

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The prominent effect of physical activity on independent living ability among community-dwelling elderly in urban areas of China: a population-based study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023543
Article Type:	Research
Date Submitted by the Author:	11-Apr-2018
Complete List of Authors:	Wang, Bowen; China Medical University, Social Medicine, School of Public Health Wu, Yijiao Zhang, Tianjiao; China Medical University, Social Medicine, School of Public Health Han, Jinsong; China Medical University, Social Medicine, School of Public Health Yu, Lianzheng; Liaoning Provincial Center for Disease Control and Prevention, Shenyang, PR China., Department of Noncommunicable Chronic Disease Prevention Sun, Wei; China Medical University, Social Medicine, School of Public Health
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, SOCIAL MEDICINE
	·

SCHOLARONE[™] Manuscripts

BMJ Open

The prominent effect of physical activity on independent living ability among community-dwelling elderly in urban areas of China: a population-based study Bowen Wang,^{a, b*} Yijiao Wu,^{a*} Tianjiao Zhang,^a Jinsong Han,^a Lianzheng Yu,^c Wei Sun.^a

^a Department of Social Medicine, School of Public Health, China Medical University, Shenyang, PR China.

^b China First Mandarin Group Northeast International Hospital, Shenyang, PR China.

^c Department of Noncommunicable Chronic Disease Prevention, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, PR China.

^{*} These authors contributed equally to the study.

Address correspondence to: W. Sun, Department of Social Medicine, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China.

Email: wsun@cmu.edu.cn

ABSTRACT

Objective Independent living ability of the elderly is crucial to improve the quality of life and reduce the social burden; however, its assessment performed in China lacks standardization and risk factors, especially behavioral and social-psychological factors, which could be improved through health education. This study aimed to assess the independent living ability of community-dwelling elderly in urban areas of China and to clarify its association with behavioral and social-psychological factors.

Design A population-based study using random cluster sampling method was performed in 2 core cities in Liaoning Province during March-November 2012.

Study population A total of 3686 individuals who were ≥ 65 years old, had no dementia and cognitive defects, had lived in the sampled communities for ≥ 5 years, and could take part in the study were enrolled.

Main outcome measures Interviews were conducted to collect information of independent living ability, indicated by the instrumental activity of daily living (IADL), behavioral factors, social-psychological factors, and confounders (demographic characteristics and health status). The mini-mental state examination was used to screen for cognitive defects.

Results The independence rate was 46.3% in males and 41.1% in females. Structural equation modeling analysis showed that physical activity, drawn from taking a walk and doing exercise, had the strongest association with the IADL in both males (-0.34) and females (-0.33). Falling in the last year and worrying about falling were also significantly associated with IADL. The effects of alcohol consumption, feeling lonely, and participating in entertainment were significant in males.

Conclusion The independent living ability of the elderly in urban areas in China was at a low level. Physical activity had a prominent role; whereas the role of social-psychological factors only existed in males. Gender-specific health care and education on avoiding sedentary life should be advocated for the elderly to maintain/improve their independent living ability.

Strengths and limitations of this study

- This study used the Lawton IADL scale, which has been used worldwide to indicate independent living ability of the elderly. The effects of behavioral and social-psychological factors that could be improved through health education in daily life were assessed among a Chinese population with adjustment for demographic characteristics and health status.
- Information bias was excluded because the cognitive function of the elderly without dementia was further screened using the mini-mental state examination.
- Quantitative assessment through scoring measured factors according to the OR values was conducted and the effects on IADL were confirmed by structural equation modeling analysis.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

INTRODUCTION

A significant change in the age structure of the world's population has resulted from population aging,¹ and has become a global issue in the 21st century. ^{2 3} China is a nation with the largest aging population, which accounts for one-fifth of the total elderly population worldwide. ⁴ Indeed, it has been estimated that China will experience the most rapid rate of aging in the world over the next 2–3 decades. ¹ Thus, how to cope with problems caused by population aging has become particularly important for the development of China.

For the elderly, independence in daily life reduces nursing demands, decreases the consumption of medical resources, and improves the quality of life. Even if the loss of independent living ability is inevitable for the elderly, maintaining and/or improving this ability, even for short time, can postpone the onset of dependency and reduce the enormous social burden. Thus, focusing on the independent living ability among the elderly prior to death or becoming ill is important.

Previous studies involving the independent living ability of the elderly have been conducted in developed countries. ⁵⁻⁹ The factors associated with the independent living ability of the elderly have been shown to be demographic characteristics (age, gender, ethnicity, marital status, education, and living arrangement), health status (chronic disease, visual ability, and hearing ability), behavior factors (smoking, alcohol consumption, taking a walk, doing exercise, and falling risk), and social-psychological factors (social integration, depressive symptoms, and social activity). Related studies have also been conducted in China; ¹⁰⁻¹² however, various scales were used to indicate independence. As a result, the rate of dependency ranged from 7.9%-53.9%. The risk factors were limited to demographic characteristics and chronic disease. Consideration in daily life was lacking. In addition, cognitive function screening was rarely considered in international and domestic studies, which was insufficient with respect to excluding information bias, especially for the aged population.

The purpose of this study was to conduct a population-based study to assess the independent living ability among the elderly without cognitive defects in China, and to clarify the effects of behavioral and social-psychological factors with adjustment for demographic characteristics and health status. As a first attempt, we initially focused our attention on the elderly in urban areas. We believe our findings will provide evidence for the healthcare system to properly cope with population aging.

METHODS

Study area and population

According to the China Yearbook, the income level in Liaoning Province is similar to the national average. Shenyang city and Anshan city are the core cities in Liaoning Province and represent the urban area according to the Liaoning Provincial Yearbook. ¹³ Two communities in each city were randomly selected and people who were ≥ 65 years of age, had no dementia, lived in the local area for ≥ 5 years, and volunteered to take part in this study comprised the study population (a total of 4701 individuals). The interview was conducted between March and November 2012. We received effective responses from 4057 participants and the effective response rate was 86.3%. After screening for cognitive function with the mini-mental state examination, 3686 individuals without cognitive defects were enrolled as the subjects in the current study.

Measurement of independent living ability

The Lawton instrumental activities of daily living (IADL) scale has been widely used to assess independent living ability of the elderly. ¹⁴ The IADL scale has eight items assessing the ability to use the telephone, shop for daily necessities, prepare meals, handle finances, do housework, take medications, do laundry, and use public transportation. Responses to each item are coded as 1 (completely able), 2 (have some difficulty), 3 (need help), or 4 (unable). The total score ranges from 8-32. The higher the score, the worse the independence. Independence is defined only if the total score is 8.

Measurements of behavioral factors, social-psychological factors, and confounders

Behavioral factors included the following six items: (1) smoking; (2) alcohol consumption; (3) taking a walk; (4) doing exercise; (5) regular diet; and (6) falling in the last year. Smoking was measured with answers of "Yes," "Had ever," or "Never." Alcohol consumption was categorized as "Yes" or "No." Taking a walk and doing exercise were divided into four groups on the basis of frequency: almost none; 1-2 times/week; 3-4 times/week; and almost every day. ¹³ Regular diet and falling in the last year were defined as "Yes" or "No."

Social-psychological factors consisted of the following five items: (1) feeling lonely; (2) participating in entertainment; (3) watching television often; (4) worrying about falling; and (5) filial piety. Feeling lonely was assessed according to an individual's perception and was categorized as "Yes," "Not clear," or "No." Information on participating in entertainment and watching

television often was examined by asking "Do you often hang out and play cards, chess, mahjong, or some other entertainment?" ¹³ and "Do you often watch television?". Worrying about falling was defined as "Yes" or "No." Filial piety is a prime virtue in Confucianism and advocated by Chinese traditional culture. The filial piety of children is expected to affect the health of the elderly. Thus, filial piety was included and assessed by asking "How do you feel about your children's filial duty to you?". The responses "So so" and "Bad" accounted for 8.8% and 0.4% of responses, respectively. These responses were combined into one group.

Confounders included factors of demographic characteristics and health status. Demographic characteristics included age, gender, ethnicity, martial status, living arrangement, pension, and health insurance. For marital status, the responses were "Single," "Divorced," and "Separation" were combined with "Widow" as the "Other" group because of the low response rate (<5%). Health status included chronic disease, visual ability, ⁸ hearing ability, ⁸ daily sleep time, sleep quality, and chewing ability. ¹⁵ Chronic diseases were categorized as "Present" if any diseases, such as hypertension, cardiovascular disease, diabetes, stoke, liver cirrhosis, emphysema, rheumatoid arthritis, and chronic renal insufficiency, had been diagnosed. For daily sleep time, the responses "<4 hours" (2.7%) and ">8 hours" (6.0%) were combined as one group. Sleep quality measured the difficulty in falling sleep or frequent awakening/dreaming.

Statistical analysis

Among all independent variables, the items which > 95% of the participants had the same response were excluded from the data analysis. In our study, 98.4% of males and 96.9% of females reported having health insurance and 95.9% of males reported Han ethnicity. Therefore, these items were not included in the data analysis.

The distribution of IADL (independence) among categorical variables was examined by the chi-square test. The odds ratio (OR) was calculated in comparison to the basic group. Then, the quantitative values of these variables were scored according to the OR values. Structural equation modeling (SEM) was used to identify the effect of factors measured on IADL score.

The agreement between categorical variables was evaluated with the Kappa test. If the Kappa value was more than 0.50, these variables were considered in agreement. As for quantitative values, Pearson correlation was used to identify the co-line variables.

The missing data was not handled because the missing rate was less than 5%. SPSS for Windows (version 13.0) and AMOS (version 6.0) were used for all statistical analyses.

RESULTS

Among 3686 subjects, the independence in males and females was 46.3% and 41.1%, respectively. The results of univariate analysis of the IADL scale (independence) are shown in Table 1. Among the community-dwelling elderly in urban areas, the items significantly correlated with the IADL were smoking, taking a walk, doing exercise, regular diet, falling in the last year, worrying about falling, feeling lonely, participating in entertainment, watching TV often, and filial piety in both males and females. The distribution of IADL (independence) among demographic characteristics and health status is shown in Appendix A.

The average IADL scores were 11.27±4.26 (mean±SD) in males and 12.05±5.23 in females. The items were scored according to the OR values. In this study, the correlations between "taking a walk" and "doing exercise" were 0.6252 in males and 0.5746 in females. Therefore, a latent variable, "physical activity," drawn from these two variables was used, which was the same as confounders of "martial status" and "living arrangement" (r: 0.8074 in males and 0.6443 in females). A latent variable (family status) was obtained. The scores are shown in Table 2. The scores of demographic characteristics and health status are shown in Appendix B.

SEM examinations for confirming the effects of behavioral and social-psychological factors were performed separately in males and females. The results are shown in Figures 1 and 2. SEM analysis revealed that the latent variable (physical activity) had the highest association with the IADL score in both males and females. The parameter estimate (B) was -0.34 in males and -0.33 in females. In males, the IADL score was associated with feeling lonely, worrying about falling, alcohol consumption, falling in the last year, and participating in entertainment, with adjustments for family status, age, chronic disease, chewing ability, daily sleep time, visual ability, and sleep quality. In females, the IADL score was associated with falling in the last year and worrying about falling, with adjustments for ethnicity, daily sleep time, family status, age, visual ability, chronic disease, pension, and hearing ability.

DISCUSSION

In this study, our sample size was sufficiently large and information bias was excluded because of dementia and cognitive function screening with the mini-mental state examination. All these facts increased the generalization of our conclusions. The prevalence of independence in daily living

ability among the elderly in urban areas was 43.5%. The independence in daily living ability was significantly lower than the level (54.8%) observed in the elderly living in urban areas in Shanghai (n=2944), ¹⁶ even though the average age of our study population (73.2 years) was much younger than the population in Shanghai (78.44 years). In addition, independent living ability in females (41.1%) was lower than males (46.3%), which was consistent with the results of the urban elderly in Suzhou; ¹² however, the life expectancy of females (79.4) was longer than males (73.6) according to the China Yearbook, ¹⁷ thus suggesting that more attention should be paid to maintaining dependent living ability among the urban elderly in Liaoning province is still at a low level. Maintaining/improving independent living ability of the elderly, especially females, is essential part of providing healthcare for the aged population.

With respect to the behavioral factors, physical activity was reported to not only maintain physical health of the elderly, but also prevent elderly from acquiring mental diseases.¹⁸ In our study, taking a walk and doing exercise were considered to measure physical activity among the elderly; however, due to the high agreement between walking and doing exercise, previous studies have usually selected one item to enter into the multiple model while assessing their effects. In this study, the kappa value between taking a walk and doing exercise was also high (0.546). Of note, we are not satisfied with this type of adjustment because taking a walk and doing exercise require different intensities of activity. This kind of assessment was expected to weaken the effect of physical activity. Thus, we used the latent variable, physical activity, to represent the effects of both taking a walk and doing exercise. As a result, physical activity was shown to have the strongest association with IADL in both males and females. Although health status was reported to be crucial for the quality of life of the elderly in our previous study ¹³ and the presence of chronic disease was well-documented as the basis of any disorder, ^{19 20} the associations with the IADL score were weaker than physical activity. Furthermore, we found that the more frequent the elderly performed physical activity, the stronger the effect on the independent living ability. Our results revealed that health education on avoiding sedentary life was effective and any type of activity should be advocated for the independence of the elderly regardless of health status.

With respect to behavioral factors, falling in the last year and worrying about falling were also associated with independent living ability in both males and females. The experience of falling in the last year indicated that muscle strength, coordination, balance, and flexibility had declined, ²¹

BMJ Open

which tended to be a potential threat for fractures and becoming bedridden among the elderly. ²² Indeed, worrying about falling will inevitably limit movement among the elderly. Correspondingly, the effects on independent living ability were observed in both males and females. Thus, we should pay more attention to the safety of daily routines. In addition, alcohol consumption was shown to be significantly associated with IADL in males. Even if the elderly do not consume alcohol excessively and measurement of alcohol consumption is inexact, the harmful influence on the IADL score was shown. Therefore, guiding the elderly to avoid alcohol would contribute to independent living ability.

In comparison to behavioral factors, the effects of social-psychological factors on independent living ability of the elderly were weaker with adjustment for demographic characteristics and health status. A previous study reported that social participation enhanced the ability of the elderly to live independently. ²³ In this study, feeling lonely and participating in entertainment were shown to be significantly associated with independent living ability, but only in males. This finding might be caused by the Chinese traditional view "men go out to work and women stay at home." Thus, going out to enjoy an animated atmosphere and having more opportunities to participate in entertainment seemed to be more effective in keeping males in good physical and mental health compared to females, who are accustomed to being confined to home.

