BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Impact of Oral Self-care on Incident Functional Disability in Elderly Japanese : The Ohsaki Cohort 2006 Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-017946
Article Type:	Research
Date Submitted by the Author:	29-May-2017
Complete List of Authors:	Bando, Shino Tomata, Yasutake Aida, Jun; Tohoku University Graduate School of Dentistry, Department of International and Community Oral Health Sugiyama, Kemmyo Sugawara, Yumi; Tohoku University Graduate School of Medicine, Division of Epidemiology, Department of Health Informatics and Public Health Tsuji, Ichiro; Tohoku University School of Medicine, Tohoku University Graduate School of Medicine, Division of Epidemiology, Department of Health Informatics and Public Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Dentistry and oral medicine
Keywords:	teeth, tooth-brushing, denture, dental visit, disability

1 2	
2 3 4 5	1
6 7 8	2
9 10 11	3
12 13	4
14 15 16	5
17 18 19	6
20 21 22	7
23 24 25	8
26 27 28	9
29 30	10
31 32 33	11
34 35 36	12
37 38 39	13
40 41 42	14
43 44	15
45 46 47	16
48 49 50	17
51 52 53	18
54 55 56	19
57 58	19
59 60	

1	Title:
2	Impact of Oral Self-care on Incident Functional Disability in Elderly Japanese: The Ohsaki Cohort
3	2006 Study
4	
5	Authors:
6	Shino Bando MSc, ¹ Yasutake Tomata PhD, ¹ Jun Aida DDS, PhD, ² Kemmyo Sugiyama MD, PhD, ¹
7	Yumi Sugawara PhD, ¹ and Ichiro Tsuji MD, PhD ¹
8	
9	Authors' affiliations:
10	1. Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku
11	University School of Public Health, Graduate School of Medicine, Sendai, Japan.
12	2. Department of International and Community Oral Health, Tohoku University Graduate School of
13	Dentistry, Sendai, Japan.
14	
15	Correspondence author:
16	Yasutake Tomata
17	Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University
18	School of Public Health, Graduate School of Medicine, Sendai, Japan. 2-1, Seiryo-machi, Aoba-ku
19	Sendai, Miyagi 980-8575, Japan.
	1

1	Phone: +81-22-717-8123 Fax: +81-22-717-8125.
2	E-mail: y-tomata@med.tohoku.ac.jp
3	
4	Sources of support:
5	Health Sciences Research grants (nos. H26-Junkankitou [Seisaku]-Ippan-001) from the Ministry of
6	Health, Labour and Welfare of Japan, and Research grants (H27-General Research grants) from the
7	Foundation for Total Health Promotion.
8	
9	The number of words in the abstract: 195 words
10	The number of words in the text: 2,785 words
11	The number of tables: 3 tables The number of references: 30 references
12	The number of references: 30 references
13	The number of supplementary material: 1 table
14	
	2

1	Abstract
2	Objectives: To assess whether oral self-care (tooth-brushing, regular dental visits, and use of
3	dentures) affects incident functional disability in elderly individuals with tooth loss.
4	Design: A 5.7-year prospective cohort study.
5	Setting: Ohsaki City, Japan.
6	Participants: 12,370 community-dwelling individuals aged 65 years and older.
7	Primary outcome measures: Incident functional disability (new LTCI certification).
8	Results: In comparison with participants who had ≥ 20 teeth, the HRs (95% CIs) for incident
9	functional disability among participants who had 10-19 and 0-9 teeth were 1.15 (1.01-1.30) and 1.20
10	(1.07-1.34), respectively (<i>P</i> -trend <.05). However, the corresponding values for those who brushed
11	their teeth ≥ 2 times per day were not significantly higher in the "10-19 teeth" and "0-9 teeth" groups
12	[HRs (95% CI) 1.05 (0.91-1.21) for participants with 10-19 teeth, and 1.09 (0.96-1.23) for
13	participants with 0-9 teeth], although HRs for those who brushed their teeth <2 times per day were
14	significantly higher [HRs (95% CI) 1.32 (1.12-1.55) for participants with 10-19 teeth, and 1.33
15	(1.17-1.51) for participants with 0-9 teeth]. Such a negating association was not observed for other
16	forms of oral self-care.
17	Conclusions: Tooth-brushing may partially negate the increased risk of incident functional disability
10	i-t-t-t-t-t-t

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

18 associated with having fewer remaining teeth.

Key words: teeth, tooth-brushing, dental visit, denture, disability

Strengths and limitations of this study $\mathbf{2}$ • Our study is the first reported study to have demonstrated an impact of tooth brushing on the increased risk of incident functional disability resulting from having fewer remaining teeth. • This is a large population-based cohort study involving 12,370 individuals and it can take into $\mathbf{5}$ account considerable confounding factors. • Although misclassification of the number of teeth and practicing oral self-care as a result of self-reporting might have occurred, the validity of these have also been confirmed by previous studies.

Introduction

2	As society ages, disability prevention has become an important public health issue. It has been
3	pointed out by the WHO that oral health is an important component of healthy aging, particularly in
4	the disadvantaged elderly. ¹ Tooth loss is also known to be a risk factor for mortality in the elderly. ^{2,3}
5	Periodontal disease, which is one of the main causes of tooth loss, is known to be related to coronary
6	heart disease, ⁴ stroke, ⁴ and pneumonia, ⁵ which in turn are major causes of incident disability. ⁶
7	Recently, several studies have indicated that tooth loss is related to incident disability. ^{7,8} Therefore,
8	there is a need to decrease the excess risk of functional disability in elderly adults with missing teeth.
9	It has been suggested that oral self-care has a preventative impact on mortality. ⁹ We have
10	reported that individuals who practiced three types of oral self-care (tooth brushing, regular dental
11	visits, and use of dentures) had a lower mortality risk than those who practiced none of the three. ⁹
12	Those who practiced oral self-care also had a lower risk of dementia and cardiovascular disease. ^{10,11}
13	These findings suggest that there are possible pathways linking oral self-care to incident disability.
14	Additionally, it has been reported that the intraoral environment affects the gut microbiota and may
15	cause systemic inflammation, ¹² implying a new pathway whereby poor oral hygiene may be linked to
16	systemic disease. To our knowledge, however, only two studies have examined whether practicing
17	oral care affects the risk of functional disability among older people with tooth loss, and those
18	studies focused only on denture use ¹³ or regular dental visits. ¹⁴

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

The aim of the present cohort study was to assess whether three types of oral self-care (tooth

 1 brushing, regular dental visits, and use of dentures) have an impact on incident functional disability

2 in individuals with tooth loss.

 $\mathbf{2}$

Materials and Methods

Study design, setting, and participants

The present study was based on data from the Ohsaki Cohort 2006 Study, whose design has been described in detail elsewhere.¹⁵ In brief, the source population for the baseline survey comprised all men and women aged 65 years or older living in Ohsaki City, Miyagi Prefecture, northeastern Japan, on December 1, 2006. The survey included questions about the number of remaining teeth and oral self-care status, as well as items on history of disease, education level, smoking, alcohol drinking, body weight, height, psychological distress score, time spent walking per day, and food intake frequency.

The baseline survey was conducted between December 1 and December 15, 2006, and the follow-up survey between April 1, 2007 and November 30, 2012. A questionnaire was distributed by the heads of individual administrative districts to all individuals aged 65 years or older living in Ohsaki city, and then collected by mail. Among 31,694 subjects (12,750 men and 18,944 women) eligible for this analysis, 23,091 (9,605 men and 13,486 women) provided valid responses and formed the study cohort. Among the latter respondents, we excluded 6,333 individuals who did not provide written consent for review of their Long-term Care Insurance (LTCI) information, 2,102 who had already been certified as having a disability by the LTCI before the starting date of follow-up (March 30, 2007), 62 who had died or moved away before the starting date of follow-up, 188 for whom the Doctor's Opinion Paper had been unavailable, and 2,036 who left blank the item

29
MJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.
Bage
PA concerning dental health status. Thus, 12,370 responses were analyzed for the purpose of this study. During the 5.7-year period covered by the study, only 158 individuals were lost to follow-up $\mathbf{2}$ because they moved away from the study area without developing any functional disability; thus, the follow-up rate was 98.7%. From 61,581 person-years, incident functional disability was recorded in 2,329 persons, and the number of all-cause deaths was 1,446. $\mathbf{5}$ Measurement of dental health status In the baseline questionnaire, we asked respondents to classify the number of their remaining teeth into six categories: all (28 teeth), most (25-27 teeth), moderate (20-24 teeth), about half (10-19 teeth), few (1-9 teeth), and none (0 teeth). Then, we divided the respondents into three groups: 1) \geq 20 teeth, 2) 10-19 teeth, and 3) 0-9 teeth. We also asked whether they used dentures and whether they visited a dental clinic at least once a year. The respondents were asked to mark "yes" or "no" in reply. We also asked how many times participants brushed their teeth daily. Measurements of other variables K6 was used as an indicator of psychological distress.^{16,17}. Using six questions, respondents were asked about their mental status over the last month. Total point scores ranged from 0 to 24. As the optimal cut-off point for mental illness in the validation study, we classified individuals with scores

1 of \geq 13 as having psychological distress.¹⁸

The amount of energy intake (except that from alcohol-drinking) and protein intake was calculated based on the data from the baseline survey and divided into sex-specific tertiles. The survey included questions about the frequency of recent average consumption of 39 daily food items. For estimation of energy and protein intake from the food-frequency questionnaire (FFQ), a food composition table was used that corresponded to the items listed in the questionnaire.¹⁹ A validation study of the FFQ had been conducted previously.¹⁹ BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

LTCI system in Japan

In this study, we defined incident functional disability as certification for LTCI in Japan, which uses a nationally uniform standard of functional disability. LTCI is a mandatory system of social insurance to assist the daily activity of frail elderly individuals.^{20,21} Everyone aged 40 years and over pays premiums, and everyone aged 65 years and over is eligible for formal caregiving services. When a person applies to the municipal government for benefits, an expert investigator visits his or her home and assesses the degree of functional disability using a questionnaire developed by the Ministry of Health, Labor, and Welfare. Then, the municipal government calculates the standardized scores for physical and mental functions on the basis of the certification survey sheet and assesses whether the applicant is eligible for LTCI benefits. If a person is judged to be thus eligible, the Municipal Certification Committee decides on one of seven levels of support, ranging from Support

 Level 1 to 2, and Care Level 1 to Care Level 5. In brief, LTCI certification levels are defined as follows. Support Level 1: "limited in instrumental activities of daily living but independent in basic activities of daily living"; Care Level 2: "requiring assistance in at least one basic ADL task"; Care Level 5: "requiring care in all ADL tasks". A community-based study has shown that levels of LTCI certification are well related to the ability to perform activities of daily living, and with Mini-Mental State Examination scores²². LTCI certification has already been used as a measure of incident functional disability in the elderly.^{7,23}

Follow-up and case details

Incident functional disability was defined as LTCI certification, which was set as our endpoint. The primary outcome was new LTCI certification (Support Level 1 or higher), and deaths without LTCI certification were treated as censored. We obtained a data set that included information on the date of LTCI certification, emigration, or death from Ohsaki City Government based on an agreement about the secondary use of data. LTCI certification information was provided, including care level information. All data were transferred from the Ohsaki City Government yearly each December under the agreement related to Epidemiologic Research and Privacy Protection.

