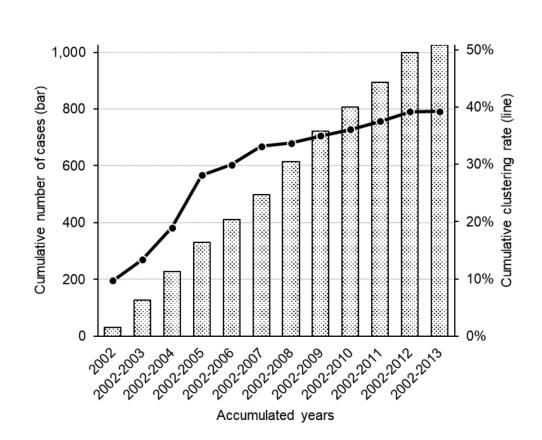
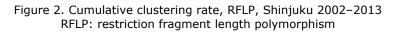




Figure 1. Number of reported cases of TB, including culture-positive cases, strain-typed cases and genotype clusters, Shinjuku, 2002–2013 RFLP: restriction fragment length polymorphism, TB: tuberculosis

90x90mm (600 x 600 DPI)

90x90mm (600 x 600 DPI)

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was advection (b)	3
Introduction		2011	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods		D A de	
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Table 1
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	6 *We took all eligible study participants in Shinjuku city.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Table 1
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	7-8
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed	8
		(d) If applicable, describe analytical methods taking account of sampling strategy	Not Applicable

36/bmjopen-20°

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

36/bmjopen-2

ight.

		(e) Describe any sensitivity analyses	Not Applicable
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine \ddot{b} for eligibility,	8-9
		confirmed eligible, included in the study, completing follow-up, and analysed	Figure 1
		(b) Give reasons for non-participation at each stage	8-9
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Table 1
		(b) Indicate number of participants with missing data for each variable of interest	N in tables
Outcome data	15*	Report numbers of outcome events or summary measures	Tables, 9-10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision $\ddot{\Xi}$ (eg, 95% confidence	Tables
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Tables
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not Applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Table 4
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of a palyses, results from similar studies, and other relevant evidence	11-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	11-14
Other information		24 5	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	4

Transmission of tuberculosis and predictors of large clusters within three years in an urban setting in Tokyo, Japan: a population-based molecular epidemiological study

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-029295.R2
Article Type:	Research
Date Submitted by the Author:	04-Apr-2019
Complete List of Authors:	Izumi, Kiyohiko; The Research Institute of Tuberculosis, Murase, Yoshiro; The Research Institute of Tuberculosis Uchimura, Kazuhiro; The Research Institute of Tuberculosis Kaebeta, Aya; Shinjuku Public Health Center Ishihara, Keiko; Shinjuku Public Health Center Kaguraoka, Sumi; Shinjuku Public Health Center Takii, Takemasa; The Research Institute of Tuberculosis Ohkado, Akihiro; The Research Institute of Tuberculosis
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Epidemiology, Public health
Keywords:	RFLP, clustering rate, homeless, foreign-born

BMJ Open

1		
2		
3		
4		
5		
6	1	Title
7		
8	2	Transmission of tuberculosis and predictors of large clusters within three years in an urban setting in
9		
10 11	3	Tokyo, Japan: a population-based molecular epidemiological study
12		
13	4	
14		
15	5	Authors and affiliations
16	0	
17	6	1. Kiyohiko Izumi. Department of Epidemiology and Clinical Research, The Research Institute of
18	0	1. Rivoliko izulili. Department of Epidemiology and clinical Research, the Research institute of
19	7	Tubergularis Japan Anti Tubergularis Association Talua Japan Empily kinymi05@gmail.com
20	7	Tuberculosis, Japan Anti- Tuberculosis Association, Tokyo, Japan. Email: kizumi95@gmail.com
21	0	2. Visiting Manage Developed of Manahastation Defension and Developed The Developed
22	8	2. Yoshiro Murase. Department of Mycobacterium Reference and Research, The Research
23 24	0	
24 25	9	Institute of Tuberculosis, Japan Anti- Tuberculosis Association, Tokyo, Japan. Email:
26		
27	10	ymurase@jata.or.jp
28		
29	11	3. Kazuhiro Uchimura. Department of Epidemiology and Clinical Research, The Research Institute
30		
31	12	of Tuberculosis, Japan Anti- Tuberculosis Association, Tokyo, Japan. Email: <u>uchimura@jata.or.jp</u>
32		
33	13	4. Aya Kaebeta. Shinjuku Public Health Center. Email: aya.kaebeta@city.shinjuku.lg.jp
34		
35	14	5. Keiko Ishihara. Shinjuku Public Health Center. Email: keiko.ishihara@city.shinjuku.lg.jp
36		
37 38	15	6. Sumi Kaguraoka. Shinjuku Public Health Center. Email: sumi.kaguraoka@city.shinjuku.lg.jp
30 39		
40	16	7. Takemasa Takii. The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association,
41		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
42	17	Tokyo, Japan. Email: t-takii@jata.or.jp
43	11	
44	18	8. Akihiro Ohkado. Department of Epidemiology and Clinical Research, The Research Institute of
45	10	8. Akining Onkado. Department of Epidemiology and clinical Research, the Research institute of
46	19	Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan. Graduate School of Biomedical
47	19	Tuber culosis, Japan Anti-Tuber culosis Association, Tokyo, Japan. Graduate School of Biomedical
48	20	Colonada Nacadali University Encolly able das Olata ar in
49	20	Sciences, Nagasaki University. Email: ohkadoa@jata.or.jp
50	01	
51 52	21	
53	22	
55	22	Corresponding Author
55	-	
56	23	Kiyohiko Izumi
57		
58	24	Department of Epidemiology and Clinical Research, Research Institute of Tuberculosis, Japan Anti-
59		
60		
		1