There were some limitations in our study. First, the measurements of several assessed factors were broad and simplistic, such as smoking and alcohol consumption. Second, even if our study was a population-based study, it was limited by the cross-sectional design. Therefore, a prospective study is needed to draw any causal conclusions.

CONCLUSION

Our results showed that independent living ability among the elderly in urban areas in China is at a low level. Physical activity has a prominent role in maintaining and/or improving independent living ability of the elderly, even if health status has a crucial effect. Social-psychological factors, such as feeling lonely and participating in entertainment, could affect independent living ability among elderly males. Our findings suggest that gender-specific healthcare should be adopted as part of health promotion for the elderly. Physical activity of any type should be encouraged to maintain and improve the independent living ability of the elderly. **Contributors:** WS designed the study and supervised the performance of study. BW and YW collected the data, analyzed the data and wrote the manuscript. TZ and JH helped with cleaning the data, giving advice on statistical analysis and revising the manuscript. LY coordinated data collection. All authors have given final approval of the version to be published.

Funding: This research was funded by the National Natural Science Foundation of China [grant number: 81102193].

Disclaimer: The funding agencies are not responsible for the opinions presented in the manuscript. The funding bodies had no influence on the conduct of the study or the interpretation of the results.

Competing interest: None declared.

Ethics approval: The study protocol and informed consent form received ethics approval from the Committee on Human Experimentation at the China Medical University. Written informed consent concerning conduct of the survey was obtained from each participant.

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: No additional data sharing available.

References

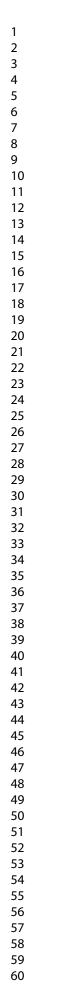
- Mai Y, Peng X, Chen W. How fast is the population aging in China?. Asian Popul Stud 2013; 9(2):216-39.
- 2. De Luca d'Alessandro E, Bonacci S, Giraldi G. Aging populations: the health and quality of life of the elderly. *Clin Ter* 2011; 162(1):e13–8.
- Arslantas D, Ünsal A, Ozbabalık D. Prevalence of depression and associated risk factors among the elderly in Middle Anatolia, Turkey. *Geriatr Gerontol Int* 2014; 14(1):100-8.
- 4. Mu G, Zhang T. The development of population aging in China and the way to deal with it. J Huazhong Norm Univ (Hum & Soc Sci) 2011; 50(5):29-36. [Article in Chinese]
- Tanimoto Y, Watanabe M, Sun W, *et al.* Association between muscle mass and disability in performing instrumental activities of daily living (IADL) in community-dwelling elderly in Japan. *Arch Gerontol Geriatr* 2012; 54(2): e230-3.
- 6. Lipskaya L, Jarus T, Kotler M. Influence of cognition and symptoms of schizophrenia on IADL performance. *Scand J Occup Ther* 2011; 18(3):180-7.
- Gross AL, Rebok GW, Unverzagt FW, et al. Cognitive predictors of everyday functioning in older adults: results from the ACTIVE Cognitive Intervention Trial. J Gerontol B Psychol Sci Soc Sci 2011; 66(5):557-566.
- Sun W, Watanabe M, Tanimoto Y, *et al.* Factors associated with good self-rated health of non-disabled elderly living alone in Japan: a cross-sectional study. *BMC Public Health* 2007; 7(1):297.
- 9. Gadalla TM. Relative body weight and disability in older adults: results from a national survey. *J Aging Health* 2010; 22(4):403-18.
- Ni RX, Shen WZ, Bao Y, *et al.* Impact of the elderly chronic diseases in ability of daily life. *Chin Gen Pract* 2001; 4(1):42-4. [Article in Chinese]
- 11. Tang GF, Wang Y, Zhao YS, *et al.* Study on activities of daily living and its related factors in the elderly in two cities of Anhui province. *Chin J Gerontol* 2001; 20(3):213-5. [Article in Chinese]
- Wu Y, Xu Y. Investigation on daily living ability of the elderly in urban area of Suzhou city. *Chin J Gerontol* 2014; 34(3):745-6. [Article in Chinese]
- Sun W, Aodeng S, Tanimoto Y, *et al.* Quality of life (QOL) of the community-dwelling elderly and associated factors: A population-based study in urban areas of China. *Arch Gerontol Geriatr* 2015; 60(2):311-6.

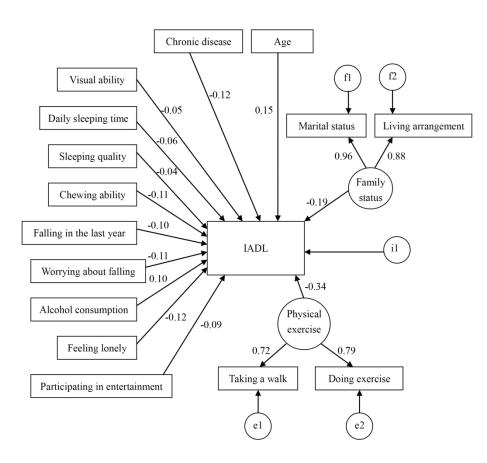
14. Mcgrory S, Shenkin SD, Austin EJ, *et al.* Lawton IADL scale in dementia: can item response theory make it more informative?. *Age Ageing* 2014; 43(4):491-5.

- 15. Kimura Y, Ogawa H, Yoshihara A, *et al.* Evaluation of chewing ability and its relationship with activities of daily living, depression, cognitive status and food intake in the community-dwelling elderly. *Geriatr Gerontol Int* 2013; 13(3):718-25.
- 16. Xue B, Jiang G, Ye G, et al. Investigation on activities of daily living and its related influential factors in retired cadres in Yangpu district, Shanghai. Chin J Prev Contr Chron Non-commun Dis 2006; 14(6):410-2. [Article in Chinese]
- 17. National Bureau of Statistics of China. China statistical yearbook, 2016. (http://www.stats.gov.cn/tjsj/ndsj/2016/indexch.htm).
- Helbostad JL, Sletvold O, Moe-Nilssen R. Home training with and without additional group training in physically frail old people living at home: effect on health-related quality of life and ambulation. *Clin Rehabil* 2004; 18(5):498-508.
- 19. Bartlem KM, Bowman JA, Freund M, *et al.* Care provision to prevent chronic disease by community mental health clinicians. *Am J Prev Med* 2014; 47(6):762-70.
- 20. Al-Hamzawi AO, Rosellini AJ, Lindberg M, et al. The role of common mental and physical disorders in days out of role in the Iraqi general population: Results from the WHO World Mental Health Surveys. J Psychiatr Res 2014; 53(11):23-9.
- 21. Kai MC, Anderson M, Lau EMC. Exercise interventions: defusing the world's osteoporosis time bomb. *Bull World Health Organ* 2003; 81(11):827-30.
- 22. De Laet CE, Pols HA. Fractures in the elderly: epidemiology and demography. *Baillieres Best Pract Res Clin Endocrinol Metab* 2000; 14 (2):171-9.
- Tomioka K, Kurumatani N, Hosoi H. Social participation and the prevention of decline in effectance among community-dwelling elderly: a population-based cohort study. *PLoS One* 2016; 11(10):e0164925.

BMJ Open

		Males			Fema	les
Variables	N	Independence (%)	OR(95%CI)	Ν	Independence (%)	OR(95%CI)
Total	1726	46.3		1960	41.1	
Behavioral factors						
Smoking						
Yes	548	40.9		177	32.2	
Had ever	478	30.8	0.64(0.50-0.83)	270	30.7	0.93(0.62-1.41)
Never	696	61.1	2.27(1.81-2.85)	1512	44.0	1.65(1.19-2.30)
Alcohol consumption						
Yes	750	46.0		242	36.0	
No	969	46.4	1.02(0.84-1.23)	1716	41.8	1.28(0.97-1.70)
Taking a walk						
Almost none	325	27.1		283	9.90	
1-2 times/week	385	28.1	1.05(0.75-1.46)	421	30.4	3.98(2.56-6.19)
3-4 times/week	460	58.0	3.73(2.74-5.06)	488	48.6	8.60(5.60-13.20
Almost everyday	556	60.4	4.11(3.05-5.54)	768	53.6	10.54(6.96-15.90
Doing exercise				, 00	0010	10.0 1(0.90 10.90
Almost none	470	25.7		460	16.5	
1-2 times/week	354	36.4	1.65(1.23-2.23)	465	34.8	2.70(1.98-3.69)
3-4 times/week	452	52.9	3.24(2.45-4.27)	403	43.3	3.85(2.84-5.23)
Almost everyday	450	68.9	6.39(4.79-8.51)	552	64.9	9.32(6.90-12.61
Regular diet	201	22.0		200	22.1	
No	201	32.8		289	22.1	
Yes	1525	48.1	1.89(1.39-2.58)	1671	44.3	2.80(2.09-3.76)
Falling in the last year						
Yes	162	35.2		295	16.9	
No	1562	47.4	1.66(1.18-2.32)	1664	45.4	4.07(2.96-5.60)
Worrying about falling						
Yes	681	24.2		870	25.3	
No	1043	60.6	4.81(3.88-5.96)	1086	53.8	3.44(2.83-4.17)
Social-psychological factors						
Feeling lonely						
Yes	232	28.9		332	23.8	
Not clear	354	26.0	0.87(0.60-1.25)	385	23.1	0.96(0.68-1.36)
No	1124	55.9	3.12(2.29-4.24)	1228	51.3	3.37(2.56-4.45)
Participating in entertainment						
No	613	24.5		815	30.2	
Yes	1109	58.3	4.32(3.47-5.38)	1139	48.8	2.21(1.83-2.67)
Watching TV often			· · · · · ·			, , , , , , , , , , , , , , , , , , ,
No	218	26.1		283	22.6	
Yes	1507	49.2	2.73(1.99-3.76)	1674	44.1	2.70(2.01-3.63)
Filial piety	1007	17.2		10/7		2., 3(2.01 5.05)
So so/bad	176	21.0		165	20.0	
Good	625	40.6	2.57(1.73-3.82)	673	40.0	2.66(1.77-4.02)
Very good	623 907	40.8 55.7	4.72(3.21-6.94)	1108	40.0	3.31(2.22-4.94)
	70/		7.141.1.41-0.741	1100	7.1.1	


Table 2. The scores of IADL and assessed factors according to their OR values.


Variables		Males	Females		
variables	Ν	Mean±SD	Ν	Mean±SD	
Total	1726	11.27±4.26	1960	12.05±5.23	
Behavioral factors					
Smoking	1722	1.41 ± 0.72	1959	1.50±0.29	
Alcohol consumption	1719	$1.01{\pm}0.01$	1958	1.25±0.09	
Taking a walk	1726	2.74±1.44	1960	7.27±3.56	
Doing exercise	1726	3.12±2.11	1960	4.45±3.21	
Regular diet	1726	1.79±0.29	1960	2.54±0.64	
Falling in the last year	1724	1.60±0.19	1959	3.61±1.10	
Worrying about falling	1724	3.30±1.86	1956	2.35±1.21	
Social-psychological factors					
Feeling lonely	1710	2.36±1.05	1945	2.49±1.16	
Participating in entertainment	1722	3.14±1.59	1954	1.70±0.60	
Watching TV often	1725	2.51±0.58	1957	2.46±0.60	
Filial piety	1708	3.55±1.32	1946	2.89±0.65	

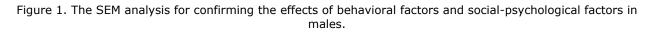

Figure 1. The SEM analysis for confirming the effects of behavioral factors and social-psychological factors in males.

Figure 2. The SEM analysis for confirming the effects of behavioral factors and social-psychological factors in females.

<text><text>

180x160mm (300 x 300 DPI)

BMJ Open

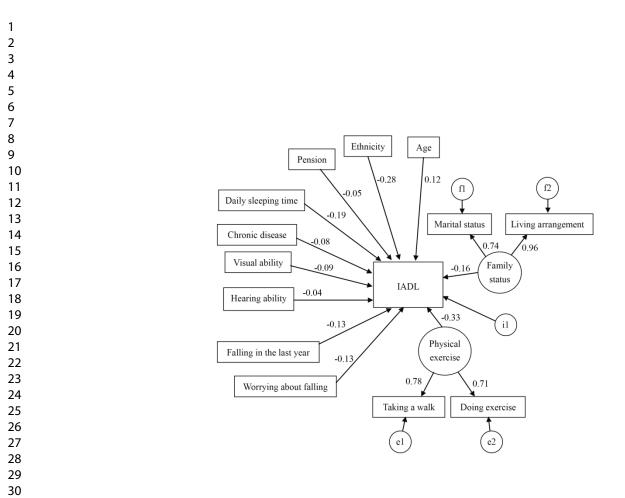


Figure 2. The SEM analysis for confirming the effects of behavioral factors and social-psychological factors in females.

199x150mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Appendix A. Distribution of IADL scale (independence) in demographic characteristics and health status.

	Males				Females		
Variables	N	Independence	dependence OR(95%CI)		Independence	OR(95%CI)	
	IN	(%)	OK(95/0CI)	Ν	(%)	OK(9576CI)	
Demographic characteristics							
Age							
75+	580	30.0		814	19.4		
65-74	1146	54.5	2.80(2.26-3.46)	1146	56.5	5.38(4.37-6.64)	
Ethnicity							
Minority	-	-		269	15.2		
Han	-	-	-	1690	45.1	4.58(3.24-6.47)	
Marital status							
Other	302	20.5		470	20.6		
Married/cohabitation	1423	51.8	4.16(3.09-5.60)	1490	47.5	3.48(2.72-4.45)	
Living arrangement							
Living alone	184	21.7		227	30.8		
Living with spouse	1230	54.1	4.25(2.94-6.14)	1159	53.4	2.57(1.90-3.49)	
Living with spouse and children	184	37.0	2.11(1.33-3.35)	327	26.9	0.83(0.57-1.20)	
Living with children	126	19.8	0.89(0.51-1.56)	243	11.1	0.28(0.17-0.46)	
Pension							
Haven't	116	36.2		188	16.0		
Have	1606	47.0	1.56(1.06-2.31)	1769	43.6	4.08(2.73-6.09)	
Health status							
Chronic disease							
Present	1264	34.2		1529	31.9		
Not present	462	79.4	7.44(5.77-9.59)	431	73.5	5.93(4.67-7.54)	
Visual ability							
Impaired	691	37.9		844	28.1		
Good	1030	51.8	1.76(1.45-2.15)	1112	50.9	2.66(2.19-3.21)	
Hearing ability							
Impaired	763	29.4		853	23.2		
Good	957	59.7	3.56(2.91-4.36)	1102	54.9	4.03(3.30-4.91)	
Daily sleeping time							
<4/><4/>>8 hours	110	28.2		210	11.4		
4-6 hours	906	42.4	1.88(1.21-2.90)	977	40.0	5.17(3.32-8.06)	
6-8 hours	710	54.1	3.00(1.93-4.67)	769	50.5	7.89(5.04-12.35	
Sleeping quality							
Bad	765	30.2		968	27.4		
Good	961	59.1	3.34(2.73-4.08)	992	54.4	3.17(2.63-3.83)	
Chewing ability							
Bad	426	20.7		651	15.5		
Middle	903	44.9	3.12(2.39-4.09)	989	46.0	4.64(3.63-5.94)	
Good	396	77.3	13.06(9.37-18.20)	317	78.2	19.60(13.92-27.5	

Note. OR: Odd ratio; 95%CI: 95% confidence interval.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 22

57 58 59

60

BMJ Open

X7		Males	Females	
Variables	Ν	Mean±SD	Ν	Mean±SD
Demographic characteristics				
Age	1726	72.87±5.84	1960	73.55±5.82
Ethnicity			1959	4.09±1.23
Marital status	1725	3.61±1.20	1960	2.89±1.06
Living arrangement	1724	3.43±1.33	1956	1.81±0.93
Pension	1722	1.53±0.14	1957	3.78±0.91
Health status				
Chronic disease	1726	2.72±2.85	1960	2.08 ± 2.04
Visual ability	1721	1.46±0.37	1956	1.94±0.82
Hearing ability	1720	2.42±1.27	1955	2.71±1.50
Daily sleeping time	1726	2.28±0.64	1956	5.79±2.10
Sleeping quality	1726	2.30±1.16	1960	2.10±1.09
Chewing ability	1725	4.88±4.55	1957	5.85±6.25

ling to their OR values.