Ethical issues

The return of completed questionnaires was considered to imply consent to participate in the study

involving the baseline survey data and subsequent follow-up of death and emigration. Information
regarding LTCI certification status was confirmed after obtaining written consent returned from the
participants at the time of the baseline survey. The Ethics Committee of Tohoku University Graduate
School of Medicine reviewed and approved the study protocol.

 $\mathbf{5}$

Statistical analysis

Baseline characteristics were evaluated using the chi-squared test for categorical variables and
analysis of variance for continuous variables. We used these methods to compare variables among
groups with varying numbers of teeth.

First, we examined the relationship between the number of remaining teeth and incident functional disability in the entire study population. The Cox proportional hazards model was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for incident functional disability according to the categories for different numbers of remaining teeth. Participants having \geq 20 teeth were used as a reference category. The multivariate models were adjusted for the following variables: age (65-69, 70-74, 75-79, 80-84, and \geq 85 years), sex, education level (age upon final graduation from school <16, 16-18, \geq 19 years, missing), smoking (never, former, current, missing), alcohol drinking (never, former, current, missing), body mass index (kg/m²; <18.5, 18.5-24.9, \geq 25.0, missing), time spent walking daily (<30 minutes per day, 30 minutes per day-1 hour per day, >1hour per day, missing), history of disease (stroke, hypertension, myocardial infarction, diabetes mellitus),

1 2		
3 4 5	1	psycł
6 7 8	2	prote
9 10 11	3	
12 13 14	4	self-c
15 16	5	of de
17 18 19	6	disab
20 21 22	7	categ
23 24 25	8	and h
26 27 28	9	teeth'
29 30 31	10	calcu
32 33 34	11	missi
35 36 37	12	
38 39	13	and a
40 41 42	14	signi
43 44 45	15	
46 47 48		
49 50 51		
52 53		
54 55		
56 57 58		
59 60		

60

1

psychological distress score (<13, ≥13, missing), energy intake (sex-specific tertile, missing), and protein intake (sex-specific tertile, missing).

Second, in comparison with individuals who had ≥ 20 teeth, we examined whether oral care factors ("tooth brushing ≥ 2 times per day", "visiting a dentist ≥ 1 times per year", and "use entures" being defined as "practicing oral self-care") were related to the risk of functional pility in individuals with <20 teeth. For this, participants were divided into the following five gories based on three oral self-care measures: 1) "having ≥ 20 teeth", 2) "practicing oral self-care having 10-19 teeth", 3) "non-practicing and having 10-19 teeth", 4) "practicing and having 0-9 ", and 5) "non-practicing and having 0-9 teeth". Cox proportional hazards models were used to alate the HRs and 95% CIs for incident functional disability to compare the four categories of ing teeth with the ≥ 20 teeth category. All statistical analyses were performed with SAS version 9.4 (SAS Inc., Cary, NC, USA), all statistical tests were 2-sided. Differences at P < 0.05 were considered to be statistically ficant.

Results

$\mathbf{2}$ **Baseline characteristics** In the study population, women accounted for 54.3% and the mean (SD) age was 73.5 (5.4) years. Table 1 shows the participant characteristics. Those who had more teeth were younger, and were less likely to be women, current smokers, and to have a history of stroke, myocardial infarction, or $\mathbf{5}$ diabetes mellitus. Having more teeth was also related to being better educated, spending more time walking, being a current drinker, and having higher energy and protein intake. Number of teeth and incident functional disability The number of remaining teeth was significantly associated with a higher risk of incident functional disability. The multiple adjusted HRs (95% CIs) for incident functional disability among participants having 10-19 and 0-9 teeth were 1.15 (1.01-1.30) and 1.20 (1.07-1.34), respectively, compared with

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

13 participants having ≥ 20 teeth (*P*-trend <.05) (see online supplementary table S1).

15 Oral self-care and incident functional disability

Table 2 shows the relationship between oral self-care (tooth-brushing, dental visits, and use of dentures) and incident functional disability in the five categories. Compared with participants who had 20 or more teeth, HRs for participants who brushed their teeth <2 times per day were significantly higher [multivariate HRs (95% CI) 1.32 (1.12-1.55) for participants with 10-19 teeth,

and 1.33 (1.17-1.51) for participants with 0-9 teeth], but HRs for participants who brushed their teeth ≥ 2 times per day were not significantly higher in the "10-19 teeth" and "0-9 teeth" groups $\mathbf{2}$ [multivariate HRs (95% CI) 1.05 (0.91-1.21) for participants with 10-19 teeth, and 1.09 (0.96-1.23) for participants with 0-9 teeth]. There was no significant difference in the increased risk between $\mathbf{5}$ these two subgroups, irrespective of whether or not participants undertook dental visits or used dentures. Additionally, we compared HRs for participants who did and did not practice oral self-care in each of the "10-19 teeth" and "0-9 teeth" subgroups (Table 3). Compared with participants who brushed their teeth ≤ 2 times per day, HRs for participants who brushed their teeth ≥ 2 times per day were significantly lower [multivariate HRs (95% CI) 0.80 (0.66-0.96) for participants with 10-19 teeth (P-value <.001), and 0.81 (0.73-0.91) for participants with 0-9 teeth (P-value <.05)]. However, there was no significant difference in either of these subgroups, irrespective of whether or not participants undertook dental visits or used dentures.

Discussion

This cohort study investigated the association between oral self-care and incident functional $\mathbf{2}$ disability. First, we found that tooth loss was significantly associated with an increased risk of incident functional disability, in agreement with previous studies.^{7,8} However, even among participants who had fewer remaining teeth, the risk for those who brushed their teeth frequently was $\mathbf{5}$ not significantly higher. Our study suggested that if individuals with fewer than 20 teeth practiced good oral self-care habits such as regular tooth-brushing, they might partially negate the expected increase in incident functional disability. The present study had a number of strengths: 1) it was a large population-based cohort study involving 12,370 individuals, 2) it had a follow-up rate of almost 100%, 3) it took into account considerable confounding factors, and 4) it is the first reported study to have demonstrated an impact of tooth brushing on the increased risk of incident functional disability resulting from having fewer remaining teeth. There are several possible pathways linking oral self-care to incident functional disability. First, periodontal disease is related to systemic inflammation through oral inflammation.²⁴ Second, a recent report has suggested that swallowing of oral bacteria affects the gut microbiota, causing

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

systemic inflammation.¹² Chronic inflammation is known to be a risk factor for atherosclerotic diseases including stroke²⁵ and dementia,²⁶ and may cause autoimmune disease, particularly rheumatoid arthritis.²⁷ These diseases and their symptoms are common causes of functional disability in the Japanese elderly population.²⁸ Indeed, a previous study has suggested that tooth brushing

 $\mathbf{2}$

ameliorates the risk of cardiovascular disease.¹¹ Therefore, better oral hygiene through tooth-brushing may reduce the risk of functional disability in the elderly.

BMJ Open

3	The present study had several limitations. First, misclassification of the number of teeth and
4	practicing oral self-care as a result of self-reporting might have occurred. However, the validity of
5	the self-reported number of teeth has been confirmed by previous studies, ²⁹ and similarly the validity
6	of self-reported dental visits has also been confirmed. ³⁰ Second, among the source population of
7	31,694, the rate of valid responses (72.9%, $n = 23,091$) for this study was not high. In addition, the
8	valid responses would have shown a bias toward healthier people living in the community. However,
9	this bias would not have affected the internal validity of the association between oral self-care and
10	incident functional disability. Third, we did not consider causes of incident functional disability.
11	Thus, the mechanisms responsible for the reduction of incident functional disability risk resulting
12	from oral self- care remained unidentified.
13	In conclusion, this study has shown that tooth-brushing may partially negate the increased
14	risk of incident functional disability resulting from having fewer remaining teeth. Further studies will
15	need to confirm the effects of oral self-care on incident functional disability in individuals with

16 missing teeth.

Acknowledgments

2	We would like to thank Yoshiko Nakata and Mami Takahashi for their technical assistance.
3	
4	Contributions: Study concept and design: YT, IT. Acquisition of data: YT, KS, IT. Analysis and
5	interpretation of data: SB, YT, JA, YS, IT. Drafting of the manuscript: SB, YT, IT. Critical revision
6	of the manuscript for important intellectual content: SB, YT, JA, KS, YS, IT. All authors read and
7	approved final manuscript.
8	
9	Funding: This study was supported by grants from the Foundation for Total Health Promotion
10	(H27-General Research grants), and Health Sciences Research grants (nos. H26-Junkankitou
11	[Seisaku]-Ippan-001) from the Ministry of Health, Labour and Welfare of Japan. The authors declare
12	no potential conflicts of interest with respect to the authorship and/or publication of this article.
13	
14	Competing interests: None declared.
15	
16	Ethics approval: The Ethics Committee of Tohoku University Graduate School of Medicine
17	reviewed and approved the study protocol.
18	
19	Provenance and peer review: Not commissioned; externally peer reviewed.
	17

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

MJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Data sharing statement: No additional data are available.