rg rate, homel

Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, JAPAN

KEY WORDS: RFLP, clustering rate, homeless, foreign-born

Tel: ±81-42-4935711

Fax: +81-42-492-4600

Email: kizumi95@gmail.com

25
26
27
28
29
30
31
32

BMJ Open

2 3		
4		
5 6 7	33	ABSTRACT
8 9	34	Objective: Molecular epidemiology is a promising tool for understanding tuberculosis transmission
10 11	35	dynamics but has not been sufficiently utilized in Asian countries including Japan. The aim of this
12 13	36	study was to estimate the proportion of TB cases attributable to recent transmission and to identify
14 15 16	37	risk factors of genotype clustering and the development of large clusters within three years in an
17 18	38	urban setting in Japan.
19 20	39	Design and setting: Long-term cross-sectional observational study combining the characteristics of
21 22	40	culture-positive TB patients notified in Shinjuku City, Tokyo (2002-2013), with genotype data of
23 24 25	41	Mycobacterium tuberculosis.
26 27	42	Primary outcome measure: Genotype clustering rate and association between genotype clustering
28 29	43	status and explanatory variables.
30 31	44	Results: Among 1,025 cases, 515 were localized within 113 genotype clusters. The overall clustering
32 33 34	45	rate was 39.2%. Significantly higher rates were found in patients aged <40 years (adjusted odds ratio
35 36	46	(aOR)=1.73, 95% CI=1.23-2.44), native Japanese individuals (aOR=3.90, 95% CI=2.27-6.72), fulltime
37 38	47	workers (aOR=1.63, 95% CI=1.17-2.27), part-time/daily workers (aOR=2.20, 95% CI=1.35-3.58),
39 40	48	individuals receiving public assistance (aOR=1.81, 95% CI=1.15-2.84), and homeless people
41 42 43	49	(aOR=1.63, 95% CI=1.02-2.62). A significant predictor of large genotype clusters within three years
43 44 45	50	was a registration interval \leq 2 months between the first two cases in a cluster.
46 47	51	Conclusion: Our results indicated that a large proportion of culture-positive TB patients were
48 49	52	involved in the recent TB transmission chain. Foreign-born persons still have a limited impact on
50 51 52	53	transmission in the Japanese urban setting. Intensified public health interventions, including the
52 53 54	54	active case finding, need to focus on individuals with socioeconomic risk factors that are significantly
55 56	55	associated with tuberculosis transmission and clusters with shorter registration intervals between
57 58 59 60	56	the first two cases.

57 Word Count in Abstract= 260 words

to peet teries only

BMJ Open

2 3		
4		
5		
6 7	59	Article Summary
8 9	60	Strengths and limitations of this study
10 11 12	61	• This study is one of the longest population-based studies focusing on the molecular
12 13 14	62	epidemiology of culture-positive notified tuberculosis patients in a large Asian urban setting.
15 16	63	• Interviews conducted by the experienced public health nurses at the Public Health Center using
17 18	64	a standardized questionnaire provided high-quality data and less interviewer bias.
19 20 21	65	• We may have underestimated genotype clustering due to the large population flow in and out
22 23	66	of the city.
24 25	67	
26 27	68	Funding statement
28 29 30	69	This research was supported by the Research Program on Emerging and Re-emerging Infectious
31 32	70	Diseases from the Japan Agency for Medical Research and Development (AMED No. JP18fk0108041).
33 34	71	
35 36 37	72	Competing interests: None declared.
37 38 39	73	
40 41	74	Patient consent: Not required.
42 43 44	75	
45 46	76	Data sharing statement: Due to data restrictions, we are unable to share any aspect of the data.
47 48	77	
49 50	78	Word count: 2,774 words
51 52 53 54 55	79	
56 57		
58 59 60		
-		_

80	INTRODUCTION
----	--------------

Tuberculosis (TB) remains a major public health threat worldwide. In 2017, an estimated 10 million people worldwide developed TB, and 1.27 million died from TB¹. Although the majority of cases have been reported in countries with a high TB burden, TB remains a persistent health problem in low-and medium-burden countries because it is concentrated in specific vulnerable and hard-to-reach populations, such as homeless people and foreign-born persons from TB high-burden countries². These specific high-risk populations tend to live in large cities where they are seeking jobs, which potentially poses challenges to the control of TB in urban areas^{3,4}. Many countries with a low or medium TB burden have recently adopted TB elimination strategies^{2,5}, which emphasizes the importance of molecular epidemiology in TB control, particularly in urban areas^{2,4}.

TB molecular genotyping using restriction fragment length polymorphisms (RFLPs) and, more recently, variable numbers of tandem repeats (VNTRs) combined with epidemiological information identifies TB cases that are likely involved in the same transmission chain⁶. This method differentiates recent transmission or endogenous reactivation from remote infection and has therefore revealed that a substantial proportion of TB cases are due to recent transmission in low-TB-burden countries⁷⁻ ⁹. This method also identifies the proportion of cases attributable to recent transmission and determines the risk factors for transmission. Moreover, various factors predicting large TB genotype clusters, including socially vulnerable populations and shorter intervals between the registration dates of the first two cases, have been investigated by evaluating the characteristics of the first two cases in the same genotype cluster^{10–13}. These population-based molecular epidemiological studies were conducted in some European countries^{8,10,12}, the U.S.^{7,9,11} and some Asian countries^{14–19}.

In Japan, a country with a medium TB burden, the number of newly notified TB cases decreased from

BMJ Open

32,828 (25.8 per 100,000 populations) in 2002 to 17,625 (13.9 per 100,000 populations) in 2016²⁰, but the central government has constantly been reported of TB outbreaks by local governments at a rate of approximately 40 events annually over the last decade. This information suggests that TB transmission might be occurring in some groups, such as homeless people, who constitute a high-risk group for recent TB transmission in urban areas¹⁴. Considering the steady increase in the proportion of TB cases among foreign-born individuals in Japan (7.9% of all cases in 2016²¹), transmission between foreign-born persons and local residents must be monitored. In addition, in light of Japan's transition toward becoming a low-TB-burden country, understanding TB transmission patterns has become increasingly important. However, few population-based molecular epidemiological studies have identified the transmission patterns in Japan and their risk factors. Additionally, no study has attempted to evaluate the factors predicting the development of large clusters in Japan. Therefore, we aimed to estimate the proportion of TB cases attributable to recent transmission, to identify the risk factors for recent transmission, and to predict the risk factors for the development of large clusters in an urban setting.

2 120

METHODS

122 Study population

We included all culture-positive TB patients notified in Shinjuku City from September 2002 to December 2013 as the eligible study population in this cross-sectional observational study. This study forms part of a population-based study on DNA fingerprinting surveillance of *M. tuberculosis* in Shinjuku City that was started in 2002. Shinjuku City (18.3 km²) is one of the most populous (342,867 residents in 2018²²) cities in Tokyo, and its TB notification rate in 2016 was 33.7 per 100,000 people²³,

which was higher than the rates in Tokyo and the nation (17.2 and 13.9, respectively²⁰). Experienced public health nurses at the Shinjuku Public Health Center (PHC) interviewed and collected information from all culture-positive TB patients at the time of registration using a standardized questionnaire to avoid possible interviewer bias. The study variables and definitions are described in Table 1. Patient and public involvement Neither the patients nor the public were involved in the design of this study. DNA fingerprinting and genotype cluster Clinical isolates from each of the enrolled TB patients were sent to the Research Institute of Tuberculosis (RIT), Tokyo, where the TB strains were subjected to DNA fingerprinting using insertion sequence 6110 by RFLP (IS6110-RFLP) analysis²⁴. One clinical isolate per person was used for the clustering analysis. IS6110-RFLP and spoligotyping are the standard methods used in the Shinjuku PHC and were available throughout the study period. The Shinjuku PHC switched from RFLP to VNTR a few years ago, but the RFLP profiles of many TB cases were available. Thus, we employed RFLP due to the sufficient sample size. A genotype cluster was defined as a group of TB patients whose isolates showed either (1) ≥ 6 identical IS6110 band patterns or (2) <6 identical IS6110 band patterns confirmed by identical spoligotyping patterns. The data collection and genotyping methods were previously described in detail¹⁴. Data analysis We calculated the genotype clustering rate by the "n-1 method" according to the formula $\{(n - c)/N\}$, where N is the total number of cases sampled, c is the number of clusters, and n is the total number

BMJ Open

of cases in the clusters⁹. We also calculated the cumulative clustering rate by calculating the clustering rate in 2002 and then adding the TB patients every year up to 2013. The characteristics of clustered cases, which were the cases belonging to any genotype clusters, were compared with those with unique strain patterns through χ^2 tests. We performed univariate logistic regression to identify risk factors for genotype clustering using odds ratios (ORs) and multivariate logistic regression using adjusted ORs (aORs). Any potential interactions were assessed using likelihood ratio tests.