	Item No	Recommendation	In my manuscript
Title and	1	(a) Indicate the study's design with a commonly used	Page 1 in title and Page 2, Line 8-9
abstract		term in the title or the abstract	
		(<i>b</i>) Provide in the abstract an informative and balanced	Page 2, Line 13-25
		summary of what was done and what was found	
Introduction			
Background/r	2	Explain the scientific background and rationale for the	Page 4, Line 2-25
ationale		investigation being reported	
Objectives	3	State specific objectives, including any prespecified	Page 4, Line 26-31
		hypotheses	
Methods			
Study design	4	Present key elements of study design early in the paper	Page 5, Line 13 to Page 6, Line 17
Setting	5	Describe the setting, locations, and relevant dates,	Page 5, Line 4-7 and Line 9-10
		including periods of recruitment, exposure, follow-up,	
		and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and	Page 5, Line 7-9
		methods of selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors,	Page 5, Line 13 to Page 6, Line 17
		potential confounders, and effect modifiers. Give	
		diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and	Page 5, Line 13 to Page 6, Line 17
measurement		details of methods of assessment (measurement).	
		Describe comparability of assessment methods if there	
		is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Page 5, Line 7 and Line 10-12
Study size	10	Explain how the study size was arrived at	We had introduced the prevalence o
			dependency (7.9%-53.9%) in the
			introduction section. According to the formula $N = 100 * (1 m)/m$
			the formula N=100*(1-p)/p, sample size of 1166 is large enough. In our
			study, totally we interviewed 4701
			individuals, which is much more
			than the size calculated. Thus, we
			did not explain a lot about it.
Quantitative	11	Explain how quantitative variables were handled in the	Page 5, Line 17-20 and Page 6,
variables		analyses. If applicable, describe which groupings were	Line 24-25
		chosen and why	
Statistical	12	(<i>a</i>) Describe all statistical methods, including those	Page 6, Line 23-26
methods		used to control for confounding	
		(b) Describe any methods used to examine subgroups	Page 6, Line 27-29
		and interactions	-
		(c) Explain how missing data were addressed	Page 6, Line 30
		(<i>d</i>) If applicable, describe analytical methods taking	None
		account of sampling strategy	
		(e) Describe any sensitivity analyses	None

For peer review only - http://bmjopen!bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for	Page 5, Line 8-12 and Page 7, Line
		eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	None
		(c) Consider use of a flow diagram	None
Descriptive	14*	(a) Give characteristics of study participants (eg	Table 1 and Appendix A
data		demographic, clinical, social) and information on	
		exposures and potential confounders	
		(b) Indicate number of participants with missing data	Tables 1 and 2 showed the actual
		for each variable of interest	number and the total number.
Outcome data	15*	Report numbers of outcome events or summary	None
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable,	Page 7, Line 3-26; Tables 1 and 2,
		confounder-adjusted estimates and their precision (eg,	and Appendix A and B.
		95% confidence interval). Make clear which	
		confounders were adjusted for and why they were	
		included	
		(b) Report category boundaries when continuous	None
		variables were categorized	
		(c) If relevant, consider translating estimates of relative	None
		risk into absolute risk for a meaningful time period	
Other	17	Report other analyses done—eg analyses of subgroups	Page 7, Line 11-15
analyses		and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study	Page 7, Line 31 to Page 9, Line 17
		objectives	
Limitations	19	Discuss limitations of the study, taking into account	Page 9, Line 18-21
		sources of potential bias or imprecision. Discuss both	
		direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results	Page 9, Line 24-30
		considering objectives, limitations, multiplicity of	
		analyses, results from similar studies, and other	
		relevant evidence	
Generalisabili	21	Discuss the generalisability (external validity) of the	Page 7, Line 29-31
ty		study results	
Other informa	tion		
Funding	22	Give the source of funding and the role of the funders	Page 10, Line 6-7
-		for the present study and, if applicable, for the original	
		study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at

http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer terier only

BMJ Open

The prominent effect of physical activity on independent living ability among community-dwelling elderly in urban areas of Liaoning Province in China: a population-based study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023543.R1
Article Type:	Original research
Date Submitted by the Author:	11-Jan-2019
Complete List of Authors:	Wang, Bowen; China Medical University, Social Medicine, School of Public Health Wu, Yijiao Zhang, Tianjiao; China Medical University, Social Medicine, School of Public Health Han, Jinsong; China Medical University, Social Medicine, School of Public Health Yu, Lianzheng; Liaoning Provincial Center for Disease Control and Prevention, Shenyang, PR China., Department of Noncommunicable Chronic Disease Prevention Sun, Wei; China Medical University, Social Medicine, School of Public Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, SOCIAL MEDICINE

SCHOLARONE[™] Manuscripts

The prominent effect of physical activity on independent living ability among community-dwelling elderly in urban areas of Liaoning Province in China: a population-based study Bowen Wang,^{a, b*} Yijiao Wu,^{a*} Tianjiao Zhang,^a Jinsong Han,^a Lianzheng Yu,^c Wei Sun.^a

^a Department of Social Medicine, School of Public Health, China Medical University, Shenyang, PR China.

^b China First Mandarin Group Northeast International Hospital, Shenyang, PR China.

^c Department of Noncommunicable Chronic Disease Prevention, Liaoning Provincial Center for

Disease Control and Prevention, Shenyang, PR China.

* These authors contributed equally to the study.

Address correspondence to: W. Sun, Department of Social Medicine, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China.

Email: wsun@cmu.edu.cn

ABSTRACT

Objective Independent living ability is crucial for the elderly; however, its assessment performed in China employs various scales and lacks risk factors, especially behavioral and social-psychological factors, which could be improved through health education. This study aimed to assess the independent living ability of community-dwelling elderly in urban areas of China and to identify its association with behavioral and social-psychological factors.

Design A population-based study using random cluster sampling method was performed in two core cities in Liaoning Province during March-November 2012.

Study population A total of 3686 individuals who were >=65 years old, had no dementia and cognitive impairment, had lived in the sampled communities for >=5 years, and could take part in the study were enrolled.

Main outcome measures Interviews were conducted to collect information of independent living ability, indicated by the instrumental activity of daily living (IADL), behavioral factors, social-psychological factors, and confounders (demographic characteristics and health status). The mini-mental state examination was used to screen for cognitive impairment.

Results The independence rate was 46.3% in males and 41.1% in females. Structural equation modeling analysis showed that physical activity, drawn from taking a walk and doing exercise, had the strongest association with the IADL in both males (-0.34) and females (-0.33). Falling in the last year and worrying about falling were also significantly associated with IADL. The effects of alcohol consumption, feeling lonely, and participating in entertainment were significant in males.

Conclusion The independent living ability of the elderly in urban areas in Liaoning Province in China was at a low level. Physical activity was one of the important roles in both males and females; whereas the role of social-psychological factors only existed in males. Gender-specific health care and education to avoid sedentary life should be advocated for the elderly to maintain/improve their independent living ability.

Strengths and limitations of this study

- The Lawton IADL scale was applied in this study, which has been used worldwide to indicate independent living ability of the elderly.
- The effects of behavioral and social-psychological factors that could be improved through health education in daily life were assessed among a Chinese population with adjustment for demographic characteristics and health status, whereas the measurements of smoking and alcohol consumption were broad and simplistic as the first attempt.
- Information bias was controlled as sufficient as possible because the cognitive function of the elderly without dementia was further screened using the mini-mental state examination.
- Quantitative assessment through scoring measured factors according to the OR values was conducted and the effects on IADL were confirmed by structural equation modeling analysis.

INTRODUCTION

A significant change in the age structure of the world's population has resulted from population aging,¹ and has become a global issue in the 21st century. ^{2 3} China is a nation with the largest aging population, which accounts for one-fifth of the total elderly population worldwide. ⁴ Indeed, it has been estimated that China will experience the most rapid rate of aging in the world over the next 2–3 decades. ¹ Thus, how to cope with problems caused by population aging has become particularly important for the development of China.

For the elderly, independence in daily life reduces nursing demands, decreases the consumption of medical resources, and improves the quality of life. Even if the loss of independent living ability is inevitable for the elderly, maintaining and/or improving this ability, even for short time, can postpone the onset of dependency and reduce the enormous social burden. Thus, focusing on the independent living ability among the elderly prior to death or becoming ill is important.

Previous studies involving the independent living ability of the elderly have been conducted in developed countries. ⁵⁻⁹ The factors associated with the independent living ability of the elderly have been shown to be demographic characteristics (age, gender, ethnicity, marital status, education, and living arrangement), health status (chronic disease, visual ability, and hearing ability), behavior factors (smoking, alcohol consumption, taking a walk, doing exercise, and falling risk), and social-psychological factors (social integration, depressive symptoms, and social activity). Related studies have also been conducted in China; ¹⁰⁻¹² however, various scales were used to indicate independence. As a result, the rate of dependency ranged from 7.9%-53.9%. The risk factors were limited to demographic characteristics and chronic disease. As for behavioral and social-psychological factors, health education interventions on smoking, respiratory function exercise, diabetes-related activity, anxiety, family support and so on, had already been identified to be able to improve health status of the elderly. ¹³⁻¹⁵ Thus, these factors should also be studied from the perspective of independent living ability. Unfortunately, those educational risk factors in daily life were not considered in China. In addition, cognitive function screening was rarely considered in international and domestic studies, which was insufficient with respect to excluding information bias, especially for the aged population.

The purpose of this study was to conduct a population-based study to assess the independent living ability among the elderly without cognitive impairment in China, and to clarify the effects of behavioral and social-psychological factors with adjustment for demographic characteristics and

BMJ Open

health status. As a first attempt, we initially focused our attention on the elderly in urban areas. We believe our findings will provide help for the healthcare system to properly cope with population aging.

METHODS

Study area and population

According to the China Yearbook, the income level in Liaoning Province is similar to the national average. Shenyang city and Anshan city are the core cities in Liaoning Province and represent the urban area according to the Liaoning Provincial Yearbook. Two districts in each city were randomly sampled and one community in each sampled district was randomly selected. People who were >= 65 years of age, had never be diagnosed as dementia by doctors, lived in the local area for >= 5 years, and volunteered to take part in this study comprised the study population (a total of 4701 individuals). Investigators were recruited from graduate students who majored in medical epidemiology and trained for two weeks with the purpose to control respondent bias. Face-to-face interview was conducted between March and November 2012. 4057 participants completed 80% and more of interview and were identified as effective responses. The effective response rate was 86.3%. Cognitive function was further screened with the mini-mental state examination (MMSE). Cognitive impairment was identified with consideration on education as: illiterate <=17, elementary <=20, middle/high school <=22, junior college and over <=23. In the current study, 3686 individuals without cognitive impairment were enrolled as the subjects.

Measurement of independent living ability

The Lawton instrumental activities of daily living (IADL) scale has been widely used to assess independent living ability of the elderly. ¹⁶ It has been validated among Chinese elderly. ¹⁷ The IADL scale has eight items assessing the ability to use the telephone, shop for daily necessities, prepare meals, handle finances, do housework, take medications, do laundry, and use public transportation. Responses to each item are coded as 1 (completely able), 2 (have some difficulty), 3 (need help), or 4 (unable). The total score ranges from 8-32. The higher the score, the worse the independence. Independence is defined only if the total score is 8.

Measurements of behavioral factors, social-psychological factors, and confounders

Behavioral factors included the following six items: (1) smoking; (2) alcohol consumption; (3) taking a walk; (4) doing exercise; (5) regular diet; and (6) falling in the last year. Smoking was

measured with answers of "Yes," "Had ever," or "Never." Alcohol consumption was examined by asking "Do you drink regularly (twice or more a week for more than a year)?". The responses were categorized as "Yes" or "No." Taking a walk and doing exercise (including Tai chi chuan, jogging, running, riding a bike, swimming, and playing shuttlecock, table tennis and so on), were divided into four groups on the basis of frequency: almost none; 1-2 times/week; 3-4 times/week; and almost every day. ¹⁸ Regular diet was measured by asking "Do you have breakfast, lunch and dinner on time?". Falling in the last year was defined as "Yes" or "No."

Social-psychological factors consisted of the following five items: (1) feeling lonely; (2) participating in entertainment; (3) watching television often; (4) worrying about falling; and (5) filial piety. Feeling lonely was assessed according to an individual's perception and was categorized as "Yes," "Not clear," or "No." Information on participating in entertainment and watching television often was examined by asking "Do you always hang out and play cards, chess, mahjong, or some other entertainment?" ¹⁸ and "Do you watch television almost every day?". Worrying about falling was defined as "Yes" or "No." Filial piety is a prime virtue in Confucianism and advocated by Chinese traditional culture. The filial piety of children is expected to affect the health of the elderly. Thus, filial piety was included and assessed by asking "How do you feel about your children's filial duty to you?". The responses "So so" and "Bad" accounted for 8.8% and 0.4% of responses, respectively. These responses were combined into one group.