3 Copyright:

 $\mathbf{2}$

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in BMJ Open editions and any other BMJPGL products to exploit all subsidiary rights, as set out in

8 our licence (http://group.bmj.com/products/journals/instructions-for-authors/licence-forms/)

1	References
2	1. Beard J OcA, Cassels A. World report on ageing and health. World Health Organization
3	2015;http://www.who.int/ageing/publications/world-report-2015/en/ (accessed Oct 11, 2016).
4	2. Abnet CC, Qiao YL, Dawsey SM, et al. Tooth loss is associated with increased risk of total death
5	and death from upper gastrointestinal cancer, heart disease, and stroke in a Chinese
6	population-based cohort. Int J Epidemiol 2005;34(2):467-74. doi: 10.1093/ije/dyh375
7	3. Holm-Pedersen P, Schultz-Larsen K, Christiansen N, et al. Tooth loss and subsequent disability
8	and mortality in old age. J Am Geriatr Soc 2008;56(3):429-35. doi:
9	10.1111/j.1532-5415.2007.01602.x
10	4. Janket SJ, Baird AE, Chuang SK, et al. Meta-analysis of periodontal disease and risk of coronary
11	heart disease and stroke. Oral Surg Oral Med Oral Pathol Oral Radiol Endod
12	2003;95(5):559-69. doi: 10.1067/moe.2003.107
13	5. Azarpazhooh A, Leake JL. Systematic review of the association between respiratory diseases and
14	oral health. J Periodontol 2006;77(9):1465-82. doi: 10.1902/jop.2006.060010
15	6. Wolff JL, Boult C, Boyd C, et al. Newly reported chronic conditions and onset of functional
16	dependency. J Am Geriatr Soc 2005;53(5):851-5. doi: 10.1111/j.1532-5415.2005.53262.x
17	[published Online First: 2005/05/10]
18	7. Aida J, Kondo K, Hirai H, et al. Association between dental status and incident disability in an
19	older Japanese population. J Am Geriatr Soc 2012;60(2):338-43. doi:
	19

	BMJ Open	Page 20cof 29 ≶
		J Open:
1	10.1111/j.1532-5415.2011.03791.x	first pub
2	8. Tsakos G, Watt RG, Rouxel PL, et al. Tooth loss associated with physical and cognitive decline in	olished a
3	older adults. J Am Geriatr Soc 2015;63(1):91-9. doi: 10.1111/jgs.13190	IS 10.11:
		36/bmjo
4	9. Hayasaka K, Tomata Y, Aida J, et al. Tooth loss and mortality in elderly Japanese adults: effect of	pen-20
5	oral care. J Am Geriatr Soc 2013;61(5):815-20. doi: 10.1111/jgs.12225	17-0179
6	10. Yamamoto T, Kondo K, Hirai H, et al. Association between self-reported dental health status and	146 on 1
7	onset of dementia: a 4-year prospective cohort study of older Japanese adults from the Aichi	8 Septe
8	Gerontological Evaluation Study (AGES) Project. Psychosom Med 2012;74(3):241-8. doi:	mber 2(
9	10.1097/PSY.0b013e318246dffb)17. Dov
10	11. de Oliveira C, Watt R, Hamer M. Toothbrushing, inflammation, and risk of cardiovascular	vnloadec
11	disease: results from Scottish Health Survey. BMJ 2010;340:c2451. doi: 10.1136/bmj.c2451	Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://
12	12. Arimatsu K, Yamada H, Miyazawa H, et al. Oral pathobiont induces systemic inflammation and	p://bmjop
13	metabolic changes associated with alteration of gut microbiota. Scientific reports	en.bmj.c
14	2014;4:4828. doi: 10.1038/srep04828 [published Online First: 2014/05/07]	om/ on /
15	13. Shimazaki Y, Soh I, Saito T, et al. Influence of dentition status on physical disability, mental	April 20, 2
16	impairment, and mortality in institutionalized elderly people. J Dent Res 2001;80(1):340-5.	2024 by (
17	14. Komiyama T, Ohi T, Miyoshi Y, et al. Association Between Tooth Loss, Receipt of Dental Care,	'bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.
18	and Functional Disability in an Elderly Japanese Population: The Tsurugaya Project. J Am	otected
19	Geriatr Soc 2016;64(12):2495-502. doi: 10.1111/jgs.14390 [published Online First:	ъу соруг
	20	ight.

BMJ Open

1	2016/11/02]
2	15. Kuriyama S, Nakaya N, Ohmori-Matsuda K, et al. The Ohsaki Cohort 2006 Study: design of
3	study and profile of participants at baseline. <i>J Epidemiol</i> 2010;20(3):253-8.
4	16. Kessler RC, Barker PR, Colpe LJ, et al. Screening for serious mental illness in the general
5	population. Arch Gen Psychiatry 2003;60(2):184-9.
6	17. Furukawa TA, Kawakami N, Saitoh M, et al. The performance of the Japanese version of the K6
7	and K10 in the World Mental Health Survey Japan. Int J Methods Psychiatr Res
8	2008;17(3):152-8. doi: 10.1002/mpr.257
9	18. Kuriyama S, Nakaya N, Ohmori-Matsuda K, et al. Factors associated with psychological distress
10	in a community-dwelling Japanese population: the Ohsaki Cohort 2006 Study. J Epidemiol
11	2009;19(6):294-302.
12	19. Ogawa K, Tsubono Y, Nishino Y, et al. Validation of a food-frequency questionnaire for cohort
13	studies in rural Japan. Public Health Nutr 2003;6(2):147-57. doi: 10.1079/PHN2002411
14	20. Imahashi K, Kawagoe M, Eto F, et al. Clinical status and dependency of the elderly requiring
15	long-term care in Japan. Tohoku J Exp Med 2007;212(3):229-38.
16	21. Ministry of Health L, and Welfare. Long-Term Care, Health and Welfare Services for the Elderly.
17	http://www.mhlw.go.jp/english/policy/care-welfare/care-welfare-elderly/. (accessed Oct 11,
18	2016.)
19	22. Arai Y, Zarit SH, Kumamoto K, et al. Are there inequities in the assessment of dementia under
	21

1	Japan's LTC insurance system? Int J Geriatr Psychiatry 2003;18(4):346-52. doi:
2	10.1002/gps.836
3	23. Tomata Y, Watanabe T, Sugawara Y, et al. Dietary patterns and incident functional disability in
4	elderly Japanese: the Ohsaki Cohort 2006 study. J Gerontol A Biol Sci Med Sci
5	2014;69(7):843-51. doi: 10.1093/gerona/glt182
6	24. Loos BG. Systemic markers of inflammation in periodontitis. J Periodontol 2005;76(11
7	Suppl):2106-15. doi: 10.1902/jop.2005.76.11-S.2106
8	25. Joshipura K, Zevallos JC, Ritchie CS. Strength of evidence relating periodontal disease and
9	atherosclerotic disease. Compend Contin Educ Dent 2009;30(7):430-9.
10	26. Heneka MT, O'Banion MK. Inflammatory processes in Alzheimer's disease. J Neuroimmunol
11	2007;184(1-2):69-91. doi: 10.1016/j.jneuroim.2006.11.017
12	27. Okada M, Kobayashi T, Ito S, et al. Periodontal treatment decreases levels of antibodies to
13	Porphyromonas gingivalis and citrulline in patients with rheumatoid arthritis and
14	periodontitis. J Periodontol 2013;84(12):e74-84. doi: 10.1902/jop.2013.130079 [published
15	Online First: 2013/05/25]
16	28. Ministry of Health L, and Welfare. Comprehensive Survey of Living Conditions, Summary
17	Report, 2010. http://www.mhlw.go.jp/english/database/db-hss/dl/report_gaikyo_2010.pdf.
18	(accessed December 21, 2016.)
19	29. Matsui D, Yamamoto T, Nishigaki M, et al. Validity of self-reported number of teeth and oral
	22

1 2		
- 3 4 5	1	health variables. BMC Oral Health 2016;17(1):17. doi: 10.1186/s12903-016-0248-2
6 7 8	2	30. Gilbert GH, Rose JS, Shelton BJ. A prospective study of the validity of data on self-reported
9 10	3	dental visits. Community Dent Oral Epidemiol 2002;30(5):352-62.
11 12 13 14 15 16 17 18 9 21 22 32 4 25 26 27 8 9 30 31 23 34 35 36 37 8 9 40 41 42 34 45 6 47 48	4	to beer texien only
49 50 51 52 53 54		
55 56 57		
58 59 60		23
		For peer review only - http://bmionen.hmi.com/site/about/guidelines.yhtml

$\mathbf{2}$ **TABLES**

		Number of Teeth	
Characteristic	≥20, n = 4,047	10-19, n = 3,108	0-9, n = 5,215
Women, %	50.0	53.4	58.2
Age, mean ± SD	71.3 ± 4.8	72.8 ± 5.2	75.6 ± 6.2
Body mass index, kg/m ² , %			
<18.5	3.2	4.9	6.2
18.5-24.9	63.8	64.0	65.3
≥25.0	32.9	31.1	28.5
Current smoking, %	11.0	14.5	14.6
Current alcohol drinking, %	46.1	41.3	31.7
Education < 16 years, %	22.9	27.2	33.7
Daily walking time ≥ 1 hour, %	29.3	29.1	26.0
Medical history, %			
Stroke	2.2	2.9	3.1
Hypertension	43.5	43.5	43.5
Myocardial infarction	3.8	4.4	5.9
Diabetes mellitus	10.5	11.5	12.6
Psychological distress, % ^a	3.4	4.2	5.6
Energy intake, kcal/d, mean \pm SD ^b	1463.5 ± 406.9	1451.9 ± 401.7	1413.8 ± 393.7
Protein intake, g/d, mean \pm SD	54.7 ± 14.0	53.6 ± 14.3	52.5 ± 14.4
Use of dentures, %	27.3	75.1	93.0
Tooth brushing (times/d)	2.0 ± 0.9	1.9 ± 1.1	1.8 ± 0.9
\geq 1 dental visits per year, %			
For treatment	57.3	63.5	43.8
For other reason	39.5	34.3	19.7

^b Excluding alcohol.

SD = standard deviation.