Additionally, we compared the characteristics of the first two cases in each genotype cluster to identify risk factors for the development of a large cluster within three years. For this purpose, a cluster episode was defined as a newly arising genotype cluster in or after 2003 without any TB cases of that genotype notified prior to that year. We classified cluster episodes into the following two groups according to a system developed in a previous study¹⁰: (1) "large clusters within three years" were cluster episodes with five or more cases (large clusters) occurring within three years and (2) "small clusters and large clusters after three years" were cluster episodes with two to four cases (small clusters) and cluster episodes that became large clusters after three years. We identified the first two cases in each cluster episode based on the notification date and compared their characteristics between these two groups. We performed univariate and multivariate logistic regression analyses to identify predictors of the development of large clusters within three years.

A p-value of 0.05 was set as the level indicating statistical significance. For variables with more than 5% missing values, the multiple imputation method was considered. The variables used for multivariate logistic regressions were selected by the stepwise maximum-likelihood estimation with a significance level of less than 0.2. We used Stata version 12 (Stata Corp., College Station, TX, USA) for the statistical analyses. Written informed consent was waived because DNA fingerprinting

analysis forms part of the routine TB control activities in Shinjuku City. However, oral informed consent was obtained after the PHC staff provided a thorough explanation of the study objectives and confidentiality. The study protocol was approved by the Institutional Review Board of the Research Institute of Tuberculosis (RIT/IRB27-9).

 181 RESULTS

182 Study population and clustering rate

In total, 1,885 TB patients in Shinjuku City were notified during the study period, and 1,310 were culture-positive cases (Figure 1). Of these, 285 patients were excluded from the analysis, mainly due to the unavailability of culture-positive isolates and the lack of implementation of RFLP. As a result, 1,025 (78.2%) patients were included in the analysis. Figure 2 shows the cumulative number of TB patients and the clustering rates from 2002 to 2013. The number of TB cases gradually increased over the tested decade. In contrast, the cumulative clustering rates sharply increased in the first four years, from 10% in 2002 to 28% in 2005, with an average percent change of +43%, and then continued to increase at a slower rate, from 30% in 2006 to 39% in 2013, with an average percent change of +4.2%.

We identified a total of 113 genotype clusters consisting of 515 patients (Figure 1). The genotype clustering rate was 39.2%, and the average cluster size was 4.56 cases (range 2-30). Fifty-seven (50.4%) genotype clusters consisted of only two TB patients, and 36 (31.9%) genotype clusters had at least five TB patients. We further investigated the homelessness status and place of birth of the patients in the genotype clusters. Of the 113 genotype clusters, 45 (39.8%) comprised only nonhomeless individuals, seven (6.2%) included only homeless individuals, and 61 (54.0%) contained both homeless and nonhomeless individuals (mixed cluster). We compared the characteristics of the

Page 11 of 37

BMJ Open

nonhomeless patients in the clusters of only nonhomeless patients with those in the mixed clusters, and although the finding was not statistically significant (Pearson χ^2 test, p=0.17), the proportion of nonhomeless patients receiving public assistance in the latter group (13.8%) was higher than that in the former group (8.8%). No differences in sex, age, and place of birth were found between the two groups. Of the 113 genotype clusters, 94 (83.2%) consisted of only individuals born in Japan, two (1.8%) consisted of only foreign-born individuals, and 17 (15.0%) consisted of both individuals born in Japan and foreign-born individuals.

Factors associated with genotype clustering

The clustered cases were significantly more likely to consist of male individuals (OR=1.62, 95% CI=1.20-2.19), Japan-born individuals (OR=3.74, 95% CI=2.25-6.44), individuals receiving public assistance (OR=2.25, 95% CI=1.69-3.00), homeless individuals (OR=2.45, 95% CI=1.80-3.34), individuals who misuse alcohol (OR=1.37, 95% CI=1.02-1.83), individuals engaging in fulltime work (OR=1.53, 95% CI=1.15-2.05) and part-time/daily work (OR=2.29, 95% CI=1.45-3.61), and jobless individuals aged 15-59 years (OR=2.05, 95% CI=1.43-2.94) (Table 2). A significant interaction among the explanatory variables was not detected. The multivariate analysis demonstrated that the factors associated with genotype clustering were age <40 years (aOR=1.73, 95% CI=1.23-2.44), born in Japan (aOR=3.90, 95% CI=2.27-6.72), working fulltime (aOR=1.63, 95% CI=1.17-2.27), having part-time/daily work (aOR=2.20, 95% CI=1.35-3.58), receiving public assistance (aOR=1.81, 95% CI=1.15-2.84), and homelessness (aOR=1.63, 95% CI=1.02-2.62)(Table 3).

Factors associated with large genotype clustering within three years

We identified 104 genotype cluster episodes according to the definition. Of these, 14 were "large clusters within three years", which was equivalent to 13.5% (14/104) of all the genotype clusters and

48.3% (14/29) of the large genotype clusters, and 90 clusters were "small clusters and large clusters
after three years". The univariate analysis indicated that clusters with registration intervals of 0-2
months were 9.51 times more likely to become large genotype clusters within three years compared
with clusters with registration intervals of ≥12 months (Table 4). After selecting variables using the
stepwise method, only the "registration interval" variable remained for the multivariate model.

DISCUSSION

In this long-term population-based study, we included 1,025 patients, identified a total of 113 genotype clusters, and obtained a genotype clustering rate of 39.2%. Our results indicated that the clustered cases were more likely to have certain socioeconomic predictive factors, namely, being homeless, receiving public assistance, and having an unstable job, at the time of tuberculosis diagnosis. A shorter registration interval between the first two cases was a statistically significant predictor of the development of a large genotype cluster within three years.

238 Clustering rate

We identified 515 genotype clustered cases and estimated a clustering rate of 39.2%. The rate was the same as the pooled clustering rate (40.9%) obtained in a previous meta-analysis of populationbased studies of countries with a low TB incidence¹⁹ but differed from previous estimates obtained in Japanese studies, which were 27.6% in Shinjuku and 24.6% in Osaka^{14,25}. Because the meta-regression analysis clarified that longer study durations are associated with an increased clustering rate¹⁹, this difference could be due to shorter study durations combined with the smaller sample sizes of the previous studies (388 patients in five years and 195 patients in one year, respectively). In our study, as expected, the cumulative clustering rate rapidly increased in the first four years and increased more slowly thereafter, which is similar to the trend observed in the previous studies^{26,27}.