Confounders included factors of demographic characteristics and health status. Demographic characteristics included age, gender, ethnicity, marital status, living arrangement, pension, and health insurance. For marital status, the responses of "Single," "Divorced," and "Separation" were combined with "Widow" as the "Other" group because of the low response rate (<5%). Health status included chronic disease, visual ability, ⁸ hearing ability, ⁸ daily sleep time, sleep quality, and chewing ability. ¹⁹ Chronic diseases were categorized as "Present" if any diseases, such as hypertension, cardiovascular disease, diabetes, stoke, liver cirrhosis, emphysema, rheumatoid arthritis, and chronic renal insufficiency, had been diagnosed. For daily sleep time, the responses "<4 hours" (2.7%) and ">8 hours" (6.0%) were combined as one group. Sleep quality measured the difficulty in falling asleep or frequent awakening/dreaming.

Patient and public involvement

Only community residents were involved as participants in this study. They received the written information about the conduct of the survey. However, they were not involved in the development

BMJ Open

of the research question and outcome measures, the recruitment of subjects and the undertaking of the study. After signing an informed consent, they were assessed for eligibility and data collection was conducted.

Statistical analysis

Among all independent variables, health insurance in both males and females and ethnicity in males were not considered in the data analysis as > 95% of the participants had the same response.

The distribution of IADL (independence) among categorical variables was examined by the chi-square test. The odds ratio (OR) was calculated in comparison to the baseline. Then, the quantitative values of these variables were scored according to the OR values. The baseline was scored as 1 and the other groups were scored as the corresponding OR values. Structural equation modeling (SEM) was used to confirm the effect of factors measured on IADL score. Maximum likelihood estimates was selected to fit SEM. While performing SEM analysis, variables with p > 0.05 were eliminated, in the sequence of p value, one at a time. When a variable was eliminated, if the goodness of fit became worse, this variable would remain in the model. In this study, no variable was found to decrease the goodness of fit during elimination. The goodness of fit of SEM model was indicated by GFI, CFI/TLI and RMSEA. The proposed values indicating high goodness of fit was GFI>0.8, CFI/TLI >0.9, and RMSEA<0.8.

The agreement between categorical variables was evaluated with the Kappa test. If the Kappa value was more than 0.50, these variables were considered in agreement. As for quantitative values, Pearson correlation was used to identify the collinear variables.

The missing data was not handled because the missing rate was less than 5%. SPSS for Windows (version 13.0) and AMOS (version 6.0) were used for all statistical analyses.

RESULTS

Among 3686 subjects, the independence in males and females was 46.3% and 41.1%, respectively. Totally, 43.5% of individuals were independent. In comparison to the results (54.8%) obtained from urban areas in Shanghai (n=2944), ¹⁷ the level of independence was significantly lower (p<0.01). The results of univariate analysis of the IADL scale (independence) are shown in Table 1. Among the community-dwelling elderly in urban areas, the factors that were significantly correlated with the IADL included smoking, taking a walk, doing exercise, regular diet, falling in the last year, worrying about falling, feeling lonely, participating in entertainment, watching TV

often, and filial piety in both males and females. The distribution of IADL (independence) among demographic characteristics and health status is shown in Appendix A.

The average IADL scores were 11.27±4.26 (mean±SD) in males and 12.05±5.23 in females. The items were scored according to the OR values. In this study, the correlations between "taking a walk" and "doing exercise" were 0.6252 in males and 0.5746 in females. Therefore, a latent variable, "physical activity," drawn from these two variables was used, which was the same as confounders of "marital status" and "living arrangement" (r: 0.8074 in males and 0.6443 in females). A latent variable (family status) was obtained. The scores are shown in Table 2. The scores of demographic characteristics and health status are shown in Appendix B.

SEM examinations for confirming the effects of behavioral and social-psychological factors were performed separately in males and females. The results are shown in Figures 1 and 2. SEM analysis revealed that the latent variable (physical activity) had the highest association with the IADL score in both males and females. The standardized parameter estimate (β) was -0.34 in males and -0.33 in females. In males, the IADL score was associated with feeling lonely, worrying about falling, alcohol consumption, falling in the last year, and participating in entertainment, with adjustments for family status, age, chronic disease, chewing ability, daily sleep time, visual ability, and sleep quality. The goodness of fit (GFI, CFI, TLI and RMSEA) was 0.917, 0.824, 0.763 and 0.083 respectively. In females, the IADL score was associated with falling in the last year and worrying about falling, with adjustments for ethnicity, daily sleep time, family status, age, visual ability, chronic disease, pension, and hearing ability. The goodness of fit (GFI, CFI, TLI and RMSEA) was 0.920, 0.845, 0.764 and 0.093 respectively.

DISCUSSION

Among the elderly in urban areas in Liaoning Province, the prevalence of independence in daily living ability was 43.5%. The independence in daily living ability was significantly lower than the level (54.8%) observed in the elderly living in urban areas in Shanghai, ¹⁷ even though the average age of our study population (73.2 years) was much younger than the population in Shanghai (78.44 years). In addition, independent living ability in females (41.1%) was lower than males (46.3%), which was consistent with the results of the urban elderly in Suzhou; ¹² however, the life expectancy of females (79.4) was longer than males (73.6) according to the China Yearbook, ²⁰ thus suggesting that more attention should be paid to maintaining independent living for a longer time in

Page 9 of 22

BMJ Open

elderly females. These findings indicated that the independent living ability among the urban elderly in Liaoning province is still at a low level. In this study, the sample size was sufficiently large and information bias was controlled as sufficient as possible because both dementia and cognitive function screening with MMSE were conducted. Meanwhile, even if CFI and TLI were not achieved the target value of 0.9, their values were still over 0.7, which indicated that the goodness of fit of SEM model was still acceptable. All these facts increased the generalization of our conclusions. Our results suggested that maintaining/improving independent living ability of the elderly, especially females, should be essential part of providing healthcare for the aged population.

With respect to the behavioral factors, physical activity was reported to not only maintain physical health of the elderly, but also prevent elderly from acquiring mental diseases. ²¹ In our study, taking a walk and doing exercise were considered to measure physical activity among the elderly; however, due to the high agreement between walking and doing exercise, previous studies have usually selected one item to enter into the multiple model while assessing their effects. In this study, the kappa value between taking a walk and doing exercise was also high (0.546). Of note, we are not satisfied with this type of adjustment because taking a walk and doing exercise require different intensities of activity. This kind of assessment was expected to weaken the effect of physical activity. Thus, we used the latent variable, physical activity, to represent the effects of both taking a walk and doing exercise. As a result, physical activity was shown to have the strongest association with IADL in both males and females. Although health status was reported to be crucial for the quality of life of the elderly in our previous study ¹⁸ and the presence of chronic disease was well-documented as the basis of any disorder, ²² ²³ the associations with the IADL score were weaker than physical activity. We also compared the effect of the latent variable with the effects of original observed variables. When taking a walk was entered the model instead of physical activity, the parameter estimate was lower (-0.233 in males and -0.228 in females) in comparison to physical activity, same to doing exercise (-0.253 in males and -0.244 in females). It conversely proved that the previous adjustment did weaken the effect of physical activity. Furthermore, we found that the more frequent the elderly performed physical activity, the stronger the effect on the independent living ability. Thus, any type of activity should be advocated for the independence of the elderly regardless of health status.

With respect to behavioral factors, falling in the last year and worrying about falling were also associated with independent living ability in both males and females. The experience of falling in

the last year may be an indicator for the decline of muscle strength, coordination, balance, and flexibility, ²⁴ which tended to be a potential threat for fractures and becoming bedridden among the elderly. ²⁵ Furthermore, because its significant correlation with visual ability (0.178 in males and 0.191 in females), its effect on health status also increased the possibility to affect the independent living ability of the elderly. Indeed, worrying about falling will inevitably limit movement among the elderly. Correspondingly, the effects on independent living ability were observed in both males and females. Thus, we should pay more attention to the safety of daily routines. In addition, alcohol consumption was shown to be significantly associated with IADL in males. Even if the elderly do not consume alcohol excessively and measurement of alcohol consumption, rather than alcohol use disorder, has be reported to be associated with notable cognitive, social and psychological consequences in later life. ^{26 27} Those negative effects together with our result indicated that conclusion on alcohol consumption should be made with caution for the elderly. Therefore, guiding the elderly to avoid alcohol seems to be able to contribute to independent living ability.

In comparison to behavioral factors, the effects of social-psychological factors on independent living ability of the elderly were weaker with adjustment for demographic characteristics and health status. A previous study reported that social participation enhanced the ability of the elderly to live independently. ²⁸ In this study, feeling lonely and participating in entertainment were shown to be significantly associated with independent living ability, but only in males. This finding might be caused by the Chinese traditional gender-role attitude "men go out to work and women stay at home." This attitude believes that men are more suitable for job, earning money and social engagement; whereas women are more suitable for housework and taking care of family members. Even if the society has developed well in China, this gender-role attitude does not change a lot, especially for the elderly. ²⁹ Thus, even if almost half of females would go out and enjoy some entertainment, the animated atmosphere seemed to be more effective in keeping males in good physical and mental health compared to females, who are accustomed to being confined to be at home.

As for the confounders, their effects had been well documented in the studies performed in China. ¹⁰⁻¹² In the current study, ethnicity was found to be the second strongest factors associated with independent living ability among females. This ethnicity-related difference might be due to the under development of social security and strong consciousness of clan and family of minority. ³⁰

BMJ Open

which reflected the vulnerability of the elderly-care policy in minority area. Among our study population, the minority was less than 5% in males. Thus, ethnic effect was not analyzed among males.

There were some limitations in our study. First, the measurements of several assessed factors were too broad and simplistic, such as smoking and alcohol consumption. Second, even if our study was a population-based study, it was limited by the cross-sectional design. Therefore, a prospective study is required to draw any causal conclusions.

CONCLUSION

Our results showed that independent living ability among the elderly in urban areas in Liaoning Province in China is at a low level. Physical activity has an important role in maintaining and/or improving independent living ability of the elderly, even if health status has a crucial effect. Social-psychological factors, such as feeling lonely and participating in entertainment, could affect independent living ability among elderly males. Our findings suggest that gender-specific healthcare should be adopted as part of health promotion for the elderly. Physical activity of any type should be encouraged to maintain and improve the independent living ability of the elderly.

rez oniz

Contributors: WS designed the study and supervised the performance of study. BW and YW collected the data, analyzed the data and wrote the manuscript. TZ and JH helped with cleaning the data, giving advice on statistical analysis and revising the manuscript. LY coordinated data collection. All authors have given final approval of the version to be published.

Funding: This research was funded by the National Natural Science Foundation of China [grant number: 81102193].

Disclaimer: The funding agencies are not responsible for the opinions presented in the manuscript. The funding bodies had no influence on the conduct of the study or the interpretation of the results.

Competing interest: None declared.

Ethics approval: The study protocol and informed consent form received ethics approval from the Committee on Human Experimentation at the China Medical University. Written informed consent concerning conduct of the survey was obtained from each participant.

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: No additional data sharing available.

References

- Mai Y, Peng X, Chen W. How fast is the population aging in China?. Asian Popul Stud 2013; 9(2):216-39.
- 2. De Luca d'Alessandro E, Bonacci S, Giraldi G. Aging populations: the health and quality of life of the elderly. *Clin Ter* 2011; 162(1):e13–8.
- 3. Arslantas D, Ünsal A, Ozbabalık D. Prevalence of depression and associated risk factors among the elderly in Middle Anatolia, Turkey. *Geriatr Gerontol Int* 2014; 14(1):100-8.
- 4. Mu G, Zhang T. The development of population aging in China and the way to deal with it. *J Huazhong Norm Univ (Hum & Soc Sci)* 2011; 50(5):29-36. [Article in Chinese]
- Tanimoto Y, Watanabe M, Sun W, *et al.* Association between muscle mass and disability in performing instrumental activities of daily living (IADL) in community-dwelling elderly in Japan. *Arch Gerontol Geriatr* 2012; 54(2): e230-3.
- Lipskaya L, Jarus T, Kotler M. Influence of cognition and symptoms of schizophrenia on IADL performance. *Scand J Occup Ther* 2011; 18(3):180-7.
- Gross AL, Rebok GW, Unverzagt FW, et al. Cognitive predictors of everyday functioning in older adults: results from the ACTIVE Cognitive Intervention Trial. J Gerontol B Psychol Sci Soc Sci 2011; 66(5):557-566.
- Sun W, Watanabe M, Tanimoto Y, *et al.* Factors associated with good self-rated health of non-disabled elderly living alone in Japan: a cross-sectional study. *BMC Public Health* 2007; 7(1):297.
- 9. Gadalla TM. Relative body weight and disability in older adults: results from a national survey. *J Aging Health* 2010; 22(4):403-18.
- Ni RX, Shen WZ, Bao Y, *et al.* Impact of the elderly chronic diseases in ability of daily life. *Chin Gen Pract* 2001; 4(1):42-4. [Article in Chinese]
- Tang GF, Wang Y, Zhao YS, *et al.* Study on activities of daily living and its related factors in the elderly in two cities of Anhui province. *Chin J Gerontol* 2001; 20(3):213-5. [Article in Chinese]
- Wu Y, Xu Y. Investigation on daily living ability of the elderly in urban area of Suzhou city. *Chin J Gerontol* 2014; 34(3):745-6. [Article in Chinese]
- 13. Huang S, Yuan L, Deng Y, *et al.* Effect of intervention of various forms of health education on health behavior of elderly patients with COPD. *Med Innovat China* 2013; 10(23):49-51. [Article

in Chinese]

- 14. Chapman KM, Ham JO, Liesen P, *et al.* Applying behavioral models to dietary education of elderly diabetic patients. *J Nutr Educ* 1995; 27(2):75-9.
- 15. Seixas AA, Trinh-Shevrin C, Ravenell J, *et al.* Culturally tailored, peer-based sleep health education and social support to increase obstructive sleep apnea assessment and treatment adherence among a community sample of blacks: study protocol for a randomized controlled trial. *Trials* 2018; 19:519.
- 16. Mcgrory S, Shenkin SD, Austin EJ, *et al.* Lawton IADL scale in dementia: can item response theory make it more informative?. *Age Ageing* 2014; 43(4):491-5.
- 17. Xue B, Jiang G, Ye G, *et al.* Investigation on activities of daily living and its related influential factors in retired cadres in Yangpu district, Shanghai. *Chin J Prev Contr Chron Non-commun Dis* 2006; 14(6):410-2. [Article in Chinese]
- 18. Sun W, Aodeng S, Tanimoto Y, *et al.* Quality of life (QOL) of the community-dwelling elderly and associated factors: A population-based study in urban areas of China. *Arch Gerontol Geriatr* 2015; 60(2):311-6.
- 19. Kimura Y, Ogawa H, Yoshihara A, *et al.* Evaluation of chewing ability and its relationship with activities of daily living, depression, cognitive status and food intake in the community-dwelling elderly. *Geriatr Gerontol Int* 2013; 13(3):718-25.
- 20. National Bureau of Statistics of China. China statistical yearbook, 2016. (http://www.stats.gov.cn/tjsj/ndsj/2016/indexch.htm).
- 21. Helbostad JL, Sletvold O, Moe-Nilssen R. Home training with and without additional group training in physically frail old people living at home: effect on health-related quality of life and ambulation. *Clin Rehabil* 2004; 18(5):498-508.
- 22. Bartlem KM, Bowman JA, Freund M, *et al.* Care provision to prevent chronic disease by community mental health clinicians. *Am J Prev Med* 2014; 47(6):762-70.
- 23. Al-Hamzawi AO, Rosellini AJ, Lindberg M, *et al.* The role of common mental and physical disorders in days out of role in the Iraqi general population: Results from the WHO World Mental Health Surveys. *J Psychiatr Res* 2014; 53(11):23-9.
- 24. Kai MC, Anderson M, Lau EMC. Exercise interventions: defusing the world's osteoporosis time bomb. *Bull World Health Organ* 2003; 81(11):827-30.
- 25. De Laet CE, Pols HA. Fractures in the elderly: epidemiology and demography. Baillieres Best

Pract Res Clin Endocrinol Metab 2000; 14 (2):171-9.