Table2. Relationship Between Oral Self-Care and Incident Functional Disability Stratified According to Number of Teeth (n=12,370).					
			Hazard Ratio (95% (Confidence Interval)	
Participants, n	Person-years	Events, n (%)	Model 1 ^{*1}	Model 2 ^{*2}	
4,047	21,152	476 (11.8)	1.00 (reference)	1.00 (reference)	
1,977	10,200	300 (15.2)	1.05 (0.91-1.22)	1.05 (0.91-1.21)	
1,131	5,529	230 (20.3)	1.44 (1.23-1.69)	1.32 (1.12-1.55)	
2,840	13,888	634 (22.3)	1.15 (1.01-1.30)	1.09 (0.96-1.23)	
2,375	10,812	689 (29.0)	1.52 (1.35-1.72)	1.33 (1.17-1.51)	
4,047	21,152	476 (11.8)	1.00 (reference)	1.00 (reference)	
2,010	10,208	335 (16.7)	1.17 (1.02-1.35)	1.14 (0.99-1.32)	
1,098	5,521	195 (17.8)	1.23 (1.04-1.46)	1.16 (0.98-1.38)	
2,343	11,502	528 (22.5)	1.26 (1.11-1.42)	1.15 (1.01-1.31)	
2,872	13,198	795 (27.7)	1.36 (1.21-1.54)	1.23 (1.09-1.39)	
4,047	21,152	476 (11.8)	1.00 (reference)	1.00 (reference)	
2,333	11,770	411 (17.6)	1.18 (1.04-1.35)	1.15 (1.01-1.32)	
775	3,958	119 (15.4)	1.22 (1.00-1.49)	1.13 (0.92-1.38)	
4,850	23,087	1220 (25.2)	1.29 (1.15-1.44)	1.19 (1.06-1.33)	
365	1,613	103 (28.2)	1.66 (1.34-2.06)	1.35 (1.09-1.68)	
	Participants, n 4,047 1,977 1,131 2,840 2,375 4,047 2,010 1,098 2,343 2,872 4,047 2,333 775 4,850	Participants, n Person-years 4,047 21,152 1,977 10,200 1,131 5,529 2,840 13,888 2,375 10,812 4,047 21,152 2,010 10,208 1,098 5,521 2,343 11,502 2,872 13,198 4,047 21,152 2,333 11,770 775 3,958 4,850 23,087	Participants, n Person-years Events, n (%) 4,047 21,152 476 (11.8) 1,977 10,200 300 (15.2) 1,131 5,529 230 (20.3) 2,840 13,888 634 (22.3) 2,375 10,812 689 (29.0) 4,047 21,152 476 (11.8) 2,010 10,208 335 (16.7) 1,098 5,521 195 (17.8) 2,343 11,502 528 (22.5) 2,872 13,198 795 (27.7) 4,047 21,152 476 (11.8) 2,333 11,770 411 (17.6) 775 3,958 119 (15.4) 4,850 23,087 1220 (25.2)	Hazard Ratio (95% GParticipants, nPerson-yearsEvents, n (%)Hazard Ratio (95% G4,04721,152476 (11.8)1.00 (reference)1,97710,200300 (15.2)1.05 (0.91-1.22)1,1315,529230 (20.3)1.44 (1.23-1.69)2,84013,888634 (22.3)1.15 (1.01-1.30)2,37510,812689 (29.0)1.52 (1.35-1.72)4,04721,152476 (11.8)1.00 (reference)2,01010,208335 (16.7)1.17 (1.02-1.35)1,0985,521195 (17.8)1.23 (1.04-1.46)2,34311,502528 (22.5)1.26 (1.11-1.42)2,87213,198795 (27.7)1.36 (1.21-1.54)4,04721,152476 (11.8)1.00 (reference)2,33311,770411 (17.6)1.18 (1.04-1.35)7753,958119 (15.4)1.22 (1.00-1.49)4,85023,0871220 (25.2)1.29 (1.15-1.44)	

*¹Model 1: Adjusted for age (65-69, 70-74, 75-79, 80-84, and \ge 85 y) and sex.

*²Model 2: Adjusted for model 1 + education level (age upon final graduation from school <16, 16-18, \geq 19 y, missing), smoking (never, former, current, missing), alcohol drinking (never, former, current, missing), body mass index (kg/m2; <18.5, 18.5-24.9, \geq 25.0, missing), time spent walking daily (<30 min/d, 30 min/d-1h/d, >1h/d, missing), history of disease (stroke, hypertension, myocardial infarction, diabetes mellitus), psychological distress score (<13, \geq 13, missing), energy intake (sex-specific tertile, missing), and protein intake (sex-specific tertile, missing).

 $\mathbf{2}$

Table 3. Sensitivity Analysis of the Relationship Between Oral Self-Care and Incident Functional Disability According to Number of Teeth (n=8,323).

				Hazard Ratio (95%	Confidence Interval)
Oral Self-care and Number of	Participants, n	Person-years	Events, n (%)	Model 1 ^{*1}	Model 2 ^{*2}
Teeth					
10-19 teeth (n=3,108)					
Brushing teeth <2 per day	1,131	5,529	230 (20.3)	1.00 (reference)	1.00 (reference)
Brushing teeth ≥2 per day	1,977	10,200	300 (15.2)	0.73 (0.61-0.87)	0.80 (0.66-0.96)
No dental visits	1,098	5,521	195 (17.8)	1.00 (reference)	1.00 (reference)
≥1 dental visits per year	2,010	10,208	335 (16.7)	0.95 (0.79-1.13)	0.98 (0.82-1.17)
No use of dentures	775	3,958	119 (15.4)	1.00 (reference)	1.00 (reference)
Use of dentures	2,333	11,770	411 (17.6)	0.97 (0.79-1.19)	1.00 (0.81-1.23)
9-9 teeth (n=5,215)					
Brushing teeth <2 per day	2,375	10,812	689 (29.0)	1.00 (reference)	1.00 (reference)
Brushing teeth ≥2 per day	2,840	13,888	634 (22.3)	0.75 (0.67-0.84)	0.81 (0.73-0.91)
No dental visits	2,872	13,198	795 (27.7)	1.00 (reference)	1.00 (reference)
≥ 1 dental visits per year	2,343	11,502	528 (22.5)	0.92 (0.82-1.03)	0.94 (0.84-1.05)
No use of dentures	365	1,613	103 (28.2)	1.00 (reference)	1.00 (reference)
Use of dentures	4,850	23,087	1220 (25.2)	0.78 (0.64-0.96)	0.88 (0.71-1.07)

*¹Model 1: Adjusted for age (65-69, 70-74, 75-79, 80-84, and ≥85 y) and sex.

*²Model 2: Adjusted for model 1 + education level (age upon final graduation from school <16, 16-18, ≥19 y, missing), smoking (never, former, current, missing), alcohol drinking (never, former, current, missing), body mass index (kg/m2; <18.5, 18.5-24.9, ≥25.0, missing), time spent walking daily (<30 min/d, 30 min/d-1h/d, >1h/d, missing), history of disease (stroke, hypertension, myocardial infarction, diabetes mellitus), psychological distress score (<13, ≥13, missing), energy intake (sex-specific tertile, missing), and protein intake (sex-specific tertile, missing).

				Hazard Ratio (95% (Confidence Interval
Number of Teeth	Participants, n	Person-years	Events, n (%)	Model 1 ^{*1}	Model 2 ^{*2}
≥20	4,047	21,152	476 (11.8)	1.00 (reference)	1.00 (reference)
10-19	3,108	15,729	530 (17.1)	1.19 (1.05-1.35)	1.15 (1.01-1.30)
0-9	5,215	24,700	1,323 (25.4)	1.31 (1.18-1.47)	1.20 (1.07-1.34)
P-trend	-	-	-	<.001	.002

*¹Model 1: Adjusted for age (65-69, 70-74, 75-79, 80-84, and \geq 85 y) and sex.

*²Model 2: Adjusted for model 1 + education level (age upon final graduation from school <16, 16-18, \geq 19 y, missing), smoking (never, former, current, missing), alcohol drinking (never, former, current, missing), body mass index (kg/m2; <18.5, 18.5-24.9, \geq 25.0, missing), time spent walking daily (<30 min/d, 30 min/d-1h/d, >1h/d, missing), history of disease (stroke, hypertension, myocardial infarction, diabetes mellitus), psychological distress score (<13, \geq 13, missing), energy intake (sex-specific tertile, missing), and protein intake (sex-specific tertile, missing).

Title: Impact of Oral Self-care on Incident Functional Disability in Elderly Japanese: The Ohsaki Cohort 2006 Study **Authors:** Shino Bando MSc, ¹ Yasutake Tomata PhD, ¹ Jun Aida DDS, PhD, ² Kemmyo Sugiyama MD, PhD, ¹ Yumi Sugawara PhD, ¹ and Ichiro Tsuji MD, PhD ¹

	Item		Page or line numbers where the checklist
	No	Recommendation	items are located in this paper*
Fitle and	1	(a) Indicate the study's design with a commonly used term in the	Line 2-3, Page 1
abstract		title or the abstract	Line 4, Page 3
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	Line 1-18, Page 3
Introduction			
Background/	2	Explain the scientific background and rationale for the	Line 2-18, Page 5
ationale		investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	Line 13, Page 5
			Line 19, Page 5 - Line 1-2,Page 6
Methods			
Study design	4	Present key elements of study design early in the paper	Line 2, Page 7 – Line 1, Page 8
Setting	5	Describe the setting, locations, and relevant dates, including	Line 4-13 page 7
		periods of recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	Line 10, Page 7 – Line 1, Page 8
		methods of selection of participants. Describe methods of	Line 9-16, page 10
		follow-up	
		(b) Cohort study—For matched studies, give matching criteria and	(This is not a matched studies)
		number of exposed and unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	Line 7, Page 8 - Line 16, Page 10
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8	For each variable of interest, give sources of data and details of	Line 7, Page 8 - Line 7, Page 10
neasurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Line 14, Page 11 - Line 2, Page12
Study size	10	Explain how the study size was arrived at	Line 4-6, 10-15, Page 7
Quantitative	11	Explain how quantitative variables were handled in the analyses. If	Line 18, Page 8 – Line 1, Page 9
variables		applicable, describe which groupings were chosen and why	
Statistical	12	(<i>a</i>) Describe all statistical methods, including those used to control	Line 6,page 11-Line 14, page 12
nethods	12	(a) Describe an statistical methods, including nose used to control for confounding	Line 0, page 11-Line 14, page 12
nemous		(b) Describe any methods used to examine subgroups and	Line 7-8, Page 14
		interactions	
		(c) Explain how missing data were addressed	Line 14, Page 11 - Line 2, Page12
		(d) Cohort study—If applicable, explain how loss to follow-up was	Line 2-5, Page 8
		addressed	
		(e) Describe any sensitivity analyses	Line 7-8, page 14