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11 12	
12	
14	
15	
16	
12 13 14 15 16 17	
18	
19	
20	
21 22	
22	
24	
25	
26	
27	
28	
29	
30 31 32 33 34	
32	
33	
34	
35	
36	
37 38	
30 39	
40	
41	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

249 Factors associated with genotype clustering

250Our results indicated that the clustered cases were more likely to have socioeconomic predictive 251factors, namely, being homeless, receiving public assistance, and having an unstable job, at the time 252of TB diagnosis. Similarly, previous studies suggested that being homeless significantly contributed 253to clustering in Shinjuku City¹⁴ and other counties¹⁹. In our study, more than half of the genotype 254clusters were mixtures of nonhomeless and homeless patients. Moreover, the nonhomeless patients 255in the mixed clusters tended to be financially unstable, and a higher proportion of these patients 256were receiving public assistance compared with the proportion among clusters of only nonhomeless 257cases, which could imply that relatively poor nonhomeless patients share activity spaces with 258homeless patients, such as urban areas around the large train stations that were reported to be 259significant hotspots for homeless patients in Shinjuku City²⁸. These findings could suggest that 260contact investigations of homeless TB patients need to be actively expanded to possible contact 261persons who are not homeless, particularly those who are facing financial difficulty.

262

263A meta-analysis based on studies conducted in European countries where foreign-born patients 264substantially contribute to TB epidemiology found that the proportion of mixed clusters composed 265of native and foreign-born patients ranged from 0% to 36.5% and concluded that foreign-born 266patients did not have a significant influence on TB in the native population²⁹. In our study, the 267proportion of mixed clusters (15.0%) fell into this range. Thus, the impact of TB transmission between 268native and foreign-born populations likely remains limited in this urban setting³⁰. However, 269considering the recent increase in immigrant TB patients in urban cities, TB transmission between 270native and foreign-born populations needs to be closely monitored.

272 Factors associated with large genotype clustering within three years

A shorter registration interval (≤ 2 months) was identified as a significant predictor of the development of a large genotype cluster within three years, which is compatible with findings of previous studies conducted in the Netherlands and London^{10,12}. Therefore, when TB patients with identical genotypes have shorter registration intervals, a thorough active case findings need to be performed to investigate the potential infection sources and infected patients in order to prevent further transmission. However, it is difficult to assume that the first patient infected the second patient because a window of two months appears too short. Thus, we believe that a true but unidentified first TB case was not identified in our study. A cluster episode was defined as a cluster without any TB patients in 2002 and at least two patients with identical genotypes in and after 2003. Therefore, a possible true first TB case might have been registered before 2002, which was outside of our study period, or registered outside of Shinjuku City.

K

285 Limitations

Our study has some limitations. First, the study population consisted only of TB patients living in Shinjuku City. Considering the large population flow in and out of the city, as mentioned above, we potentially missed patients living outside of the city who shared TB strain types with patients living in the city. In fact, previous Japanese studies reported clusters with TB patients living across broad geographic areas³¹. Consequently, we may have underestimated the identified genotype clusters. Second, even the existence of TB patients with identical genotyping patterns may not suggest recent transmission if the strain is a nationwide endemic TB strain³², which could have led to an overestimated clustering rate. Third, IS6110 RFLP has relatively lower discriminatory power compared with VNTR³³ and whole-genome sequencing^{34,35}, which might have led to overestimation. Lastly, information of epidemiological linkage among TB patients was not available in our study.

BMJ Open

Therefore, we could not assess and discuss the current practices involving epidemiological investigations done by the public health center, which could weaken the programmatic implications of our results.

Conclusion

This study constitutes a one of the longest-term studies on the molecular epidemiology of notified TB patients in a large Asian urban setting. Our results indicated that a large proportion of culture-positive TB patients were involved in the recent TB transmission chain. Homeless persons were found to be involved in more than half of the genotype clusters. Foreign-born persons continue to have a limited impact on TB transmission in the Japanese urban setting, but considering recent increases in foreign-born TB patients, transmission between native and foreign-born populations should be routinely evaluated. Intensified public health interventions, such as active case findings, should focus on those with socioeconomic risk factors that are significantly associated with TB transmission and clusters with shorter registration intervals between the first two cases because these variables could serve as predictors of the development of large clusters within three years.

1	
2	
2	
7	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 31 32 33 34 35 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
31	
24 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
59	

312	ACKNOWLEDGMENTS
313	We would like to thank the Shinjuku Public Health Center staff for collecting the data.
314	
315	Author Statement: Authors roles
316	KIz: conception of study, statistical analysis, interpretation of data, and drafting and finalization of
317	the manuscript
318	YM: genotyping analysis, interpretation of data, and finalization of the manuscript
319	KU: conception of study, interpretation of data, and finalization of the manuscript
320	AK: conception of study, collection of data, and finalization of the manuscript
321	KIs: conception of study, collection of data, and finalization of the manuscript
322	SK: conception of study, collection of data, and finalization of the manuscript
323	TT: interpretation of data and finalization of the manuscript
324	AO: conception of study, interpretation of data, and drafting and finalization of the manuscript
325	
326	
327	

BMJ Open

2			
4 5			
6 7	328	Refer	rences
8 9	329	1.	World Health Organization. Global Tuberculosis Report 2018. Geneva; 2018. doi: ISBN 978 92 4
10 11 12	330		156539 4.
12 13 14	331	2.	Lönnroth K, Migliori GB, Abubakar I, et al. Towards tuberculosis elimination: An action
15 16	332		framework for low-incidence countries. <i>Eur Respir J</i> . 2015;45(4):928-952.
17 18	333		doi:10.1183/09031936.00214014.
19 20 21	334	3.	de Vries G, Aldridge RW, Cayla J a, et al. Epidemiology of tuberculosis in big cities of the
21 22 23	335		European Union and European Economic Area countries. Euro Surveill Bull Eur sur les Mal
24 25	336		Transm = Eur Commun Dis Bull. 2014;19(9):1-8.
26 27	337	4.	Hest NA, Aldridge RW, de Vries G, et al. Tuberculosis control in big cities and urban risk groups in
28 29	338		the European Union: A consensus statement. Euro Surveill. 2014;19(9):1-13. doi:10.2807/1560-
30 31 32	339		7917.ES2014.19.9.20728.
33 34	340	5.	Jereb JA. Progressing towards tuberculosis elimination in low-incidence areas of the United
35 36	341		States. Recommendations of the Advisory Council for the Elimination of Tuberculosis. MMWR
37 38	342		Recomm reports. 2002;51(RR-5):1-14.
39 40 41	343	6.	Borgdorff MW, van Soolingen D. The re-emergence of tuberculosis: What have we learnt from
42 43	344		molecular epidemiology? Clin Microbiol Infect. 2013;19(10):889-901. doi:10.1111/1469-
44 45	345		0691.12253.
46 47	346	7.	Alland D, Kalkut GE, Moss AR, et al. Transmission of tuberculosis in New York City. An analysis by
48 49 50	347		DNA fingerprinting and conventional epidemiologic methods. 1994;330(D):1710-1716.
50 51 52	348	8.	van Soolingen D, Borgdorff MW, de Haas PE, et al. Molecular epidemiology of tuberculosis in the
53 54	349		Netherlands: a nationwide study from 1993 through 1997. J Infect Dis. 1999;180:726-736.
55 56	350		doi:10.1086/314930.
57 58 59 60	351	9.	PM S, PC H, SP S, et al. The epidemiology of tuberculosis in San Francisco. A population-based