- 26. Yi SW, Jung M, Kimm H, et al. Usual alcohol consumption and suicide mortality among the Korean elderly in rural communities: Kangwha Cohort Study. J Epidemiol Community Health 2016; 70(8):778-83.
- 27. Hogenkamp PS, Benedict C, Sjögren P, *et al.* Late-life alcohol consumption and cognitive function in elderly men. *Age (Dordr)* 2014; 36(1):243-9.
- 28. Tomioka K, Kurumatani N, Hosoi H. Social participation and the prevention of decline in effectance among community-dwelling elderly: a population-based cohort study. *PLoS One* 2016; 11(10):e0164925.
- 29. Xu Q. Trend, source and heterogeneity of the change of gender-role attitude in China: a case study of two indicators. *Collect Women Stud* 2016; 3:33-43. [Article in Chinese]
- 30. Yang G. On the aging society and related policies in ethnic regions. *J Guangxi Teach Educ Univ* (*Philos & Soc Sci*) 2016; 37(3):53-8.

Table1 Univariate analysis of IADL scale (independence) in relation to behavioral factors and social-psychological factors.

Variables		Male	S	Females			
Variables	Ν	Independence (%)	OR(95%CI)	Ν	Independence (%)	OR(95%CI)	
Total	1726	46.3		1960	41.1		
Behavioral factors							
Smoking							
Yes	548	40.9		177	32.2		
Had ever	478	30.8	0.64(0.50-0.83)	270	30.7	0.93(0.62-1.41)	
Never	696	61.1	2.27(1.81-2.85)	1512	44.0	1.65(1.19-2.30)	
Alcohol consumption							
Yes	750	46.0		242	36.0		
No	969	46.4	1.02(0.84-1.23)	1716	41.8	1.28(0.97-1.70)	
Taking a walk							
Almost none	325	27.1		283	9.90		
1-2 times/week	385	28.1	1.05(0.75-1.46)	421	30.4	3.98(2.56-6.19)	
3-4 times/week	460	58.0	3.73(2.74-5.06)	488	48.6	8.60(5.60-13.20)	
Almost everyday	556	60.4	4.11(3.05-5.54)	768	53.6	10.54(6.96-15.96	
Doing exercise							
Almost none	470	25.7		460	16.5		
1-2 times/week	354	36.4	1.65(1.23-2.23)	465	34.8	2.70(1.98-3.69)	
3-4 times/week	452	52.9	3.24(2.45-4.27)	483	43.3	3.85(2.84-5.23)	
Almost everyday	450	68.9	6.39(4.79-8.51)	552	64.9	9.32(6.90-12.61)	
Regular diet							
No	201	32.8		289	22.1		
Yes	1525	48.1	1.89(1.39-2.58)	1671	44.3	2.80(2.09-3.76)	
Falling in the last year							
Yes	162	35.2		295	16.9		
No	1562	47.4	1.66(1.18-2.32)	1664	45.4	4.07(2.96-5.60)	
Worrying about falling							
Yes	681	24.2		870	25.3		
No	1043	60.6	4.81(3.88-5.96)	1086	53.8	3.44(2.83-4.17)	
Social-psychological factors							
Feeling lonely							
Yes	232	28.9		332	23.8		
Not clear	354	26.0	0.87(0.60-1.25)	385	23.1	0.96(0.68-1.36)	
No	1124	55.9	3.12(2.29-4.24)	1228	51.3	3.37(2.56-4.45)	
Participating in entertainment							
No	613	24.5		815	30.2		
Yes	1109	58.3	4.32(3.47-5.38)	1139	48.8	2.21(1.83-2.67)	
Watching TV often							
No	218	26.1		283	22.6		
Yes	1507	49.2	2.73(1.99-3.76)	1674	44.1	2.70(2.01-3.63)	
Filial piety							
So so/bad	176	21.0		165	20.0		
Good	625	40.6	2.57(1.73-3.82)	673	40.0	2.66(1.77-4.02)	
Very good	907	55.7	4.72(3.21-6.94)	1108	45.3	3.31(2.22-4.94)	

Note. OR: Odd ratio; 95%CI: 95% confidence interval.

Table 2	The description	ntion of sc	ores of IAD	and asses	ssed factors
1 4010 2.	The deserr	phon of se			seu luciols.

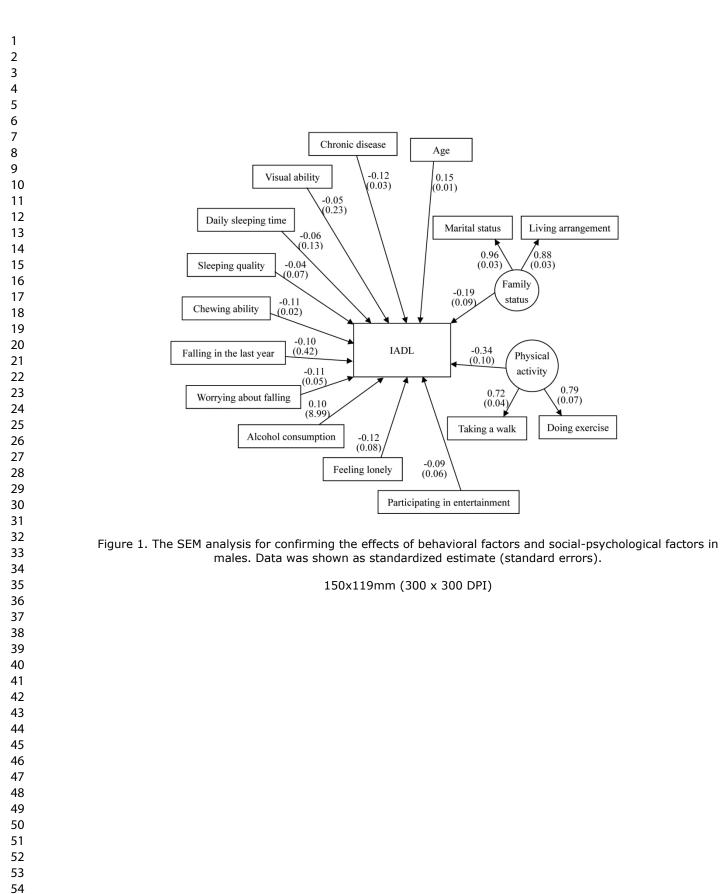
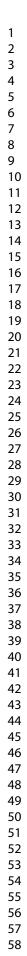

Variables		Males	Females		
variables	N	Mean±SD	Ν	Mean±SD	
IADL score	1726	11.27±4.26	1960	12.05±5.23	
Behavioral factors					
Smoking	1722	1.41 ± 0.72	1959	1.50±0.29	
Alcohol consumption	1719	1.01 ± 0.01	1958	1.25±0.09	
Taking a walk	1726	2.74±1.44	1960	7.27±3.56	
Doing exercise	1726	3.12±2.11	1960	4.45±3.21	
Regular diet	1726	1.79±0.29	1960	2.54±0.64	
Falling in the last year	1724	1.60±0.19	1959	3.61±1.10	
Worrying about falling	1724	3.30±1.86	1956	2.35±1.21	
Social-psychological factors					
Feeling lonely	1710	2.36±1.05	1945	2.49±1.16	
Participating in entertainment	1722	3.14±1.59	1954	1.70±0.60	
Watching TV often	1725	2.51±0.58	1957	2.46±0.60	
Filial piety	1708	3.55±1.32	1946	2.89±0.65	

Figure 1. The SEM analysis for confirming the effects of behavioral factors and social-psychological factors in males. Data was shown as standardized estimate (standard errors).


Figure 2. The SEM analysis for confirming the effects of behavioral factors and social-psychological factors in females. Data was shown as standardized estimate (standard errors).

for beer terien only

BMJ Open

BMJ Open

59 60

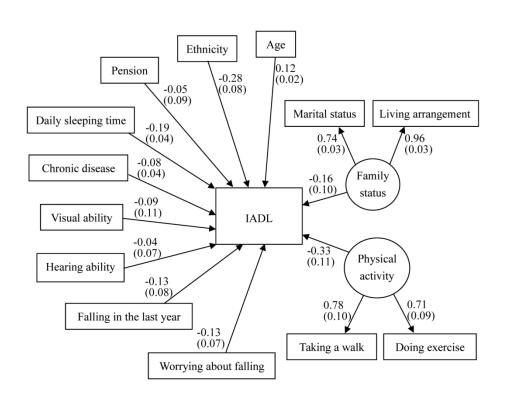


Figure 2. The SEM analysis for confirming the effects of behavioral factors and social-psychological factors in females. Data was shown as standardized estimate (standard errors).

150x119mm (300 x 300 DPI)

		Male	es	Females			
Variables	N	Independence (%)	OR(95%CI)	Ν	Independence (%)	OR(95%CI)	
Demographic characteristics							
Age							
75+	580	30.0		814	19.4		
65-74	1146	54.5	2.80(2.26-3.46)	1146	56.5	5.38(4.37-6.64)	
Ethnicity							
Minority	-	-		269	15.2		
Han	-	-	-	1690	45.1	4.58(3.24-6.47)	
Marital status							
Other	302	20.5		470	20.6		
Married/cohabitation	1423	51.8	4.16(3.09-5.60)	1490	47.5	3.48(2.72-4.45)	
Living arrangement							
Living alone	184	21.7		227	30.8		
Living with spouse	1230	54.1	4.25(2.94-6.14)	1159	53.4	2.57(1.90-3.49)	
Living with spouse and children	184	37.0	2.11(1.33-3.35)	327	26.9	0.83(0.57-1.20)	
Living with children	126	19.8	0.89(0.51-1.56)	243	11.1	0.28(0.17-0.46)	
Pension							
Haven't	116	36.2		188	16.0		
Have	1606	47.0	1.56(1.06-2.31)	1769	43.6	4.08(2.73-6.09)	
Health status							
Chronic disease							
Present	1264	34.2		1529	31.9		
Not present	462	79.4	7.44(5.77-9.59)	431	73.5	5.93(4.67-7.54)	
Visual ability							
Impaired	691	37.9		844	28.1		
Good	1030	51.8	1.76(1.45-2.15)	1112	50.9	2.66(2.19-3.21)	
Hearing ability							
Impaired	763	29.4		853	23.2		
Good	957	59.7	3.56(2.91-4.36)	1102	54.9	4.03(3.30-4.91)	
Daily sleeping time							
<4/>8 hours	110	28.2		210	11.4		
4-6 hours	906	42.4	1.88(1.21-2.90)	977	40.0	5.17(3.32-8.06)	
6-8 hours	710	54.1	3.00(1.93-4.67)	769	50.5	7.89(5.04-12.35)	
Sleeping quality							
Bad	765	30.2		968	27.4		
Good	961	59.1	3.34(2.73-4.08)	992	54.4	3.17(2.63-3.83)	
Chewing ability							
Bad	426	20.7		651	15.5		
Middle	903	44.9	3.12(2.39-4.09)	989	46.0	4.64(3.63-5.94)	
Good	396	77.3	13.06(9.37-18.20)	317	78.2	19.60(13.92-27.5	

Variables		Males]	Females
Variables	N	Mean±SD	Ν	Mean±SD
Demographic characteristics				
Age	1726	72.87±5.84	1960	73.55±5.82
Ethnicity			1959	4.09±1.23
Marital status	1725	3.61±1.20	1960	2.89±1.06
Living arrangement	1724	3.43±1.33	1956	1.81±0.93
Pension	1722	1.53±0.14	1957	3.78±0.91
Health status				
Chronic disease	1726	2.72±2.85	1960	2.08±2.04
Visual ability	1721	1.46±0.37	1956	1.94±0.82
Hearing ability	1720	2.42±1.27	1955	2.71±1.50
Daily sleeping time	1726	2.28±0.64	1956	5.79±2.10
Sleeping quality	1726	2.30±1.16	1960	2.10±1.09
Chewing ability	1725	4.88±4.55	1957	5.85±6.25

Appendix B. The description of scores of demographic characteristics and health status

1725 4.88±4.55 1957 5.85±6.25

BMJ Open

BMJ Open

The prominent effect of physical activity on independent living ability among community-dwelling elderly in urban areas of Liaoning Province in China: a population-based study

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-023543.R2
Article Type:	Original research
Date Submitted by the Author:	06-Jun-2019
Complete List of Authors:	Wang, Bowen; China Medical University, Social Medicine, School of Public Health Wu, Yijiao Zhang, Tianjiao; China Medical University, Social Medicine, School of Public Health Han, Jinsong; China Medical University, Social Medicine, School of Public Health Yu, Lianzheng; Liaoning Provincial Center for Disease Control and Prevention, Shenyang, PR China., Department of Noncommunicable Chronic Disease Prevention Sun, Wei; China Medical University, Social Medicine, School of Public Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, SOCIAL MEDICINE

SCHOLARONE[™] Manuscripts

The prominent effect of physical activity on independent living ability among community-dwelling elderly in urban areas of Liaoning Province in China: a population-based study Bowen Wang,^{a, b*} Yijiao Wu,^{a*} Tianjiao Zhang,^a Jinsong Han,^a Lianzheng Yu,^c Wei Sun.^a ^a Department of Social Medicine, School of Public Health, China Medical University, Shenyang, PR China. ^b China First Mandarin Group Northeast International Hospital, Shenyang, PR China. ^c Department of Noncommunicable Chronic Disease Prevention, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, PR China. * These authors contributed equally to the study. Address correspondence to: W. Sun, Department of Social Medicine, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China. Email: wsun@cmu.edu.cn

ABSTRACT

Objective Independent living ability is crucial for the elderly; however, its assessment performed in China employs various scales and lacks risk factors, especially behavioral and social-psychological factors, which could be improved through health education. This study aimed to assess the independent living ability of community-dwelling elderly in urban areas of China and to identify the association with behavioral and social-psychological factors.