Page 29 of 29

BMJ Open

Results			
		(a) Report numbers of individuals at each stage of study-eg	Line 13, Page 7 – Line 1, Page 8
		numbers potentially eligible, examined for eligibility, confirmed	
Participants	13	eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Line 13, Page 7 – Line 1, Page 8
		(c) Consider use of a flow diagram	
		(a) Give characteristics of study participants (eg demographic,	Line2-7, Page 13
		clinical, social) and information on exposures and potential	Table 1, Page 24
Descriptive		confounders	
data	14	(b) Indicate number of participants with missing data for each	Line 15, Page 7 – Line 1, Page 8
uata		variable of interest	
		(c) Cohort study—Summarise follow-up time (eg, average and	Line 4-5, Page 8
		total amount)	Table 2, Page 25
		Cohort study—Report numbers of outcome events or summary	Line 4-5, Page 8
		measures over time	Table 2, Page 25
Outcome data	15	Case-control study-Report numbers in each exposure category, or	N/A
Outcome data	15	summary measures of exposure	IN/A
		Cross-sectional study-Report numbers of outcome events or	N/A
		summary measures	IN/A
		(a) Give unadjusted estimates and, if applicable,	Table 2, Page 25
		confounder-adjusted estimates and their precision (eg, 95%	Line 16, Page 13-Line 6, Page 14
		confidence interval). Make clear which confounders were adjusted	
Main results	16	for and why they were included	
Walli Tesuits	10	(b) Report category boundaries when continuous variables were	Line 14, Page 11 - Line 2, Page1
		categorized	
		(c) If relevant, consider translating estimates of relative risk into	N/A
		absolute risk for a meaningful time period	IN/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and	Line 7-13, Page 14
Other analyses	17	interactions, and sensitivity analyses	Table 3, Page 26
Discussion			
Key results	18	Summarise key results with reference to study objectives	Line 3-6, Page 15
		Discuss limitations of the study, taking into account sources of	Line 3-12, Page 16
Limitations	19	potential bias or imprecision. Discuss both direction and	
		magnitude of any potential bias	
		Give a cautious overall interpretation of results considering	Line 3-8, Page 15
Interpretation	20	objectives, limitations, multiplicity of analyses, results from	Line 13, Page 15-Line 2, Page16
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other information	on		
		Give the source of funding and the role of the funders for the	Line 9-12, Page 17
Funding	22	present study and, if applicable, for the original study on which the	
		present article is based	

BMJ Open

Impact of Oral Self-care on Incident Functional Disability in Elderly Japanese : The Ohsaki Cohort 2006 Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-017946.R1
Article Type:	Research
Date Submitted by the Author:	07-Aug-2017
Complete List of Authors:	Bando, Shino Tomata, Yasutake Aida, Jun; Tohoku University Graduate School of Dentistry, Department of International and Community Oral Health Sugiyama, Kemmyo Sugawara, Yumi; Tohoku University Graduate School of Medicine, Division of Epidemiology, Department of Health Informatics and Public Health Tsuji, Ichiro; Tohoku University School of Medicine, Tohoku University Graduate School of Medicine, Division of Epidemiology, Department of Health Informatics and Public Health
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Dentistry and oral medicine
Keywords:	teeth, tooth-brushing, denture, dental visit, disability

1	Title:
2	Impact of Oral Self-care on Incident Functional Disability in Elderly Japanese: The Ohsaki Cohort
3	2006 Study
4	
5	Authors:
6	Shino Bando MSc, ¹ Yasutake Tomata PhD, ¹ Jun Aida DDS, PhD, ² Kemmyo Sugiyama MD, PhD, ¹
7	Yumi Sugawara PhD, ¹ and Ichiro Tsuji MD, PhD ¹
8	
9	Authors' affiliations:
10	1. Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku
11	University School of Public Health, Graduate School of Medicine, Sendai, Japan.
12	2. Department of International and Community Oral Health, Tohoku University Graduate School of
13	Dentistry, Sendai, Japan.
14	Correspondence author:
15	Correspondence author:
16	Yasutake Tomata
17	Division of Epidemiology, Department of Health Informatics and Public Health, Tohoku University
18	School of Public Health, Graduate School of Medicine, Sendai, Japan. 2-1, Seiryo-machi, Aoba-ku,
19	Sendai, Miyagi 980-8575, Japan.
	1

1	Phone: +81-22-717-8123 Fax: +81-22-717-8125.
2	E-mail: y-tomata@med.tohoku.ac.jp
3	
4	Sources of support:
5	Health Sciences Research grants (nos. H26-Junkankitou [Seisaku]-Ippan-001 and
6	H29-Junkankitou-Ippan-003) from the Ministry of Health, Labour and Welfare of Japan, and
7	Research grants (H27-General Research grants) from the Foundation for Total Health Promotion.
8	
9	The number of words in the abstract: 203 words
10	The number of words in the text: 2,955 words
11	The number of tables: 3 tables
12	The number of references: 30 references
13	The number of supplementary material: 2 table
14	
	2

Abstract $\mathbf{2}$ **Objectives:** To assess whether oral self-care (tooth-brushing, regular dental visits, and use of dentures) affects incident functional disability in elderly individuals with tooth loss. **Design:** A 5.7-year prospective cohort study. $\mathbf{5}$ Setting: Ohsaki City, Japan. Participants: 12,370 community-dwelling individuals aged 65 years and older. Primary outcome measures: Incident functional disability (new LTCI certification). $\overline{7}$ **Results:** The 5.7-year incidence rate of disability was 18.8%. In comparison with participants who had ≥ 20 teeth, the HRs (95% CIs) for incident functional disability among participants who had 10-19 and 0-9 teeth were 1.15 (1.01-1.30) and 1.20 (1.07-1.34), respectively (P-trend < .05). However, the corresponding values for those who brushed their teeth ≥ 2 times per day were not significantly higher in the "10-19 teeth" and "0-9 teeth" groups [HRs (95% CI) 1.05 (0.91-1.21) for participants with 10-19 teeth, and 1.09 (0.96-1.23) for participants with 0-9 teeth], although HRs for those who brushed their teeth <2 times per day were significantly higher [HRs (95% CI) 1.32] (1.12-1.55) for participants with 10-19 teeth, and 1.33 (1.17-1.51) for participants with 0-9 teeth]. Such a negating association was not observed for other forms of oral self-care. **Conclusions:** Tooth-brushing may partially negate the increased risk of incident functional disability associated with having fewer remaining teeth.

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Strengths and limitations of this study $\mathbf{2}$

• Our study is the first reported study to have demonstrated an impact of tooth brushing on the

increased risk of incident functional disability resulting from having fewer remaining teeth.

• This is a large population-based cohort study involving 12,370 individuals and it can take into

account considerable confounding factors.

• Although misclassification of the number of teeth and practicing oral self-care as a result of self-reporting might have occurred, the validity of these have also been confirmed by previous studies.

 $\mathbf{5}$

Introduction

2	As society ages, disability prevention has become an important public health issue. It has been
3	pointed out by the WHO that oral health is an important component of healthy aging, particularly in
4	the disadvantaged elderly. ¹ Tooth loss is also known to be a risk factor for mortality in the elderly. ^{2,3}
5	Periodontal disease, which is one of the main causes of tooth loss, is known to be related to coronary
6	heart disease, ⁴ stroke, ⁴ and pneumonia, ⁵ which in turn are major causes of incident disability. ⁶
7	Recently, several studies have indicated that tooth loss is related to incident disability. ^{7,8} Therefore,
8	there is a need to decrease the excess risk of functional disability in elderly adults with missing teeth.
9	It has been suggested that oral self-care has a preventative impact on mortality. ⁹ We have
10	reported that individuals who practiced three types of oral self-care (tooth brushing, regular dental
11	visits, and use of dentures) had a lower mortality risk than those who practiced none of the three. ⁹
12	Those who practiced oral self-care also had a lower risk of dementia and cardiovascular disease. ^{10,11}
13	These findings suggest that there are possible pathways linking oral self-care to incident disability.
14	Additionally, it has been reported that the intraoral environment affects the gut microbiota and may
15	cause systemic inflammation, ¹² implying a new pathway whereby poor oral hygiene may be linked to
16	systemic disease. To our knowledge, however, only two studies have examined whether practicing
17	oral care affects the risk of functional disability among older people with tooth loss, and those
18	studies focused only on denture use ¹³ or regular dental visits. ¹⁴

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

The aim of the present cohort study was to assess whether three types of oral self-care (tooth

brushing, regular dental visits, and use of dentures) have an impact on incident functional disability

in individuals with tooth loss.

 $\mathbf{2}$

Materials and Methods

Study design, setting, and participants

The present study was based on data from the Ohsaki Cohort 2006 Study, whose design has been described in detail elsewhere.¹⁵ In brief, the source population for the baseline survey comprised all men and women aged 65 years or older living in Ohsaki City, Miyagi Prefecture, northeastern Japan, on December 1, 2006. The survey included questions about the number of remaining teeth and oral self-care status, as well as items on history of disease, education level, smoking, alcohol drinking, body weight, height, psychological distress score, time spent walking per day, and food intake frequency.