1			
2			
3 4			
5			
6	352		study using conventional and molecular methods. N Engl J Med. 1994.
7 8 9	353	10.	Hamblion EL, Le Menach A, Anderson LF, et al. Recent TB transmission, clustering and predictors
10 11	354		of large clusters in London, 2010-2012: Results from first 3-years of universal MIRU-VNTR strain
12 13 14	355		typing. <i>Thorax</i> . 2016;71(8):749-756. doi:10.1136/thoraxjnl-2014-206608.
15 16	356	11.	Driver CR, Macaraig M, McElroy PD, et al. Which patients' factors predict the rate of growth of
17 18 19	357		Mycobacterium tuberculosis clusters in an urban community? Am J Epidemiol. 2006;164(1):21-
20	358		31. doi:10.1093/aje/kwj153.
21 22 23	359	12.	Kik S V., Verver S, Van Soolingen D, et al. Tuberculosis outbreaks predicted by characteristics of
24 25	360		first patients in a DNA fingerprint cluster. Am J Respir Crit Care Med. 2008;178(1):96-104.
26 27 28	361		doi:10.1164/rccm.200708-1256°C.
28 29 30	362	13.	Althomsons SP, Kammerer JS, Shang N, Navin TR. Using Routinely Reported Tuberculosis
31 32	363		Genotyping and Surveillance Data to Predict Tuberculosis Outbreaks. <i>PLoS One</i> . 2012;7(11):1-8.
33 34	364		doi:10.1371/journal.pone.0048754.
35 36	365	14.	Ohkado A, Nagamine M, Murase Y, et al. Molecular epidemiology of Mycobacterium
37 38 39	366		tuberculosis in an urban area in Japan, 2002-2006. Int J Tuberc Lung Dis. 2008;12(5):548-554.
40 41	367	15.	Ohkado A, Murase Y, Mori M, et al. Transmission of specific genotype streptomycin resistant
42 43	368		strains of Mycobacterium tuberculosis in the Tokyo Metropolitan Area in Japan. BMC Infect Dis.
44 45	369		2009;9:138. doi:10.1186/1471-2334-9-138.
46 47 48	370	16.	Xu G, Mao X, Wang J, Pan H. Clustering and recent transmission of Mycobacterium tuberculosis
49 50	371		in a Chinese population. Infect Drug Resist. 2018;11:323-330.
51 52	372	17.	Yang C, Shen X, Peng Y, et al. Transmission of Mycobacterium tuberculosis in China: a
53 54 55	373		population-based molecular epidemiologic study. <i>Clin Infect Dis</i> . 2015;61(2):219-227.
55 56 57	374		doi:10.1093/cid/civ255.
58 59 60	375	18.	Mears J, Abubakar I, Cohen T, McHugh TD, Sonnenberg P. Effect of study design and setting on

1 2			
3 4 5			
6 7	376		tuberculosis clustering estimates using Mycobacterial Interspersed Repetitive Units-Variable
8 9	377		Number Tandem Repeats (MIRU-VNTR): A systematic review. BMJ Open. 2015;5(1).
10 11	378		doi:10.1136/bmjopen-2014-005636.
12 13	379	19.	Fok A, Numata Y, Schulzer M, FitzGerald MJ. Risk factors for clustering of tuberculosis cases: A
14 15 16	380		systematic review of population-based molecular epidemiology studies. Int J Tuberc Lung Dis.
10 17 18	381		2008;12(5):480-492.
19 20	382	20.	The Research Institute of Tuberculosis J. Statistics of TB 2016.
21 22	383		http://www.jata.or.jp/rit/ekigaku/en/statistics-of-tb/. Accessed June 20, 2018.
23 24 25	384	21.	Tuberculosis Surveillance Center. <i>Tuberculosis in Japan – Annual Report 2017</i> . Tokyo, Japan:
25 26 27	385		Department of Epidemiology and Clinical Research, the Research Institute of Tuberculosis; 2017.
28 29	386	22.	Shinjuku city. Description of Shinjuku.
30 31	387		http://www.foreign.city.shinjuku.lg.jp/en/aramashi/aramashi_1/. Accessed January 9, 2018.
32 33	388	23.	Shinjuku City. Tuberculosis Statistics in Shinjuku City 2017 [Japanese].; 2018.
34 35 36	389	24.	Van Embden JDA, Cave MD, Crawford JT, et al. Strain identification of Mycobacterium
37 38	390		tuberculosis by DNA fingerprinting: Recommendations for a standardized methodology. J Clin
39 40	391		Microbiol. 1993;31(2):406-409. doi:10.1128/JCM.39.4.1683.2001.
41 42	392	25.	Wada T, Maeda S, Hase A, Kobayashi K. Evaluation of variable numbers of tandem repeat as
43 44 45	393		molecular epidemiological markers of Mycobacterium tuberculosis in Japan. J Med Microbiol.
45 46 47	394		2007;56(8):1052-1057. doi:10.1099/jmm.0.46990-0.
48 49	395	26.	Ellis B a, Crawford JT, Braden CR, McNabb SJN, Moore M, Kammerer S. Molecular epidemiology
50 51	396		of tuberculosis in a sentinel surveillance population. <i>Emerg Infect Dis</i> . 2002;8(11):1197-1209.
52 53	397		doi:10.3201/eid0811.020403.
54 55 56	398	27.	Glynn JR, Crampin AC, Yates MD, et al. The Importance of Recent Infection with Mycobacterium
57 58	399		tuberculosis in an Area with High HIV Prevalence: A Long-Term Molecular Epidemiological Study
59 60			
			19