Design A population-based study using random cluster sampling method was performed in two core cities in Liaoning Province during March-November 2012.

Study population 3686 individuals who were >=65 years old, had no dementia and cognitive impairment, had lived in the sampled communities for >=5 years, and could take part in the study were enrolled.

Main outcome measures Interviews were conducted to collect information of independent living ability, indicated by the instrumental activity of daily living (IADL), behavioral factors, social-psychological factors, and confounders (demographic characteristics and health status). The mini-mental state examination was used to screen for cognitive impairment.

Results The independence rate was 46.3% in males and 41.1% in females. Structural equation modeling analysis showed that physical activity, drawn from taking a walk and doing exercise, had the strongest association with the IADL in both males (-0.34, SE 0.10) and females (-0.33, SE 0.11). Falling in the last year and worrying about falling were also significantly associated with IADL. The effects of regular drinking, feeling lonely, and participating in entertainment were significant in males.

Conclusion The independent living ability of the elderly in urban areas in Liaoning Province in China was at a low level. Physical activity was one of the important roles in both males and females; whereas the role of social-psychological factors only existed in males. Gender-specific health care and education to avoid sedentary life should be advocated for the elderly to maintain/improve their independent living ability.

Strengths and limitations of this study

- The Lawton IADL scale was applied in this study, which has been used worldwide to indicate independent living ability of the elderly.
- The effects of behavioral and social-psychological factors that could be improved through health education in daily life were assessed among a Chinese population with adjustment for demographic characteristics and health status, whereas the measurements of smoking and regular drinking were broad and simplistic as the first attempt.
- Information bias was controlled as much as possible because the cognitive function of the elderly without dementia was further screened using the mini-mental state examination.
- Quantitative assessment through scoring measured factors according to the OR values was conducted and the effects on IADL were confirmed by structural equation modeling analysis.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

INTRODUCTION

A significant change in the age structure of the world's population has resulted from population aging,¹ and has become a global issue in the 21st century. ^{2 3} China is a nation with the largest aging population, which accounts for one-fifth of the total elderly population worldwide. ⁴ Indeed, it has been estimated that China will experience the most rapid rate of aging in the world over the next 2–3 decades. ¹ Thus, how to cope with problems caused by population aging has become particularly important for the development of China.

For the elderly, independence in daily life reduces nursing demands, decreases the consumption of medical resources, and improves the quality of life. Even if the loss of independent living ability is inevitable for the elderly, maintaining and/or improving this ability, even for short time, can postpone the onset of dependency and reduce the enormous social burden. Thus, focusing on the independent living ability among the elderly prior to death or becoming ill is important.

Previous studies involving the independent living ability of the elderly have been conducted in developed countries. ⁵⁻⁹ The factors associated with the independent living ability of the elderly have been shown to be demographic characteristics (age, gender, ethnicity, marital status, education, and living arrangement), health status (chronic disease, visual ability, and hearing ability), behavior factors (smoking, alcohol consumption, taking a walk, doing exercise, and falling risk), and social-psychological factors (social integration, depressive symptoms, and social activity). Related studies have also been conducted in China; ¹⁰⁻¹² however, various scales were used to indicate independence. As a result, the rate of dependency ranged from 7.9%-53.9%. The risk factors were limited to demographic characteristics and chronic disease. As for behavioral and social-psychological factors, health education interventions for smoking, respiratory function exercise, diabetes-related activity, anxiety, and family support had already been identified to improve health status of the elderly.¹³⁻¹⁵ Thus, these factors should also be studied from the perspective of independent living ability. Unfortunately, those educational risk factors in daily life were not considered in China. In addition, cognitive function screening was rarely considered in international and domestic studies, which was insufficient with respect to excluding information bias, especially for the aged population.

The purpose of this study was to conduct a population-based study to assess the independent living ability among the elderly without cognitive impairment in China, and to clarify the effects of behavioral and social-psychological factors with adjustment for demographic characteristics and

BMJ Open

health status. As a first attempt, we initially focused our attention on the elderly in urban areas. We believe our findings will provide help for the healthcare system to properly cope with population aging.

METHODS

Study area and population

According to the China Yearbook, the income level in Liaoning Province is similar to the national average. Shenyang city and Anshan city are the core cities in Liaoning Province and represent the urban area according to the Liaoning Provincial Yearbook. Two districts in each city were randomly sampled and one community in each sampled district was randomly selected. People who were ≥ 65 years of age, had never be diagnosed as dementia by physicians, lived in the local area for ≥ 5 years, and volunteered to take part in this study comprised the study population (a total of 4701 individuals). Investigators were recruited from graduate students who majored in medical epidemiology and trained for 2 weeks with the purpose to control respondent bias. Face-to-face interview was conducted between March and November 2012. A total of 4057 participants completed 80% and more of interview and were identified as effective responses. 644 responses were defined as drop outs because the participants had something to do, lost patient to complete the interview, or declined to take part, although they agreed at the beginning. The effective response rate was 86.3%. Cognitive function was further screened with the mini-mental state examination (MMSE). Cognitive impairment was identified with consideration of education as follows: illiterate ≤ 17 , elementary ≤ 20 , middle/high school ≤ 22 , junior college and over ≤ 23 . In the current study, 3686 individuals without cognitive impairment were enrolled as the subjects.

Measurement of independent living ability

The Lawton instrumental activities of daily living (IADL) scale has been widely used to assess independent living ability of the elderly. ¹⁶ It has been validated among elderly Chinese. ¹⁷ The IADL scale has eight items assessing the ability to use the telephone, shop for daily necessities, prepare meals, handle finances, do housework, take medications, do laundry, and use public transportation. Responses to each item are coded as 1 (completely able), 2 (have some difficulty), 3 (need help), or 4 (unable). The total score ranges from 8-32 to represent the level of living ability. The higher the score, the worse the independent living ability. Independence is defined only if the total score is 8.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Measurements of behavioral factors, social-psychological factors, and confounders

Behavioral factors included the following six items: (1) smoking; (2) regular drinking; (3) taking a walk; (4) doing exercise; (5) regular diet; and (6) falling in the last year. Smoking was measured with answers of "Yes," "Had ever," or "Never." Regular drinking was examined by asking "Do you drink regularly (twice or more a week for more than a year)?". The responses were categorized as "Yes" or "No." Taking a walk and doing exercise (including Tai chi chuan, jogging, running, riding a bike, swimming, and playing shuttlecock, and table tennis), were divided into four groups on the basis of frequency: almost none; 1-2 times/week; 3-4 times/week; and almost every day. ¹⁸ Regular diet was measured by asking "Do you have breakfast, lunch and dinner on time and rarely skip meals?". Falling in the last year was defined as "Yes" or "No."

Social-psychological factors consisted of the following five items: (1) feeling lonely; (2) participating in entertainment; (3) watching television often; (4) worrying about falling; and (5) filial piety. Feeling lonely was assessed according to an individual's perception and was categorized as "Yes," "Not clear," or "No." Information on participating in entertainment and watching television often was examined by asking "Do you always hang out and play cards, chess, mahjong, or some other entertainment?" ¹⁸ and "Do you watch television almost every day?". Worrying about falling was defined as "Yes" or "No." Filial piety is a prime virtue in Confucianism and advocated by Chinese traditional culture. The filial piety of children is expected to affect the health of the elderly. Thus, filial piety was included and assessed by asking "How do you feel about your children's filial duty to you?". The responses "So so" and "Bad" accounted for 8.8% and 0.4% of responses, respectively. These responses were combined into one group.

Confounders included factors of demographic characteristics and health status. Demographic characteristics included age, gender, ethnicity, marital status, living arrangement, pension, and health insurance. For marital status, the responses of "Single," "Divorced," and "Separation" were combined with "Widow" as the "Other" group because of the low response rate (<5%). Health status included chronic disease, visual ability, ⁸ hearing ability, ⁸ daily sleep time, sleep quality, and chewing ability. ¹⁹ Chronic diseases were categorized as "Present" if any diseases, such as hypertension, cardiovascular disease, diabetes, stoke, liver cirrhosis, emphysema, rheumatoid arthritis, and chronic renal insufficiency, had been diagnosed. Visual ability was assessed to be "Impaired" if participants could not read the newspaper clearly regardless of wearing reading glasses. Hearing ability was defined as "Impaired" if voices for conversation or the volume for

BMJ Open

watching television had to be raised. For daily sleep time, the responses "<4 hours" (2.7%) and ">8 hours" (6.0%) were combined as one group. Sleep quality measured the difficulty in falling asleep or frequent awakening/dreaming.

Patient and public involvement

Only community residents were involved as participants in this study. They received the written information about the conduct of the survey. However, they were not involved in the development of the research question and outcome measures, the recruitment of subjects and the undertaking of the study. After signing an informed consent, they were assessed for eligibility and data collection was conducted.

Statistical analysis

Among all independent variables, health insurance in both males and females and ethnicity in males were not considered in the data analysis because > 95% of the participants had the same response.

The association between IADL (independence) and each categorical variable was tested via a chi-square test. The odds ratio (OR) was obtained by Mantel-Haenszel estimates. Then, the quantitative values (scores) of these categorical variables were transformed according to the corresponding OR value of each group. Those quantitative values were used to perform structural equation modeling (SEM) to confirm the effect of factors measured on IADL score. Maximum likelihood estimates was selected to fit SEM. While performing SEM analysis, variables that were not statistically significant were eliminated with the purpose to simplify the model. Elimination was conducted in the sequence of *p* value, one at a time. When a variable was eliminated, if the goodness of fit became worse, the variable would remain in the model. In this study, no variable was shown and results are expressed as a standardized parameter estimate (β) with standard error (SE) representing the association between dependent variable and independent variables. The goodness of fit of model was indicated by the goodness-of-fit index (GFI), comparative fit index (CFI), Tucker-Lewis index (TLI) and root mean square error of approximation (RMSEA). The proposed values indicating high goodness of fit was GFI>0.8, CFI>0.9, TLI >0.9, and RMSEA<0.08.

The agreement between categorical variables was evaluated with the Kappa test. If the Kappa value was > 0.50, these variables were considered in agreement. As for quantitative values, Pearson correlation was used to identify the collinear variables.

The missing data were not handled because the missing rate was < 5%. But, they were excluded when performing SEM model. SPSS for Windows (version 13.0) and AMOS (version 6.0) were used for all statistical analyses.

RESULTS

Among 3686 subjects, the independence in males and females was 46.3% and 41.1%, respectively. A total of 43.5% of individuals were independent. In comparison to the results (54.8%) obtained from urban areas in Shanghai (n=2944), ¹⁷ the level of independence was significantly lower (p<0.01). The results of univariate analysis of the IADL scale (independence) are shown in Table 1. Among the community-dwelling elderly in urban areas, the factors that were significantly correlated with the IADL included smoking, taking a walk, doing exercise, regular diet, falling in the last year, worrying about falling, feeling lonely, participating in entertainment, watching TV often, and filial piety in both males and females. The distribution of IADL (independence) among demographic characteristics and health status is shown in Appendix A.

The average IADL scores were 11.27±4.26 (mean±SD) in males and 12.05±5.23 in females. The items were scored according to the OR values. In this study, the correlations between "taking a walk" and "doing exercise" were 0.6252 in males and 0.5746 in females. Therefore, a latent variable, "physical activity," drawn from these two variables was used, which was the same as confounders of "marital status" and "living arrangement" (r: 0.8074 in males and 0.6443 in females). A latent variable (family status) was obtained. The scores are shown in Table 2. The scores of demographic characteristics and health status are shown in Appendix B.

SEM examinations for confirming the effects of behavioral and social-psychological factors were performed separately in males and females. The results are shown in Figures 1 and 2. SEM analysis revealed that the latent variable (physical activity) had the highest association with the IADL score in both males and females. The standardized parameter estimate (β) was -0.34 (SE: 0.10) in males and -0.33 (SE: 0.11) in females. In males, the IADL score was associated with feeling lonely, worrying about falling, regular drinking, falling in the last year, and participating in entertainment, with adjustments for family status, age, chronic disease, chewing ability, daily sleep time, visual ability, and sleep quality. The goodness of fit (GFI, CFI, TLI and RMSEA) was 0.917, 0.824, 0.763 and 0.083 respectively. In females, the IADL score was associated with falling in the last year and worrying about falling, with adjustments for ethnicity, daily sleep time, family status, age, visual

BMJ Open

ability, chronic disease, pension, and hearing ability. The goodness of fit (GFI, CFI, TLI and RMSEA) was 0.920, 0.845, 0.764 and 0.093 respectively.

DISCUSSION

Among the elderly in urban areas in Liaoning Province, the prevalence of independence in daily living ability was 43.5%. The independence in daily living ability was significantly lower than the level (54.8%) observed in the elderly living in urban areas in Shanghai, ¹⁷ even though the average age of our study population (73.2 years) was much younger than the population in Shanghai (78.44 years). In addition, independent living ability in females (41.1%) was lower than males (46.3%), which was consistent with the results of the urban elderly in Suzhou; ¹² however, the life expectancy of females (79.4) was longer than males (73.6) according to the China Yearbook, ²⁰ thus suggesting that more attention should be paid to maintaining independent living for a longer time in elderly females. These findings indicated that the independent living ability among the urban elderly in Liaoning province is still at a low level. In this study, the sample size was sufficiently large and information bias was controlled as much as possible because both dementia and cognitive function screening with MMSE were conducted. Although many potential reasons such as social desirability might play a significant role for information bias control, especially for the examination of alcohol consumption, cognitive impairment tended to be a prominent reason for information bias of the elderly. In addition, assessment on alcohol consumption in this study was focused on regular drinking habit instead of the exact consumption volume, because the probability of heaving drink was low for the elderly. All these facts suggested that information bias could be controlled well and the generalization of our conclusions could be increased. Our results suggested that maintaining/improving independent living ability of the elderly, especially females, should be essential part of providing healthcare for the aged population.

While assessing the daily living ability of the elderly, the independent/dependent levels were the same as the definition of independence only from the view point of health promotion. Because the IADL score indicates the level of independent living ability, the IADL score tended to be more valuable to quantitatively assess the associations between independent living ability and risk factors reported. Thus, the SEM model was performed; however, the variables entered in SEM model should be quantitative data, which became an obstacle for the assessment of categorical items. Thus, quantitative transformation according to OR value was used to overcome this obstacle. Even if CFI

BMJ Open

and TLI did not achieve the target value of 0.9, the values were still over 0.7. As for RMSEA, the values for both male and female models were slightly over the target value of 0.08, but still lower than 0.1. According to the standards recommended by Steiger, ²¹ the goodness of fit of the SEM model was acceptable. Thus, we drew our conclusions based on the results of the SEM models.