The baseline survey was conducted between December 1 and December 15, 2006, and the follow-up survey between April 1, 2007 and November 30, 2012. A questionnaire was distributed by the heads of individual administrative districts to all individuals aged 65 years or older living in Ohsaki city, and then collected by mail. Among 31,694 subjects (12,750 men and 18,944 women) eligible for this analysis, 23,091 (9,605 men and 13,486 women) provided valid responses and formed the study cohort. Among the latter respondents, we excluded 6,333 individuals who did not provide written consent for review of their Long-term Care Insurance (LTCI) information, 2,102 who had already been certified as having a disability by the LTCI before the starting date of follow-up (March 30, 2007), 62 who had died or moved away before the starting date of follow-up, 188 for whom the Doctor's Opinion Paper had been unavailable, and 2,036 who left blank the item

2		
3 4	1	concerning dental health status. Thus, 12,370 responses were analyzed for the purpose of this study.
5	-	
6		
7	2	During the 5.7-year period covered by the study, only 158 individuals were lost to follow-up
8		
9 10	3	because they moved away from the study area without developing any functional disability; thus, the
10 11	0	
12		
13	4	follow-up rate was 98.7%. From 61,581 person-years, incident functional disability was recorded in
14		
15	5	2,329 persons, and the number of all-cause deaths was 1,446.
16	0	
17 18		
19	6	
20		
21	7	Measurement of dental health status
22	'	Measurement of actual neurin status
23		
24	8	In the baseline questionnaire, we asked respondents to classify the number of their remaining teeth
25 26		
27	9	into six categories: all (28 teeth), most (25-27 teeth), moderate (20-24 teeth), about half (10-19 teeth),
28	5	
29		
30	10	few (1-9 teeth), and none (0 teeth). Then, we divided the respondents into three groups: 1) \geq 20 teeth,
31		
32	11	2) 10, 10 tooth, and 2) 0, 0 tooth
33 34	11	2) 10-19 teeth, and 3) 0-9 teeth.
35		
36	12	We also asked whether they used dentures and whether they visited a dental clinic
37		
38	13	(including as reasons "treatment" and "other reasons such as dental check-ups and scaling") at least
39	15	(including as reasons treatment and other reasons such as dental check-ups and scaling) at least
40 41		
42	14	once a year. The respondents were asked to mark "yes" or "no" in reply. We also asked how many
43		
44	15	times participants brushed their teath deily.
45	15	times participants brushed their teeth daily.
46		
47 49	16	
48 49		
49 50	1 🗁	Mangunan ants of other variables
51	17	Measurements of other variables
52		
53	18	K6 was used as an indicator of psychological distress. ^{16,17} Using six questions, respondents were
54		
55 56	10	
56 57	19	asked about their mental status over the last month. Total point scores ranged from 0 to 24. As the
58		
59		8
60		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

of \geq 13 as having psychological distress.¹⁸ $\mathbf{2}$ The amount of energy intake (except that from alcohol-drinking) and protein intake was calculated based on the data from the baseline survey and divided into sex-specific tertiles. The survey included questions about the frequency of recent average consumption of 39 daily food items. $\mathbf{5}$ For estimation of energy and protein intake from the food-frequency questionnaire (FFO), a food composition table was used that corresponded to the items listed in the questionnaire.¹⁹ A validation study of the FFQ had been conducted previously.¹⁹ LTCI system in Japan In this study, we defined incident functional disability as certification for LTCI in Japan, which uses a nationally uniform standard of functional disability. LTCI is a mandatory system of social insurance to assist the daily activity of frail elderly individuals.^{20,21} Everyone aged 40 years and over pays premiums, and everyone aged 65 years and over is eligible for formal caregiving services. When a person applies to the municipal government for benefits, an expert investigator visits his or her home and assesses the degree of functional disability using a questionnaire developed by the Ministry of Health, Labor, and Welfare. Then, the municipal government calculates the standardized scores for physical and mental functions on the basis of the certification survey sheet and assesses whether the applicant is eligible for LTCI benefits. If a person is judged to be thus eligible, the

Municipal Certification Committee decides on one of seven levels of support, ranging from Support Level 1 to 2, and Care Level 1 to Care Level 5. In brief, LTCI certification levels are defined as $\mathbf{2}$ follows. Support Level 1: "limited in instrumental activities of daily living but independent in basic activities of daily living"; Care Level 2: "requiring assistance in at least one basic ADL task"; Care Level 5: "requiring care in all ADL tasks". A community-based study has shown that levels of LTCI $\mathbf{5}$ certification are well related to the ability to perform activities of daily living, and with Mini-Mental State Examination scores ²². LTCI certification has already been used as a measure of incident functional disability in the elderly.^{7,23} Follow-up and case details

Incident functional disability was defined as LTCI certification, which was set as our endpoint. The primary outcome was new LTCI certification (Support Level 1 or higher), and deaths without LTCI certification were treated as censored. We obtained a data set that included information on the date of LTCI certification, emigration, or death from Ohsaki City Government based on an agreement about the secondary use of data. LTCI certification information was provided, including care level information. All data were transferred from the Ohsaki City Government yearly each December under the agreement related to Epidemiologic Research and Privacy Protection.

1 Ethical issues

The return of completed questionnaires was considered to imply consent to participate in the study involving the baseline survey data and subsequent follow-up of death and emigration. Information regarding LTCI certification status was confirmed after obtaining written consent returned from the participants at the time of the baseline survey. The Ethics Committee of Tohoku University Graduate School of Medicine reviewed and approved the study protocol.

8 Statistical analysis

9 Baseline characteristics were evaluated using the chi-squared test for categorical variables and
10 analysis of variance for continuous variables. We used these methods to compare variables among
11 groups with varying numbers of teeth.

First, we examined the relationship between the number of remaining teeth and incident functional disability in the entire study population. The Cox proportional hazards model was used to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for incident functional disability according to the categories for different numbers of remaining teeth. Participants having \geq 20 teeth were used as a reference category. The multivariate models were adjusted for the following variables: age (65-69, 70-74, 75-79, 80-84, and ≥85 years), sex, education level (age upon final graduation from school <16, 16-18, \geq 19 years, missing), smoking (never, former, current, missing), alcohol drinking (never, former, current, missing), body mass index (kg/m²; <18.5, 18.5-24.9, ≥25.0,

1	missing), time spent walking daily (<30 minutes per day, 30 minutes per day-1 hour per day, >1 hour
2	per day, missing), history of disease (stroke, hypertension, myocardial infarction, diabetes mellitus),
3	psychological distress score (<13, \geq 13, missing), energy intake (sex-specific tertile, missing), and
4	protein intake (sex-specific tertile, missing).
5	Second, in this analysis, we examined whether a higher risk of incident disability among
6	participants with fewer teeth would persist irrespective of whether they practice oral self-care ("tooth
7	brushing ≥ 2 times per day", "visiting a dentist ≥ 1 times per year", and "use of dentures" being
8	defined as "practicing oral self-care"). For this, participants were divided into the following five
9	categories based on three oral self-care measures: 1) "having ≥ 20 teeth", 2) "practicing oral self-care
10	and having 10-19 teeth", 3) "non-practicing and having 10-19 teeth", 4) "practicing and having 0-9
11	teeth", and 5) "non-practicing and having 0-9 teeth". Cox proportional hazards models were used to
12	calculate the HRs and 95% CIs for incident functional disability to compare the four categories of
13	missing teeth with the \geq 20 teeth category.
14	All statistical analyses were performed with SAS version 9.4 (SAS Inc., Cary, NC, USA),

significant.

and all statistical tests were 2-sided. Differences at P <0.05 were considered to be statistically

 $\mathbf{2}$

 $\mathbf{5}$

Results

Baseline characteristics

In the study population, women accounted for 54.3% and the mean (SD) age was 73.5 (5.4) years. Table 1 shows the participant characteristics. Those who had more teeth were younger, and were less likely to be women, current smokers, and to have a history of stroke, myocardial infarction, or

- diabetes mellitus. Having more teeth was also related to being better educated, spending more time
- walking, being a current drinker, and having higher energy and protein intake.

Number of teeth and incident functional disability

The number of remaining teeth was significantly associated with a higher risk of incident functional disability. The multiple adjusted HRs (95% CIs) for incident functional disability among participants having 10-19 and 0-9 teeth were 1.15 (1.01-1.30) and 1.20 (1.07-1.34), respectively, compared with participants having ≥ 20 teeth (*P*-trend <.05) (see online supplementary table S1).

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Oral self-care and incident functional disability

Table 2 shows the relationship between oral self-care (tooth-brushing, dental visits, and use of dentures) and incident functional disability in the five categories. Compared with participants who had 20 or more teeth, HRs for participants who brushed their teeth <2 times per day were significantly higher [multivariate HRs (95% CI) 1.32 (1.12-1.55) for participants with 10-19 teeth,

1	and 1.33 (1.17-1.51) for participants with 0-9 teeth], but HRs for participants who brushed their teeth
2	≥ 2 times per day were not significantly higher in the "10-19 teeth" and "0-9 teeth" groups
3	[multivariate HRs (95% CI) 1.05 (0.91-1.21) for participants with 10-19 teeth, and 1.09 (0.96-1.23)
4	for participants with 0-9 teeth]. There was no significant difference in the increased risk between
5	these two subgroups, irrespective of whether or not participants undertook dental visits or used
6	dentures.
7	We analysed "dental visits for other reasons (such as dental check-ups and scaling)" as an
8	exposure (see online supplementary table S2). Compared with participants who had 20 or more teeth,
9	only the HR for participants who had 10-19 teeth and visited a dentist was not significant. No such
10	relationship was observed for "dental visits for treatment" as an exposure.
11	Additionally, we compared HRs for participants who did and did not practice oral self-care
12	in each of the "10-19 teeth" and "0-9 teeth" subgroups (Table 3). Compared with participants who
13	brushed their teeth <2 times per day, HRs for participants who brushed their teeth \geq 2 times per day
14	were significantly lower [multivariate HRs (95% CI) 0.80 (0.66-0.96) for participants with 10-19
15	teeth (P-value <.001), and 0.81 (0.73-0.91) for participants with 0-9 teeth (P-value <.05)]. However,
16	there was no significant difference in either of these subgroups, irrespective of whether or not
17	participants undertook dental visits or used dentures. When we conducted reanalysis after excluding
18	the participants with "0 teeth", the results did not change substantially: 0.80 (0.69-0.94) for
19	participants with 1-9 teeth.
	14

	BMJ Open	Page 16ሙf 31 졷
		Open: t
1	Discussion	Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http:/
2	This cohort study investigated the association between oral self-care and incident functional	shed as 1
3	disability. First, we found that tooth loss was significantly associated with an increased risk of	10.1136/k
4	incident functional disability, in agreement with previous studies. ^{7,8} However, even among	omjopen-
5	participants who had fewer remaining teeth, the risk for those who brushed their teeth frequently was	2017-01
6	not significantly higher. Among participants who had 10-19 teeth, we also observed a similar result	7946 on .
7	for those who made dental visits for other reasons (such as dental check-ups and scaling). Our study	18 Septe
8	suggested that if individuals with fewer than 20 teeth practiced good oral self-care habits such as	mber 20
9	regular tooth-brushing and preventive dental visits, they might partially negate the expected increase	17. Dowr
10	in incident functional disability. The present study had a number of strengths: 1) it was a large	nloaded
11	population-based cohort study involving 12,370 individuals, 2) it had a follow-up rate of almost	from http
12	100%, 3) it took into account considerable confounding factors, and 4) it is the first reported study to	://bmjop
13	have demonstrated an impact of tooth brushing on the increased risk of incident functional disability	en.bmj.o
14	resulting from having fewer remaining teeth.	om/ on A
15	There are several possible pathways linking oral self-care to incident functional disability.	pril 20, 2
16	First, periodontal disease is related to systemic inflammation through oral inflammation. ²⁴ Second, a	024 by (
17	recent report has suggested that swallowing of oral bacteria affects the gut microbiota, causing	/bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.
18	systemic inflammation. ¹² Chronic inflammation is known to be a risk factor for atherosclerotic	otected t
19	diseases including stroke ²⁵ and dementia, ²⁶ and may cause autoimmune disease, particularly	ъу соруп
	16	ight.