3			
4 5			
6 7	400		in Northern Malawi. <i>J Infect Dis</i> . 2005;192(3):480-487. doi:10.1086/431517.
8 9	401	28.	Izumi K, Ohkado A, Uchimura K, et al. Detection of tuberculosis infection hotspots using activity
10 11	402		spaces based spatial approach in an urban Tokyo, from 2003 to 2011. PLoS One. 2015;10(9):1-
12 13	403		16. doi:10.1371/journal.pone.0138831.
14 15 16	404	29.	Sandgren A, Schepisi MS, Sotgiu G, et al. Tuberculosis transmission between foreign- and native-
17 18	405		born populations in the EU/EEA: A systematic review. <i>Eur Respir J</i> . 2014;43(4):1159-1171.
19 20	406		doi:10.1183/09031936.00117213.
21 22	407	30.	MURASE Y, OHKADO A, WATANABE Y, et al. Transmission dynamics of mycobacterium
23 24 25	408		tuberculosis between foreign-nationals and Japanese tuberculosis patients living in Shinjuku-
25 26 27	409		City, Tokyo, Japan. <i>Kekkaku</i> . 2017;92(5):431-439.
28 29	410	31.	Murase Y, Izumi K, Ohkado A, et al. Prediction of local transmission of mycobacterium
30 31	411		tuberculosis isolates of a predominantly Beijing lineage by use of a variable-number tandem-
32 33 34	412		repeat typing method incorporating a consensus set of hypervariable loci. J Clin Microbiol.
35 36	413		2018;56(1):1-11. doi:10.1128/JCM.01016-17.
37 38	414	32.	Wada T, Iwamoto T, Tamaru A, et al. Clonality and micro-diversity of a nationwide spreading
39 40	415		genotype of Mycobacterium tuberculosis in Japan. <i>PLoS One</i> . 2015;10(3):1-13.
41 42 43	416		doi:10.1371/journal.pone.0118495.
44 45	417	33.	Murase Y, Mitarai S, Sugawara I, Kato S, Maeda S. Promising loci of variable numbers of tandem
46 47	418		repeats for typing Beijing family Mycobacterium tuberculosis. J Med Microbiol. 2008;57(7):873-
48 49	419		880. doi:10.1099/jmm.0.47564-0.
50 51 52	420	34.	Nikolayevskyy V, Kranzer K, Niemann S, Drobniewski F. Whole genome sequencing of
52 53 54	421		Mycobacterium tuberculosis for detection of recent transmission and tracing outbreaks : A
55 56	422		systematic review. Tuberculosis. 2016;98:77-85. doi:10.1016/j.tube.2016.02.009.
57 58 59 60	423	35.	Jajou R, Neeling A De, Hunen R Van, et al. Epidemiological links between tuberculosis cases

2 3		
4 5		
6 7	424	identified twice as efficiently by whole genome sequencing than conventional molecular typing :
8 9	425	A population-based study. PLoS One. 2018;13(4):e0195413.
10 11	426	
12 13	427	
14 15 16		
17 18		
19 20		
21 22		
23 24 25		
26 27		
28 29		
30 31		
32 33 34		
35 36		
37 38		
39 40 41		
42 43		
44 45		
46 47 48		
49 50		
51 52		
53 54		
55 56 57		
57 58 59		
60		21

TABLE

429 Table 1. Study variables and definitions

Category	Variables	Definition
Demographic factors	Sex	Men or women
	Age	Age at registration (≥40 or <40 years)
	Country of birth	Japan-born or foreign-born persons
Consist for store	Occupation	Fulltime, part-time/daily worker, jobless under 60 year of a
Social factors		others (including infant, student, housewife, retired, and unki
	Receipt of public assistance	Those who were receiving government welfare benefits due
		household income that is below the minimum cost of liv
		registration
	Homeless status	Those whose legal address was unknown or unstable durin
		previous two or more years prior to registration
	Alcohol misuse	Those who tend to drink excessively, as judged by the public l
		nurses
Clinical factors	Site of disease	Those who have pulmonary or extra pulmonary disease
	Cavity lesions	Those who have cavity lesions in lung field on chest radiograp
		Those who exhibit positive or negative results in the sputum s
	Sputum smear microscopy	microscopy test
	Past TB history	Those with a history of past TB treatment
	Status of diabetes mellitus	Those with diabetes mellitus, as self-reported by the patient
Others		Those who were identified through active case finding condu
	Mode of detection	

2 3 4			
5 6 7			A time between the onset of symptoms and the initial doctor visit
, 8 9		Status of patient delay	longer than two months
10 11		Status of doctor delay	A time between the initial doctor visit and diagnosis longer than
12 13 14		Status of doctor delay	one month
15 16		Status of total delay	A time between the onset of symptoms and TB diagnosis longer
17 18 19			than three months
20 21		Registration interval	The duration in months between the registration dates of the first
22 23		6	two cases in each of the genotype clusters
24 25 26	430		
27 28	431		
29 30 31	432		
32 33			
34 35			
36 37 38			
39 40			
41 42 43			
43 44 45			
46 47			
48 49 50			
51 52			
53 54			
55 56 57			
58 59			
60			23

433 Table 2. Factors associated with TB genotype clustering; univariable logistic regression analysis, RFLP,

434 Shinjuku, Tokyo, Japan, 2002–2013

	Total number of	Clustered		OR	(95% CI)	p-value
	cases (N=1025),	cases				
	n	(N=515),				
		n (%)				
Age (years)	1025					
≥40	754	371	(49.2)	Reference		
<40	271	144	(53.1)	1.17	(0.88-1.56)	0.267
Sex	1025					
Female	248	102	(41.1)	Reference		
Male	777	413	(53.2)	1.62	(1.20-2.19)	0.001**
Country of birth	1025					
Foreign	95	22	(23.2)	Reference		
Japan	930	493	(53.0)	3.74	(2.25-6.44)	<0.001*
Occupation	1025					
Fulltime worker	313	165	(52.7)	1.53	(1.15-2.05)	0.004**
Part-time/daily	96	60	(62.5)	2.29	(1.45-3.61)	<0.001*
worker						
Jobless (aged 15-59	172	103	(59.9)	2.05	(1.43-2.94)	<0.001*
years)						
Others [†]	444	187	(42.1)	Reference		
Public assistance [‡]	1024					
No	720	319	(44.3)	Reference		

Page 25 of 37

BMJ Open

Yes	304	195	(64.1)	2.25	(1.69-3.00)	<0.00
Homelessness	1025					
No	776	349	(45.0)	Reference		
Yes	249	166	(66.7)	2.45	(1.80-3.34)	<0.00
Alcohol misuse§	1025					
No	761	367	(48.2)	Reference		
Yes	264	148	(56.1)	1.37	(1.02-1.83)	0.028
TB site	1024					
Extrapulmonary	80	32	(40.0)	Reference		
Pulmonary	944	482	(51.1)	1.56	(0.96-2.58)	0.058
Cavity lesions	1023					
No	565	271	(48.0)	Reference		
Yes	458	243	(53.1)	1.23	(0.95-1.58)	0.105
Smear results	1024					
Negative	406	192	(47.3)	Reference		
Positive	618	322	(52.1)	1.21	(0.94-1.57)	0.132
Past TB history	989					
New	880	441	(50.1)	Reference		
Retreatment	109	59	(54.1)	1.17	(0.77-1.79)	0.429
DM	1005					
No	832	421	(50.6)	Reference		
Yes	173	86	(49.7)	0.97	(0.69-1.36)	0.831
Active case finding	1025					
No	842	412	(48.9)	Reference		