With respect to the behavioral factors, physical activity was reported to not only maintain physical health of the elderly, but also prevent elderly from acquiring mental diseases. ²² In our study, taking a walk and doing exercise were considered to measure physical activity among the elderly; however, due to the high agreement between walking and doing exercise, previous studies have usually selected one item to enter into the multiple model while assessing their effects. In this study, the kappa value between taking a walk and doing exercise was also high (0.546). Of note, we are not satisfied with this type of adjustment because taking a walk and doing exercise require different intensities of activity. This kind of assessment was expected to weaken the effect of physical activity. Thus, we used the latent variable, physical activity, to represent the effects of both taking a walk and doing exercise. As a result, physical activity was shown to have the strongest association with IADL in both males and females. Although health status was reported to be crucial for the quality of life of the elderly in our previous study ¹⁸ and the presence of chronic disease was well-documented as the basis of any disorder, ²³ ²⁴ the associations with the IADL score were weaker than physical activity. We also compared the effect of the latent variable with the effects of original observed variables. When taking a walk was entered into the model instead of physical activity, the parameter estimate was lower (-0.233 in males and -0.228 in females) in comparison to physical activity, and the same as doing exercise (-0.253 in males and -0.244 in females). These results conversely proved that the previous adjustment did weaken the effect of physical activity. Furthermore, we found that the more frequent the elderly performed physical activity, the stronger the effect on the independent living ability. Thus, any type of activity should be advocated for the independence of the elderly regardless of health status.

With respect to behavioral factors, falling in the last year and worrying about falling were also associated with independent living ability in both males and females. The experience of falling in the last year may be an indicator for the decline of muscle strength, coordination, balance, and flexibility, ²⁵ which tended to be a potential threat for fractures and becoming bedridden among the elderly. ²⁶ Furthermore, because of the significant correlation with visual ability (0.178 in males and 0.191 in females), the effect on health status also increased the possibility to affect the independent

BMJ Open

living ability of the elderly. Indeed, worrying about falling will inevitably limit movement among the elderly. Correspondingly, the effects on independent living ability were observed in both males and females. Thus, we should pay more attention to the safety of daily routines. In addition, regular drinking was shown to be significantly associated with IADL in males. Even if the elderly do not consume alcohol excessively and measurement of alcohol consumption is inexact, the harmful influence on the IADL score was shown. Moreover, usual alcohol consumption, rather than alcohol use disorder, has be reported to be associated with notable cognitive, social and psychological consequences in later life. ^{27 28} Those negative effects together with our result indicated that alcohol consumption should be made with caution for the elderly. Therefore, guiding the elderly to avoid alcohol seems to be able to contribute to independent living ability.

In comparison to behavioral factors, the effects of social-psychological factors on independent living ability of the elderly were weaker with adjustment for demographic characteristics and health status. A previous study reported that social participation enhanced the ability of the elderly to live independently. ²⁹ In this study, feeling lonely and participating in entertainment were shown to be significantly associated with independent living ability, but only in males. This finding might be caused by the Chinese traditional gender-role attitude "men go out to work and women stay at home." This attitude indicates that men are more suitable for a job, earning money and social engagement, whereas women are more suitable for housework and taking care of family members. Even if the society has developed well in China, this gender-role attitude does not change a lot, especially for the elderly. ³⁰ Thus, even if nearly one-half of females would go out and enjoy some entertainment, the animated atmosphere seemed to be more effective in keeping males in good physical and mental health compared to females, who are accustomed to being confined to be at home.

As for the confounders, the effects have been well documented in the studies performed in China. ¹⁰⁻¹² In the current study, ethnicity was shown to be the second strongest factors associated with independent living ability among females. This ethnicity-related difference might be due to under-development of social security and strong consciousness of clan and the family of minority. ³¹ which reflected the vulnerability of the elderly-care policy in minority area. Among our study population, the minority was < 5% in males. Thus, ethnic effect was not analyzed among males.

There were some limitations in our study. First, the measurements of several assessed factors were too broad and simplistic, such as smoking and regular drinking. Second, even if our study was

a population-based study, it was limited by the cross-sectional design. Therefore, a prospective study is required to draw any causal conclusions.

CONCLUSION

Our results showed that independent living ability among the elderly in urban areas in Liaoning Province in China is at a low level. Physical activity has an important role in maintaining and/or improving independent living ability of the elderly, even if health status has a crucial effect. Social-psychological factors, such as feeling lonely and participating in entertainment, could affect independent living ability among elderly males. Our findings suggest that gender-specific healthcare should be adopted as part of health promotion for the elderly. Physical activity of any type should be encouraged to maintain and improve the independent living ability of the elderly. geu to ...

BMJ Open

Contributors: WS designed the study and supervised the performance of study. BW and YW collected the data, analyzed the data and wrote the manuscript. TZ and JH helped with cleaning the data, giving advice on statistical analysis and revising the manuscript. LY coordinated data collection. All authors have given final approval of the version to be published.

Funding: This research was funded by the National Natural Science Foundation of China [grant number: 81102193].

Disclaimer: The funding agencies are not responsible for the opinions presented in the manuscript. The funding bodies had no influence on the conduct of the study or the interpretation of the results.

Competing interest: None declared.

Ethics approval: The study protocol and informed consent form received ethics approval from the Committee on Human Experimentation at the China Medical University. Written informed consent concerning conduct of the survey was obtained from each participant.

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: No additional data sharing available.

.

- 2. De Luca d'Alessandro E, Bonacci S, Giraldi G. Aging populations: the health and quality of life of the elderly. *Clin Ter* 2011; 162(1):e13–8.
- 3. Arslantas D, Ünsal A, Ozbabalık D. Prevalence of depression and associated risk factors among the elderly in Middle Anatolia, Turkey. *Geriatr Gerontol Int* 2014; 14(1):100-8.
- 4. Mu G, Zhang T. The development of population aging in China and the way to deal with it. *J Huazhong Norm Univ (Hum & Soc Sci)* 2011; 50(5):29-36. [Article in Chinese]
- Tanimoto Y, Watanabe M, Sun W, *et al.* Association between muscle mass and disability in performing instrumental activities of daily living (IADL) in community-dwelling elderly in Japan. *Arch Gerontol Geriatr* 2012; 54(2): e230-3.
- Lipskaya L, Jarus T, Kotler M. Influence of cognition and symptoms of schizophrenia on IADL performance. *Scand J Occup Ther* 2011; 18(3):180-7.
- Gross AL, Rebok GW, Unverzagt FW, et al. Cognitive predictors of everyday functioning in older adults: results from the ACTIVE Cognitive Intervention Trial. J Gerontol B Psychol Sci Soc Sci 2011; 66(5):557-566.
- Sun W, Watanabe M, Tanimoto Y, *et al.* Factors associated with good self-rated health of non-disabled elderly living alone in Japan: a cross-sectional study. *BMC Public Health* 2007; 7(1):297.
- 9. Gadalla TM. Relative body weight and disability in older adults: results from a national survey. *J Aging Health* 2010; 22(4):403-18.
- Ni RX, Shen WZ, Bao Y, *et al.* Impact of the elderly chronic diseases in ability of daily life. *Chin Gen Pract* 2001; 4(1):42-4. [Article in Chinese]
- Tang GF, Wang Y, Zhao YS, *et al.* Study on activities of daily living and its related factors in the elderly in two cities of Anhui province. *Chin J Gerontol* 2001; 20(3):213-5. [Article in Chinese]
- Wu Y, Xu Y. Investigation on daily living ability of the elderly in urban area of Suzhou city. *Chin J Gerontol* 2014; 34(3):745-6. [Article in Chinese]
- 13. Huang S, Yuan L, Deng Y, *et al.* Effect of intervention of various forms of health education on health behavior of elderly patients with COPD. *Med Innovat China* 2013; 10(23):49-51. [Article

9(2):216-39.

in Chinese]

- 14. Chapman KM, Ham JO, Liesen P, *et al.* Applying behavioral models to dietary education of elderly diabetic patients. *J Nutr Educ* 1995; 27(2):75-9.
- 15. Seixas AA, Trinh-Shevrin C, Ravenell J, *et al.* Culturally tailored, peer-based sleep health education and social support to increase obstructive sleep apnea assessment and treatment adherence among a community sample of blacks: study protocol for a randomized controlled trial. *Trials* 2018; 19:519.
- 16. Mcgrory S, Shenkin SD, Austin EJ, *et al.* Lawton IADL scale in dementia: can item response theory make it more informative?. *Age Ageing* 2014; 43(4):491-5.
- 17. Xue B, Jiang G, Ye G, *et al.* Investigation on activities of daily living and its related influential factors in retired cadres in Yangpu district, Shanghai. *Chin J Prev Contr Chron Non-commun Dis* 2006; 14(6):410-2. [Article in Chinese]
- 18. Sun W, Aodeng S, Tanimoto Y, *et al.* Quality of life (QOL) of the community-dwelling elderly and associated factors: A population-based study in urban areas of China. *Arch Gerontol Geriatr* 2015; 60(2):311-6.
- 19. Kimura Y, Ogawa H, Yoshihara A, *et al.* Evaluation of chewing ability and its relationship with activities of daily living, depression, cognitive status and food intake in the community-dwelling elderly. *Geriatr Gerontol Int* 2013; 13(3):718-25.
- 20. National Bureau of Statistics of China. China statistical yearbook, 2016. (http://www.stats.gov.cn/tjsj/ndsj/2016/indexch.htm).
- Steiger JH. Structural Model Evaluation and Modification: An Interval Estimation Approach. *Multivar Behav Res* 1990; 25(2):173-180.
- 22. Helbostad JL, Sletvold O, Moe-Nilssen R. Home training with and without additional group training in physically frail old people living at home: effect on health-related quality of life and ambulation. *Clin Rehabil* 2004; 18(5):498-508.
- 23. Bartlem KM, Bowman JA, Freund M, *et al.* Care provision to prevent chronic disease by community mental health clinicians. *Am J Prev Med* 2014; 47(6):762-70.
- 24. Al-Hamzawi AO, Rosellini AJ, Lindberg M, *et al.* The role of common mental and physical disorders in days out of role in the Iraqi general population: Results from the WHO World Mental Health Surveys. *J Psychiatr Res* 2014; 53(11):23-9.
- 25. Kai MC, Anderson M, Lau EMC. Exercise interventions: defusing the world's osteoporosis time

bomb. Bull World Health Organ 2003; 81(11):827-30.

- 26. De Laet CE, Pols HA. Fractures in the elderly: epidemiology and demography. *Baillieres Best Pract Res Clin Endocrinol Metab* 2000; 14 (2):171-9.
- Yi SW, Jung M, Kimm H, *et al.* Usual alcohol consumption and suicide mortality among the Korean elderly in rural communities: Kangwha Cohort Study. *J Epidemiol Community Health* 2016; 70(8):778-83.
- 28. Hogenkamp PS, Benedict C, Sjögren P, *et al.* Late-life alcohol consumption and cognitive function in elderly men. *Age (Dordr)* 2014; 36(1):243-9.
- 29. Tomioka K, Kurumatani N, Hosoi H. Social participation and the prevention of decline in effectance among community-dwelling elderly: a population-based cohort study. *PLoS One* 2016; 11(10):e0164925.
- 30. Xu Q. Trend, source and heterogeneity of the change of gender-role attitude in China: a case study of two indicators. *Collect Women Stud* 2016; 3:33-43. [Article in Chinese]
- 31. Yang G. On the aging society and related policies in ethnic regions. *J Guangxi Teach Educ Univ* (*Philos & Soc Sci*) 2016; 37(3):53-8.

1 2	
2 3	
3 4 5 6 7 8 9	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
13 14 15 16 17	
18	
19	
20	
21	
22	
23 24	
25	
26	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
28	
29	
31	
32	
33	
34	
35 36 37	
30 37	
38	
39	
40	
41	
42	
43 44	
45	
46	
47	
48	
49 50	
51	
52	
53	
54	
55 56	
56 57	
58	
59	
60	

Table1 Univariate analysis of IADL scale (independence) in relation to behavioral factors and social-psychological factors.

X 7 . 11			fales		Females				
Variables	Ν	Independence N (%)	OR(95%CI)	р	Ν	Independence N (%)	OR(95%CI)		
Total	1726	799(46.3)			1960	805(41.1)			
Behavioral factors									
Smoking									
Yes	548	224(40.9)			177	57(32.2)			
Had ever	478	147(30.8)	0.64(0.50-0.83)	< 0.01	270	83(30.7)	0.93(0.62-1.41)		
Never	696	425(61.1)	2.27(1.81-2.85)	< 0.01	1512	665(44.0)	1.65(1.19-2.30)	<	
Regular drinking									
Yes	750	345(46.0)			242	87(36.0)			
No	969	450(46.4)	1.02(0.84-1.23)	0.86	1716	718(41.8)	1.28(0.97-1.70)		
Taking a walk									
Almost none	325	88(27.1)			283	28(9.90)			
1-2 times/week	385	108(28.1)	1.05(0.75-1.46)	0.77	421	128(30.4)	3.98(2.56-6.19)	<	
3-4 times/week	460	267(58.0)	3.73(2.74-5.06)	< 0.01	488	237(48.6)	8.60(5.60-13.20)	<	
Almost everyday	556	336(60.4)	4.11(3.05-5.54)	< 0.01	768	412(53.6)	10.54(6.96-15.96)	<	
Doing exercise									
Almost none	470	121(25.7)			460	76(16.5)			
1-2 times/week	354	129(36.4)	1.65(1.23-2.23)	< 0.01	465	162(34.8)	2.70(1.98-3.69)	<	
3-4 times/week	452	239(52.9)	3.24(2.45-4.27)	< 0.01	483	209(43.3)	3.85(2.84-5.23)	<	
Almost everyday	450	310(68.9)	6.39(4.79-8.51)	< 0.01	552	358(64.9)	9.32(6.89-12.61)	<	
Regular diet									
No	201	66(32.8)			289	64(22.1)			
Yes	1525	733(48.1)	1.89(1.39-2.58)	<0.01	1671	741(44.3)	2.80(2.09-3.76)	<	
Falling in the last year									
Yes	162	57(35.2)			295	50(16.9)			
No	1562	740(47.4)	1.66(1.18-2.32)	< 0.01	1664	755(45.4)	4.07(2.96-5.60)	<	
Worrying about falling									
Yes	681	165(24.2)			870	220(25.3)			
No	1043	632(60.6)	4.81(3.88-5.96)	< 0.01	1086	584(53.8)	3.44(2.83-4.17)	<	
Social-psychological factors									
Feeling lonely									
Yes	232	67(28.9)			332	79(23.8)			
Not clear	354	92(26.0)	0.87(0.60-1.25)	0.44	385	89(23.1)	0.96(0.68-1.36)		
No	1124	628(55.9)	3.12(2.29-4.24)	< 0.01	1228	630(51.3)	3.37(2.56-4.45)	<	
Participating in entertainment									
No	613	150(24.5)			815	246(30.2)			
Yes	1109	647(58.3)	4.32(3.47-5.38)	< 0.01	1139	556(48.8)	2.21(1.83-2.67)	<	
Watching TV often									
No	218	57(26.1)			283	64(22.6)			
Yes	1507	741(49.2)	2.73(1.99-3.76)	< 0.01	1674	739(44.1)	2.70(2.01-3.63)	<	
Filial piety									
So so/bad	176	37(21.0)			165	33(20.0)			
Good	625	254(40.6)	2.57(1.73-3.82)	< 0.01	673	269(40.0)	2.66(1.77-4.02)	<	
Very good	907	505(55.7)	4.72(3.21-6.94)	< 0.01	1108	502(45.3)	3.31(2.22-4.94)	<	

Note. OR: Odd ratio, indicating the relative risk of independence prevalence in comparison to the first group of each item; 95%CI: 95% confidence interval.