rheumatoid arthritis.²⁷ These diseases and their symptoms are common causes of functional disability in the Japanese elderly population.²⁸ Indeed, a previous study has suggested that tooth brushing $\mathbf{2}$ ameliorates the risk of cardiovascular disease.¹¹ Therefore, better oral hygiene through tooth-brushing may reduce the risk of functional disability in the elderly. The present study had several limitations. First, misclassification of the number of teeth and $\mathbf{5}$ practicing oral self-care as a result of self-reporting might have occurred. However, the validity of the self-reported number of teeth has been confirmed by previous studies.²⁹ and similarly the validity $\overline{7}$ of self-reported dental visits has also been confirmed.³⁰ Second, among the source population of 31,694, the rate of valid responses (72.9%, n = 23,091) for this study was not high. In addition, the valid responses would have shown a bias toward healthier people living in the community. However, this bias would not have affected the internal validity of the association between oral self-care and incident functional disability. Third, we did not consider causes of incident functional disability. Thus, the mechanisms responsible for the reduction of incident functional disability risk resulting from oral self- care remained unidentified. Fourth, although we observed the preventive association even after adjusting for major characteristics/behaviour, not all potential confounding factors were considered. For example, although cognitive function and income might be possible confounders, we did not include them as adjustment items.

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

In conclusion, this study has shown that tooth-brushing may partially negate the increased
risk of incident functional disability resulting from having fewer remaining teeth. Further studies will

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

l	need to confirm the effects of oral self-care on incident functional disability in individuals with
2	missing teeth.
3	

missing teeth.

 $\mathbf{2}$

Acknowledgments

We would like to thank Yoshiko Nakata, Mami Takahashi, and Shu Zhang for their technical assistance. Contributions: Study concept and design: YT, IT. Acquisition of data: YT, KS, IT. Analysis and $\mathbf{5}$ interpretation of data: SB, YT, JA, YS, IT. Drafting of the manuscript: SB, YT, IT. Critical revision of the manuscript for important intellectual content: SB, YT, JA, KS, YS, IT. All authors read and approved final manuscript. Funding: This study was supported by grants from the Foundation for Total Health Promotion (H27-General Research grants), and Health Sciences Research grants (nos. H26-Junkankitou [Seisaku]-Ippan-001 and H29-Junkankitou-Ippan-003) from the Ministry of Health, Labour and Welfare of Japan. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article. Competing interests: None declared. Ethics approval: The Ethics Committee of Tohoku University Graduate School of Medicine reviewed and approved the study protocol.

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: No additional data are available.

 $\mathbf{5}$

Copyright:

6 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of 7 all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis 8 to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published 9 in BMJ Open editions and any other BMJPGL products to exploit all subsidiary rights, as set out in 10 our licence (http://group.bmj.com/products/journals/instructions-for-authors/licence-forms/)

1	
2	
3	
4	
3 4 5 6 7 8 9 10	
5	
0	
1	
8	
9	
10	
11	
12	
13	
12 13 14 15 16	
15	
16	
17	
18	
18 19	
20	
21	
21 22	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
53 54	
54 55	
56	
57	
58	
59	
60	

1	References
2	1. Beard J OcA, Cassels A. World report on ageing and health. World Health Organization
3	2015;http://www.who.int/ageing/publications/world-report-2015/en/ (accessed Oct 11, 2016).
4	2. Abnet CC, Qiao YL, Dawsey SM, et al. Tooth loss is associated with increased risk of total death
5	and death from upper gastrointestinal cancer, heart disease, and stroke in a Chinese
6	population-based cohort. Int J Epidemiol 2005;34(2):467-74.
7	3. Holm-Pedersen P, Schultz-Larsen K, Christiansen N, et al. Tooth loss and subsequent disability
8	and mortality in old age. J Am Geriatr Soc 2008;56(3):429-35.
9	4. Janket SJ, Baird AE, Chuang SK, et al. Meta-analysis of periodontal disease and risk of coronary
10	heart disease and stroke. Oral Surg Oral Med Oral Pathol Oral Radiol Endod
11	2003;95(5):559-69.
12	5. Azarpazhooh A, Leake JL. Systematic review of the association between respiratory diseases and
13	oral health. J Periodontol 2006;77(9):1465-82.
14	6. Wolff JL, Boult C, Boyd C, et al. Newly reported chronic conditions and onset of functional
15	dependency. J Am Geriatr Soc 2005;53(5):851-5.
16	7. Aida J, Kondo K, Hirai H, et al. Association between dental status and incident disability in an
17	older Japanese population. J Am Geriatr Soc 2012;60(2):338-43.
18	8. Tsakos G, Watt RG, Rouxel PL, et al. Tooth loss associated with physical and cognitive decline in
19	older adults. J Am Geriatr Soc 2015;63(1):91-9.

BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	9. Hayasaka K, Tomata Y, Aida J, et al. Tooth loss and mortality in elderly Japanese adults: effect of
2	oral care. J Am Geriatr Soc 2013;61(5):815-20.
3	10. Yamamoto T, Kondo K, Hirai H, et al. Association between self-reported dental health status and
4	onset of dementia: a 4-year prospective cohort study of older Japanese adults from the Aichi
5	Gerontological Evaluation Study (AGES) Project. Psychosom Med 2012;74(3):241-8.
6	11. de Oliveira C, Watt R, Hamer M. Toothbrushing, inflammation, and risk of cardiovascular
7	disease: results from Scottish Health Survey. BMJ 2010;340:c2451.
8	12. Arimatsu K, Yamada H, Miyazawa H, et al. Oral pathobiont induces systemic inflammation and
9	metabolic changes associated with alteration of gut microbiota. Scientific reports
10	2014;4:4828.
11	13. Shimazaki Y, Soh I, Saito T, et al. Influence of dentition status on physical disability, mental
12	impairment, and mortality in institutionalized elderly people. J Dent Res 2001;80(1):340-5.
13	14. Komiyama T, Ohi T, Miyoshi Y, et al. Association Between Tooth Loss, Receipt of Dental Care,
14	and Functional Disability in an Elderly Japanese Population: The Tsurugaya Project. J Am
15	Geriatr Soc 2016;64(12):2495-502.
16	15. Kuriyama S, Nakaya N, Ohmori-Matsuda K, et al. The Ohsaki Cohort 2006 Study: design of
17	study and profile of participants at baseline. <i>J Epidemiol</i> 2010;20(3):253-8.
18	16. Kessler RC, Barker PR, Colpe LJ, et al. Screening for serious mental illness in the general
19	population. Arch Gen Psychiatry 2003;60(2):184-9.
	20

BMJ Open

₹
2
0
pe
ň
.⊐h
S
<u>–</u>
Ĕ
р
<u>s</u>
ы
Ó.
as 10
<u> </u>
0
<u>`</u>
ω
õ
ğ
⊒.
8
ĕ
ŗ
2
4
7
2
0.1136/bmjopen-2017-017946 on 18 September 2017. [
ő
46
õ
ĭ
$\frac{1}{2}$
00
Š
ő
Ð
З
ğ
Ψ
2
2
$^{\prime}$
—
8
Ž
_
00
load
loadec
loaded f
loaded fro
loaded from
loaded from h
loaded from http
loaded from http://
loaded from http://bi
BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmj
loaded from http://bmjo
loaded from http://bmjope
loaded from http://bmjopen.
loaded from http://bmjopen.bi
loaded from http://bmjopen.bmj
loaded from http://bmjopen.bmj.c.
loaded from http://bmjopen.bmj.cor
loaded from http://bmjopen.bmj.com/
loaded from http://bmjopen.bmj.com/ or
loaded from http://bmjopen.bmj.com/ on ,
loaded from http://bmjopen.bmj.com/ on Ap
loaded from http://bmjopen.bmj.com/ on Aprii
loaded from http://bmjopen.bmj.com/ on April 2
loaded from http://bmjopen.bmj.com/ on April 20,
njopen.bmj.com/ on April 20,
loaded from http://bmjopen.bmj.com/ on April 20, 202
njopen.bmj.com/ on April 20,
njopen.bmj.com/ on April 20, 2024 t
njopen.bmj.com/ on April 20, 2024 t
njopen.bmj.com/ on April 20,
njopen.bmj.com/ on April 20, 2024 t

1	17. Furukawa TA, Kawakami N, Saitoh M, et al. The performance of the Japanese version of the K6
2	and K10 in the World Mental Health Survey Japan. Int J Methods Psychiatr Res
3	2008;17(3):152-8.
4	18. Kuriyama S, Nakaya N, Ohmori-Matsuda K, et al. Factors associated with psychological distress
5	in a community-dwelling Japanese population: the Ohsaki Cohort 2006 Study. J Epidemiol
6	2009;19(6):294-302.
7	19. Ogawa K, Tsubono Y, Nishino Y, et al. Validation of a food-frequency questionnaire for cohort
8	studies in rural Japan. Public Health Nutr 2003;6(2):147-57.
9	20. Imahashi K, Kawagoe M, Eto F, et al. Clinical status and dependency of the elderly requiring
10	long-term care in Japan. Tohoku J Exp Med 2007;212(3):229-38.
11	21. Ministry of Health Labour, and Welfare. Long-Term Care, Health and Welfare Services for the
12	Elderly. http://www.mhlw.go.jp/english/policy/care-welfare/care-welfare-elderly/. (accessed
13	Oct 11, 2016.)
14	22. Arai Y, Zarit SH, Kumamoto K, et al. Are there inequities in the assessment of dementia under
15	Japan's LTC insurance system? Int J Geriatr Psychiatry 2003;18(4):346-52.
16	23. Tomata Y, Watanabe T, Sugawara Y, et al. Dietary patterns and incident functional disability in
17	elderly Japanese: the Ohsaki Cohort 2006 study. J Gerontol A Biol Sci Med Sci
18	2014;69(7):843-51.
19	24. Loos BG. Systemic markers of inflammation in periodontitis. J Periodontol 2005;76(11
	23