Y	/es	183	103	(56.3)	1.34	(0.96-1.88)	0.0
Pati	ient delay	1000					
<	-2 m	773	377	(48.8)	Reference		
≥	2 m	227	127	(55.9)	1.33	(0.98-1.82)	0.0
Doc	ctor delay	1018					
<	:1 m	799	415	(51.9)	Reference		
≥	:1 m	219	97	(44.3)	0.74	(0.54-1.00)	0.0
Tota	al delay	997					
<	:3 m	777	382	(49.2)	Reference		
≥	:3 m	220	122	(55.5)	1.29	(0.94-1.76)	0.0
435	RFLP: restriction fragmer	nt length polymo	orphism,	OR: odds	s ratio, CI: co	nfidence interv	al, TE
436	tuberculosis, DM: diabetes	s mellitus, *p<0.0	5, **p<0.(01, ***p<	0.001		
437	[†] Others includes infant, stu	udent, housewife	, retired, a	and unkno	own, and this po	opulation is cons	idere
438	to be as a low risk of infec	tion.					
439	[‡] Public assistance refers	to government	welfare b	enefits d	ue to househo	old income belc	w th
	minimum cost of living.						
440							
	§Alcohol misuse refers to	excessive drinkin	g, as judg	ed by the	e public health	nurses conducti	ng th
441		excessive drinkin	g, as judg	ed by the	e public health	nurses conducti	ng th
441 442	§Alcohol misuse refers to	excessive drinkin	g, as judg	ed by the	e public health	nurses conducti	ng the
 440 441 442 443 444 	§Alcohol misuse refers to	excessive drinkin	g, as judg	ed by the	e public health	nurses conducti	ng th
441 442 443	§Alcohol misuse refers to	excessive drinkin	g, as judg	ed by the	e public health	nurses conducti	ng th
441 442 443	§Alcohol misuse refers to	excessive drinkin	g, as judg	ed by the	e public health	nurses conducti	ng th
441 442 443	§Alcohol misuse refers to	excessive drinkin	g, as judg	ed by the	e public health	nurses conducti	ng th
441 442 443	§Alcohol misuse refers to	excessive drinkin	g, as judg	ed by the	e public health	nurses conducti	ng th

1 2	
2 3	
4	
5	
6	
7	
8	
9	
10	
11	
12 13	
14	
12 13 14 15 16 17	
16	
17	
18	
19	
20	
20 21 22 23 24 25 26 27 28 29 30	
22	
23	
25	
26	
27	
28	
29 30	
30 31	
32	
33	
34 35 36 37	
35	
36	
37 38	
38 39	
40	
41	
42	
43	
44 45	
45 46	
47	
48	
49	
50	
51	
52 53	
53 54	
55	
56	
57	
58	
59	
60	

445 Table 3. Factors associated with TB genotype clustering; multivariate logistic regression analysis,

446 RFLP, Shinjuku, Tokyo, Japan, 2002–2013

Variables		aOR	(95% CI)	p-va
Age (years)	≥40	Reference		
	<40	1.73	(1.23-2.44)	0.002**
Country of birth	Foreign	Reference		
	Japan	3.90	(2.27-6.72)	< 0.001
Occupation	Fulltime worker	1.63	(1.17-2.27)	0.004**
	Part-time/daily worker	2.20	(1.35-3.58)	0.002**
	Jobless (aged 15-59 years)	1.32	(0.88-1.97)	0.180
	Others [†]	Reference		
Public assistance [‡]	No	Reference		
	Yes	1.81	(1.15-2.84)	0.011*
Homeless	No	Reference		
	Yes	1.63	(1.02-2.62)	0.042*
Alcohol misuse§	No	Reference		
	Yes	1.29	(0.79-2.11)	0.311
Active case finding	No	Reference		
	Yes	1.39	(0.98-1.99)	0.066

447 RFLP: restriction fragment length polymorphism, aOR: adjusted odds ratio, CI: confidence interval,

448 *p<0.05, **p<0.01, ***p<0.001

⁴⁴⁹ [†]Others includes infant, student, housewife, retired, and unknown.

450 [‡]Public assistance refers to government welfare benefits due to a household income below the

451 minimum cost of living.

1 2 3		
4 5		
5 6 7	452	[§] Alcohol misuse refer to excessive drinking, as judged by the public health nurses conducting the
8 9	453	interviews.
$\begin{array}{c}9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\33\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\44\\56\\37\\38\\940\\41\\42\\43\\44\\56\\47\\48\\49\\50\\51\\52\\53\\54\\55\\6\\7\\8\end{array}$	453	interviews.
59 60		
		28

455 Table 4. Factors associated with large genotype clusters within three years using the characteristics

456 of the first two cases in each TB genotype cluster; univariable logistic regression, RFLP, Shinjuku,

457 Tokyo, Japan, 2003–2013 (N=104 cluster episodes)

	Large clusters within 3 years		Small clusters		Univariate logistic regression		
			and	large			
Variable			cluste	rs after 3			
	(N=14),		years (N=90),		OR	(95% CI)	p Value
	n (%)†		n (%)‡	:			
Sex							
No male patients	1	(7.1)	4	(4.4)	Ref		
≥One male patient	13	(92.9)	86	(95.6)	0.60	(0.06-5.84)	0.664
Age							
No patients <40 years of age	8	(57.1)	57	(63.3)	Ref		
At least one patient <40 years of age	6	(42.9)	33	(36.7)	1.30	(0.41-4.06)	0.657
Japanese							
No Japan-born patients	0	(0.0)	2	(2.2)	Ref		
≥One Japan-born patient	14	(100.0)	88	(97.8)	NA		
Full- and part-time/daily workers							
No patients with full- and part-time/daily	6	(42.9)	35	(38.9)	Ref		
employment							
≥One patient with full- and part-time/daily	8	(57.1)	55	(61.1)	0.85	(0.27-2.65)	0.778
employment							
Public assistance							
No patient receiving public assistance	5	(35.7)	41	(45.6)	Ref		

1
2
3
4 5
5 6
0
/ 8
o 9
) 10
11
12
13
14
15
16
16 17
18
19
20
21
22
23
24
25
26
27
28
29
30 31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 52
52 53
53 54
54 55
55 56
50 57
58
59
60

1

≥One patient receiving public assistance	9	(64.3)	49	(54.4)	1.51	(0.47-4.85)	0.492
Homeless							
No patient who is currently homeless	6	(42.9)	45	(50.0)	Ref		
≥One patient who is currently homeless	8	(57.1)	45	(50.0)	1.33	(0.43-4.15)	0.62
Alcohol misuse							
No patient who misuses alcohol	5	(35.7)	48	(53.3)	Ref		
≥One patient who misuses alcohol	9	(64.3)	42	(46.7)	2.06	(0.64-6.62)	0.22
Cavity lesions							
No patients with a cavity	2	(14.3)	24	(26.7)	Ref		
≥One patient with a cavity	12	(85.7)	66	(73.3)	2.18	(0.45-10.47)	0.33
Smear results							
No patient with a positive smear	1	(7.1)	12	(13.3)	Ref		
≥One patient with a positive smear	13	(92.9)	• 78	(86.7)	2.00	(0.24-16.71)	0.52
Past TB history							
No patient with a past history of TB	11	(78.6)	69	(76.7)	Ref		
≥One patient with a past history of TB	3	(21.4)	21	(23.3)	0.90	(0.23-3.52)	0.87
DM							
No patient with DM	9	(64.3)	57	(63.3)	Ref		
≥One patient with DM	5	(35.7)	33	(36.7)	0.96	(0.30-3.11)	0.94
Active case finding							
No patient identified through active case finding	8	(57.1)	53	(58.9)	Ref		
≥One patient identified through active case	6	(42.9)	37	(41.1)	1.07	(0.34-3.35)	0.90
finding							
Patient delay							

.