Table 2. The description of scores of IADL and assessed factors

Variables		Males	Females		
variables	Ν	Mean±SD	Ν	Mean±SD	
IADL score	1726	11.27±4.26	1960	12.05±5.23	
Behavioral factors					
Smoking	1722	1.41 ± 0.72	1959	1.50±0.29	
Regular drinking	1719	1.01 ± 0.01	1958	1.25±0.09	
Taking a walk	1726	$2.74{\pm}1.44$	1960	7.27±3.56	
Doing exercise	1726	3.12±2.11	1960	4.45±3.21	
Regular diet	1726	1.79±0.29	1960	2.54±0.64	
Falling in the last year	1724	1.60 ± 0.19	1959	3.61±1.10	
Worrying about falling	1724	3.30±1.86	1956	2.35±1.21	
Social-psychological factors					
Feeling lonely	1710	2.36±1.05	1945	2.49±1.16	
Participating in entertainment	1722	3.14±1.59	1954	1.70±0.60	
Watching TV often	1725	2.51±0.58	1957	2.46±0.60	
Filial piety	1708	3.55±1.32	1946	2.89±0.65	

1/08 3.55±1.32 1946 2.89±0.65

Figure 1. The SEM analysis for confirming the effects of behavioral factors and social-psychological factors in males (N=1690). Data was shown as standardized estimate (standard errors).

Figure 2. The SEM analysis for confirming the effects of behavioral factors and social-psychological factors in females (N=1915). Data was shown as standardized estimate (standard errors).

for beer terren ont

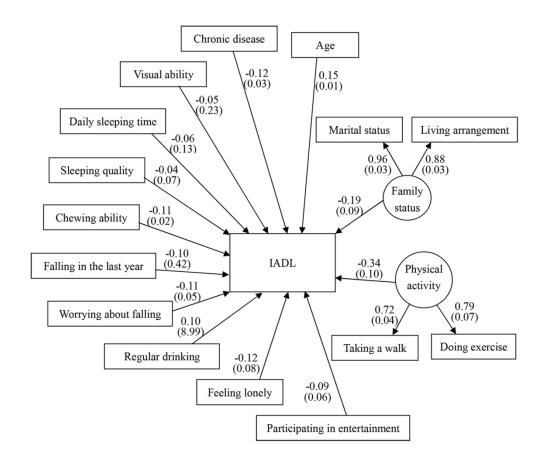
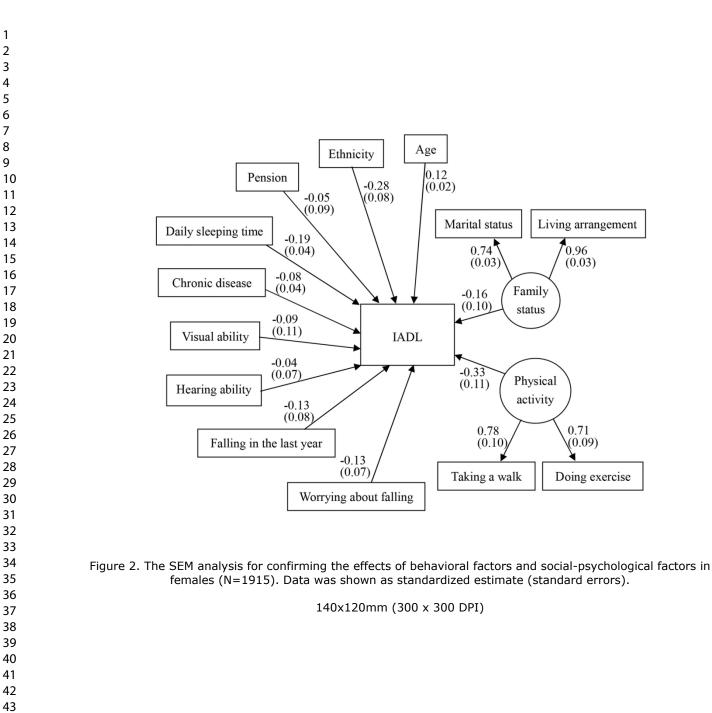



Figure 1. The SEM analysis for confirming the effects of behavioral factors and social-psychological factors in males (N=1690). Data was shown as standardized estimate (standard errors).

Appendix A. Distribution of IADL scale (independence) in demographic characteristics and health status.

	Males					Females			
Variables	N	Independence N(%)	OR(95%CI)	р	N	Independence N(%)	OR(95%CI)	р	
Demographic characteristics									
Age									
75+	580	174(30.0)			814	158(19.4)			
65-74	1146	625(54.5)	2.80(2.26-3.46)	< 0.01	1146	647(56.5)	5.38(4.37-6.64)	<0.01	
Ethnicity									
Minority	-	-			269	41(15.2)			
Han	-	-	-		1690	763(45.1)	4.58(3.24-6.47)	< 0.0	
Marital status									
Other	302	62(20.5)			470	97(20.6)			
Married/cohabitation	1423	737(51.8)	4.16(3.09-5.60)	< 0.01	1490	708(47.5)	3.48(2.72-4.45)	< 0.0	
Living arrangement									
Living alone	184	40(21.7)			227	70(30.8)			
Living with spouse	1230	666(54.1)	4.25(2.94-6.14)	< 0.01	1159	619(53.4)	2.57(1.90-3.49)	< 0.0	
Living with spouse and children	184	68(37.0)	2.11(1.33-3.35)	< 0.01	327	88(26.9)	0.83(0.57-1.20)	0.31	
Living with children	126	25(19.8)	0.89(0.51-1.56)	0.69	243	27(11.1)	0.28(0.17-0.46)	< 0.0	
Pension									
Haven't	116	42(36.2)			188	30(16.0)			
Have	1606	755(47.0)	1.56(1.06-2.31)	0.02	1769	772(43.6)	4.08(2.73-6.09)	< 0.0	
Health status									
Chronic disease									
Present	1264	432(34.2)			1529	488(31.9)			
Not present	462	367(79.4)	7.44(5.77-9.59)	< 0.01	431	317(73.5)	5.93(4.67-7.54)	< 0.0	
Visual ability									
Impaired	691	262(37.9)			844	237(28.1)			
Good	1030	534(51.8)	1.76(1.45-2.15)	< 0.01	1112	566(50.9)	2.66(2.19-3.21)	< 0.0	
Hearing ability									
Impaired	763	224(29.4)			853	198(23.2)			
Good	957	571(59.7)	3.56(2.91-4.36)	< 0.01	1102	605(54.9)	4.03(3.30-4.91)	< 0.0	
Daily sleeping time									
<4/><4/>>8 hours	110	31(28.2)			210	24(11.4)			
4-6 hours	906	384(42.4)	1.87(1.21-2.90)	< 0.01	977	391(40.0)	5.17(3.32-8.06)	< 0.0	
6-8 hours	710	384(54.1)	3.00(1.93-4.66)	< 0.01	769	388(50.5)	7.89(5.04-12.35)	< 0.0	
Sleeping quality									
Bad	765	231(30.2)			968	265(27.4)			
Good	961	568(59.1)	3.34(2.73-4.08)	< 0.01	992	540(54.4)	3.17(2.62-3.83)	< 0.0	
Chewing ability									
Bad	426	88(20.7)			651	101(15.5)			
Middle	903	405(44.9)	3.12(2.39-4.09)	< 0.01	989	455(46.0)	4.64(3.63-5.94)	<0.01	
Good	396	306(77.3)	13.06(9.37-18.20)	.0.01	217	248(78.2)	19.60(13.92-27.52)	~0.01	

Note. OR: Odd ratio, indicating the relative risk of independence prevalence in comparison to the first group of each item; 95% CI: 95% confidence interval.

2	
3	
4	
5	
6	
7	
7 8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51 52	
53	
54	
55	
56	
57	
58	
59	
55	

60

Appendix B. The description of scores of demographic characteristics and health status.

V		Males	Females		
Variables	Ν	Mean±SD	Ν	Mean±SD	
Demographic characteristics					
Age	1726	72.87±5.84	1960	73.55±5.82	
Ethnicity			1959	4.09±1.23	
Marital status	1725	3.61±1.20	1960	2.89±1.06	
Living arrangement	1724	3.43±1.33	1956	1.81±0.93	
Pension	1722	1.53 ± 0.14	1957	3.78±0.91	
Health status					
Chronic disease	1726	2.72 ± 2.85	1960	2.08±2.04	
Visual ability	1721	1.46 ± 0.37	1956	1.94±0.82	
Hearing ability	1720	2.42±1.27	1955	2.71±1.50	
Daily sleeping time	1726	2.28±0.64	1956	5.79±2.10	
Sleeping quality	1726	2.30±1.16	1960	2.10±1.09	
Chewing ability	1725	4.88±4.55	1957	5.85±6.25	

2.72 1.46±t 2.42±1.2 7.26 2.28±0.64 1726 2.30±1.16 1725 4.88±4.55

2
3
4
5
6
6 7
8
9
10
12
13
14
15
16
17
18
19
20
20 21
21
22 23
23
24
25
26
27
28
20
29 30
30
31
32
33
34
35
22
36 37
37
38 39
39
40
41
42
43
43 44
45
46
47
48
49
50
51
51 52
53
54
55
56
57
58
58 59
29

1 2

Item

STROBE Statement—Chec	cklist of items that should be included	ed in reports of <i>cross-sectional studies</i>
-----------------------	---	---

	No	Recommendation	In my manuscript
Title and	1	(a) Indicate the study's design with a commonly used	Page 1 in title and Page 2, Line 7-8
abstract		term in the title or the abstract	
		(<i>b</i>) Provide in the abstract an informative and balanced	Page 2, Line 12-21
		summary of what was done and what was found	
Introduction			
Background/r	2	Explain the scientific background and rationale for the	Page 4, Line 2-28
ationale	_	investigation being reported	
Objectives	3	State specific objectives, including any prespecified	Page 4, Line 29 to Page 5, Line 1
	5	hypotheses	
Methods		-JF-min	
Study design	4	Present key elements of study design early in the paper	Yes: Page 5, Line 23 to Page 7, Lir
Study design	4	Tresent key elements of study design early in the paper	3
Setting	5	Describe the setting, locations, and relevant dates,	Page 5, Line 7-10 and Line 14-15
		including periods of recruitment, exposure, follow-up,	
		and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and	Page 5, Line 10-13
		methods of selection of participants	
Variables	7	Clearly define all outcomes, exposures, predictors,	Yes: Page 5, Line 23 to Page 7,
		potential confounders, and effect modifiers. Give	Line 3
		diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and	Yes, all are presented: Page 5, Line
measurement		details of methods of assessment (measurement).	23 to Page 7, Line 3
		Describe comparability of assessment methods if there	
		is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Page 5, Line 11, 15-22
Study size	10	Explain how the study size was arrived at	We had introduced the prevalence
			dependency (7.9%-53.9%) in the
			introduction section. According to
			the formula N=100*(1-p)/p, sample
			size of 1166 is large enough. In our
			study, totally we interviewed 4701
			individuals, which is much more
			than the size calculated. Thus, we
			did not explain a lot about it.
Quantitative	11	Explain how quantitative variables were handled in the	Page 5, Line 29-31 and Page 7,
variables		analyses. If applicable, describe which groupings were	Line 15-18
		chosen and why	
Statistical	12	(<i>a</i>) Describe all statistical methods, including those	Yes: Page 7, Line 14-18
methods		used to control for confounding	
		(<i>b</i>) Describe any methods used to examine subgroups and interactions	Page 7, Line 20-23
		(c) Explain how missing data were addressed	Page 8, Line 1-2
		(·) =-prain non mobiling autu nore addressed	
		(<i>d</i>) If applicable, describe analytical methods taking	None

		(<u>e</u>) Describe any sensitivity analyses	None
Results			
Participants	13*	(a) Report numbers of individuals at each stage of	Page 5, Line 12-13, 15-16, 22 and
		study-eg numbers potentially eligible, examined for	Page 8, Line 6
		eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Page 5, Line 16-18.
		(c) Consider use of a flow diagram	None
Descriptive	14*	(a) Give characteristics of study participants (eg	Table 1 and Appendix A
data		demographic, clinical, social) and information on	
		exposures and potential confounders	
		(b) Indicate number of participants with missing data	Tables 1 and 2 showed the actual
		for each variable of interest	number and the total number.
Outcome data	15*	Report numbers of outcome events or summary	Page 8, Line 6-7.
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable,	Page 8, Line 9 to Page 9, line 2;
		confounder-adjusted estimates and their precision (eg,	Table 1 and 2, Appendix A and B
		95% confidence interval). Make clear which	and Figure 1 and 2.
		confounders were adjusted for and why they were	
		included	
		(b) Report category boundaries when continuous	None
		variables were categorized	
		(c) If relevant, consider translating estimates of relative	None
		risk into absolute risk for a meaningful time period	
Other	17	Report other analyses done—eg analyses of subgroups	None
analyses		and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study	Page 12, Line 5-11.
		objectives	
Limitations	19	Discuss limitations of the study, taking into account	Page 11, Line 30 to Page 12, Line
		sources of potential bias or imprecision. Discuss both	
		direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results	Page 9, Line 5 to Page 12, Line 2.
		considering objectives, limitations, multiplicity of	
		analyses, results from similar studies, and other	
		relevant evidence	
Generalisabili	21	Discuss the generalisability (external validity) of the	Page 9, Line 14-22.
ty		study results	
Other informat	tion		
Funding	22	Give the source of funding and the role of the funders	Page 13, Line 6-7
		for the present study and, if applicable, for the original	
		study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely

BMJ Open

available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.