3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59 60	
60	

No account patient dolar	0	(64.2)	FF	(61.1)	Dof		
No case with patient delay	9	(64.3)	55	(61.1)	Ref		
≥One case with patient delay	5	(35.7)	35	(38.9)	0.87	(0.27-2.82)	0.8
Doctors delay							
No case with doctor delay	10	(71.4)	57	(63.3)	Ref		
≥One case with doctor delay	4	(28.6)	33	(36.7)	0.69	(0.20-2.38)	0.5
Total delay							
No case with total delay	10	(71.4)	53	(58.9)	Ref		
≥One case with total delay	4	(28.6)	37	(41.1)	0.57	(0.17-1.97)	0.3
Registration interval							
0-2 months between first two cases	7	(50.0)	13	(14.4)	9.51	(2.16-41.89)	0.0
3-5 months between first two cases	2	(14.3)	5	(5.6)	7.07	(0.95-52.77)	0.0
6-11 months between first two cases	2	(14.3)	19	(21.1)	1.86	(0.29-12.00)	0.8
≥12 months between first two cases	3	(21.4)	53	(58.9)	Ref		

459 only the "registration interval" variable remained in the model. Thus, the table shows only the results

460 of the univariate logistic regression.

461 RFLP: restriction fragment length polymorphism, OR: odds ratio, aOR: adjusted odds ratio, CI: 462 confidence interval, TB: tuberculosis, DM: diabetes mellitus, Ref: reference, NA: not applicable,

463 *p<0.05, **p<0.01

464 ***Large clusters within three years" refers to cluster episodes with five or more cases (large clusters)

465 within three years.

468

466 *"Small clusters and large clusters after three years" refers to cluster episodes with two to four cases

467 (small clusters) and cluster episodes that became large clusters after three years.

י ר	
2	
3	
4	
5	
3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 16 17 18 9 20 21 22 3 24 25 26 27 8 9 30 31 32 33 34 35 6 37 8 9 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
27	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

469

to peer terien on

1		
2		
3 4		
4 5		
6 7	470	Figure legends
8 9	471	
10 11	472	Figure 1. Number of reported cases of TB, including culture-positive cases, strain-typed cases and
12 13 14	473	genotype clusters, in Shinjuku during 2002–2013
15 16	474	RFLP: restriction fragment length polymorphism, TB: tuberculosis
17 18	475	
19 20 21	476	Figure 2. Cumulative clustering rate (RFLP, Shinjuku 2002–2013)
21 22 23	477	RFLP: restriction fragment length polymorphism
24 25	478	
26		
27		
28 29		
30		
31		
32		
33		
34		
35 36		
37		
38		
39		
40		
41		
42 43		
44		
45		
46		
47		
48 49		
49 50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		
60		

 1,885 TB cases notified at the Shinjuku city, 2002-2013

 1,310 culture positive TB cases

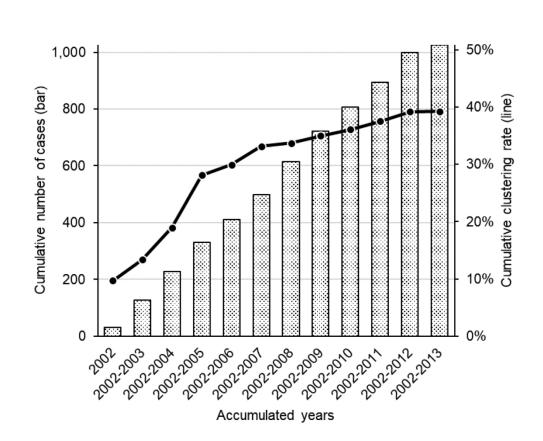
 1,025 cases examined by RFLP

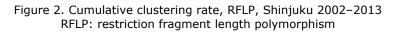
 510 TB cases with unique strain

 515 TB cases in 113 clusters containing ≥ 2 TB cases

 • 185 TB cases in 77 clusters containing ≥ 4 TB cases (small clusters)

 • 330 TB cases in 36 clusters containing ≥ 5 TB cases (large clusters)


 • 184 TB cases in 17 clusters containing ≥ 5 TB cases (large clusters)


 • 184 TB cases in 19 clusters within 3 years)

 • 146 TB cases in 19 clusters containing ≥ 5 TB cases (large clusters after 3 years (large clusters after 3 years)

Figure 1. Number of reported cases of TB, including culture-positive cases, strain-typed cases and genotype clusters, Shinjuku, 2002–2013 RFLP: restriction fragment length polymorphism, TB: tuberculosis

90x90mm (600 x 600 DPI)

90x90mm (600 x 600 DPI)

		BMJ Open	Pag
	STF	ROBE 2007 (v4) Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>	
Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract σ	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was bound	3
Introduction	1		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods	1		
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Table 1
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-7
Bias	9	Describe any efforts to address potential sources of bias	7
Study size	10	Explain how the study size was arrived at	6 *We took all eligible study participants in Shinjuku city.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Table 1
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding $\frac{\overline{a}}{\overline{b}}$	7-8
		(b) Describe any methods used to examine subgroups and interactions	8
		(c) Explain how missing data were addressed 2 (d) If applicable, describe analytical methods taking account of sampling strategy 2	8
		(d) If applicable, describe analytical methods taking account of sampling strategy	Not Applicable

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

36/bmjopen-2

ight.

		(e) Describe any sensitivity analyses	Not Applicable
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examine \ddot{b} for eligibility,	8-9
		confirmed eligible, included in the study, completing follow-up, and analysed	Figure 1
		(b) Give reasons for non-participation at each stage	8-9
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Table 1
		(b) Indicate number of participants with missing data for each variable of interest	N in tables
Outcome data	15*	Report numbers of outcome events or summary measures	Tables, 9-10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision $\ddot{\Xi}$ (eg, 95% confidence	Tables
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Tables
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Not Applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Table 4
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuse both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of a palyses, results from similar studies, and other relevant evidence	11-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	11-14
Other information		24 5	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	4