1	Suppl):2106-15.
2	25. Joshipura K, Zevallos JC, Ritchie CS. Strength of evidence relating periodontal disease and
3	atherosclerotic disease. Compend Contin Educ Dent 2009;30(7):430-9.
4	26. Heneka MT, O'Banion MK. Inflammatory processes in Alzheimer's disease. J Neuroimmunol
5	2007;184(1-2):69-91.
6	27. Okada M, Kobayashi T, Ito S, et al. Periodontal treatment decreases levels of antibodies to
7	Porphyromonas gingivalis and citrulline in patients with rheumatoid arthritis and
8	periodontitis. J Periodontol 2013;84(12):e74-84.
9	28. Ministry of Health Labour, and Welfare. Comprehensive Survey of Living Conditions, Summary
10	Report, 2010. http://www.mhlw.go.jp/english/database/db-hss/dl/report_gaikyo_2010.pdf.
11	(accessed December 21, 2016.)
12	29. Matsui D, Yamamoto T, Nishigaki M, et al. Validity of self-reported number of teeth and oral
13	health variables. BMC Oral Health 2016;17(1):17.
14	30. Gilbert GH, Rose JS, Shelton BJ. A prospective study of the validity of data on self-reported
15	dental visits. Community Dent Oral Epidemiol 2002;30(5):352-62.
16	

$\mathbf{2}$ **TABLES**

		Number of Teeth	
Characteristic	≥20, n = 4,047	10-19, n = 3,108	0-9, n = 5,215
Women, %	50.0	53.4	58.2
Age, mean ± SD	71.3 ± 4.8	72.8 ± 5.2	75.6 ± 6.2
Body mass index, kg/m ² , %			
<18.5	3.2	4.9	6.2
18.5-24.9	63.8	64.0	65.3
≥25.0	32.9	31.1	28.5
Current smoking, %	11.0	14.5	14.6
Current alcohol drinking, %	46.1	41.3	31.7
Education < 16 years, %	22.9	27.2	33.7
Daily walking time ≥ 1 hour, %	29.3	29.1	26.0
Medical history, %			
Stroke	2.2	2.9	3.1
Hypertension	43.5	43.5	43.5
Myocardial infarction	3.8	4.4	5.9
Diabetes mellitus	10.5	11.5	12.6
Psychological distress, % ^a	3.4	4.2	5.6
Energy intake, kcal/d, mean \pm SD ^b	1463.5 ± 406.9	1451.9 ± 401.7	1413.8 ± 393.7
Protein intake, g/d , mean \pm SD	54.7 ± 14.0	53.6 ± 14.3	52.5 ± 14.4
Use of dentures, %	27.3	75.1	93.0
Tooth brushing (times/d)	2.0 ± 0.9	1.9 ± 1.1	1.8 ± 0.9
\geq 1 dental visits per year, %			
For treatment	57.3	63.5	43.8
For other reasons	39.5	34.3	19.7

^b Excluding alcohol.

SD = standard deviation.

1 2

2	
3	
4	
3 4 5	
6	
1	
פ	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 24	
∠ I 22	
, 8 9 10 11 2 3 4 15 6 7 8 9 20 11 2 3 4 15 6 7 8 9 20 21 22 3 4 25 6 7 8 9 30 1 23 3 3 4 35 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 3 5 6 7 8 9 20 3 1 2 3 3 4 5 6 7 8 9 20 3 1 2 3 3 4 5 6 7 8 9 20 3 1 2 3 3 4 5 6 7 8 9 20 3 1 2 3 3 4 5 6 7 8 9 20 3 1 2 3 3 3 4 5 6 7 8 9 20 3 1 2 3 3 3 4 5 6 7 8 9 20 3 1 2 3 3 3 4 5 6 7 8 9 20 3 1 2 3 3 3 4 5 6 7 8 9 20 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
50 51 52 53 54 55 56	
57	
58	
59	
60	

				Hazard Ratio (95% (Confidence Interval
Oral Self-care and Number of Teeth	Participants, n	Person-years	Events, n (%)	Model 1 ^{*1}	Model 2 ^{*2}
Footh brushing					
≥20	4,047	21,152	476 (11.8)	1.00 (reference)	1.00 (reference)
10-19 with brushing teeth ≥ 2 per day	1,977	10,200	300 (15.2)	1.05 (0.91-1.22)	1.05 (0.91-1.21)
10-19 with brushing teeth <2 per day	1,131	5,529	230 (20.3)	1.44 (1.23-1.69)	1.32 (1.12-1.55)
0-9 with brushing teeth ≥ 2 per day	2,840	13,888	634 (22.3)	1.15 (1.01-1.30)	1.09 (0.96-1.23)
0-9 with brushing teeth <2 per day	2,375	10,812	689 (29.0)	1.52 (1.35-1.72)	1.33 (1.17-1.51)
≥1 dental visits per year					
≥20	4,047	21,152	476 (11.8)	1.00 (reference)	1.00 (reference)
10-19 with dental visits	2,010	10,208	335 (16.7)	1.17 (1.02-1.35)	1.14 (0.99-1.32)
10-19 with no dental visits	1,098	5,521	195 (17.8)	1.23 (1.04-1.46)	1.16 (0.98-1.38)
0-9 with dental visits	2,343	11,502	528 (22.5)	1.26 (1.11-1.42)	1.15 (1.01-1.31)
0-9 with no dental visits	2,872	13,198	795 (27.7)	1.36 (1.21-1.54)	1.23 (1.09-1.39)
Use of dentures					
≥20	4,047	21,152	476 (11.8)	1.00 (reference)	1.00 (reference)
10-19 with use of dentures	2,333	11,770	411 (17.6)	1.18 (1.04-1.35)	1.15 (1.01-1.32)
10-19 with no use of dentures	775	3,958	119 (15.4)	1.22 (1.00-1.49)	1.13 (0.92-1.38)
0-9 with use of dentures	4,850	23,087	1220 (25.2)	1.29 (1.15-1.44)	1.19 (1.06-1.33)
0-9 with no use of dentures	365	1,613	103 (28.2)	1.66 (1.34-2.06)	1.35 (1.09-1.68)

*²Model 2: Adjusted for model 1 + education level (age upon final graduation from school <16, 16-18, ≥19 y, missing), smoking (never, former, current, missing), alcohol drinking (never, former, current, missing), body mass index (kg/m2; <18.5, 18.5-24.9, ≥25.0, missing), time spent walking daily (<30 min/d, 30 min/d-1h/d, >1h/d, missing), history of disease (stroke, hypertension, myocardial infarction, diabetes mellitus), psychological distress score (<13, ≥13, missing), energy intake (sex-specific tertile, missing), and protein intake (sex-specific tertile, missing).

 $\mathbf{2}$

Table 3. Sensitivity Analysis of the Relationship Between Oral Self-Care and Incident Functional Disability According to Number of Teeth (n=8,323).

				Hazard Ratio (95%	Confidence Interva
Oral Self-care and Number of	Participants, n	Person-years	Events, n (%)	Model 1 ^{*1}	Model 2 ^{*2}
Teeth					
0-19 teeth (n=3,108)					
Brushing teeth <2 per day	1,131	5,529	230 (20.3)	1.00 (reference)	1.00 (reference
Brushing teeth ≥2 per day	1,977	10,200	300 (15.2)	0.73 (0.61-0.87)	0.80 (0.66-0.96
No dental visits	1,098	5,521	195 (17.8)	1.00 (reference)	1.00 (reference
≥ 1 dental visits per year	2,010	10,208	335 (16.7)	0.95 (0.79-1.13)	0.98 (0.82-1.17
No use of dentures	775	3,958	119 (15.4)	1.00 (reference)	1.00 (reference
Use of dentures	2,333	11,770	411 (17.6)	0.97 (0.79-1.19)	1.00 (0.81-1.23
-9 teeth (n=5,215)					
Brushing teeth <2 per day	2,375	10,812	689 (29.0)	1.00 (reference)	1.00 (reference
Brushing teeth ≥ 2 per day	2,840	13,888	634 (22.3)	0.75 (0.67-0.84)	0.81 (0.73-0.91
No dental visits	2,872	13,198	795 (27.7)	1.00 (reference)	1.00 (reference
≥ 1 dental visits per year	2,343	11,502	528 (22.5)	0.92 (0.82-1.03)	0.94 (0.84-1.05
No use of dentures	365	1,613	103 (28.2)	1.00 (reference)	1.00 (reference
Use of dentures	4,850	23,087	1220 (25.2)	0.78 (0.64-0.96)	0.88 (0.71-1.07

*¹Model 1: Adjusted for age (65-69, 70-74, 75-79, 80-84, and ≥85 y) and sex.

*²Model 2: Adjusted for model 1 + education level (age upon final graduation from school <16, 16-18, ≥19 y, missing), smoking (never, former, current, missing), alcohol drinking (never, former, current, missing), body mass index (kg/m2; <18.5, 18.5-24.9, ≥25.0, missing), time spent walking daily (<30 min/d, 30 min/d-1h/d, >1h/d, missing), history of disease (stroke, hypertension, myocardial infarction, diabetes mellitus), psychological distress score (<13, ≥13, missing), energy intake (sex-specific tertile, missing), and protein intake (sex-specific tertile, missing).

 $\frac{1}{2}$

				Hazard Ratio (95%	Confidence Interval
Number of Teeth	Participants, n	Person-years	Events, n (%)	Model 1 ^{*1}	Model 2 ^{*2}
≥20	4,047	21,152	476 (11.8)	1.00 (reference)	1.00 (reference)
10-19	3,108	15,729	530 (17.1)	1.19 (1.05-1.35)	1.15 (1.01-1.30)
0-9	5,215	24,700	1,323 (25.4)	1.31 (1.18-1.47)	1.20 (1.07-1.34)
P-trend	-	-	-	<.001	.002

*¹Model 1: Adjusted for age (65-69, 70-74, 75-79, 80-84, and \geq 85 y) and sex.

*²Model 2: Adjusted for model 1 + education level (age upon final graduation from school <16, 16-18, \geq 19 y, missing), smoking (never, former, current, missing), alcohol drinking (never, former, current, missing), body mass index (kg/m2; <18.5, 18.5-24.9, \geq 25.0, missing), time spent walking daily (<30 min/d, 30 min/d-1h/d, >1h/d, missing), history of disease (stroke, hypertension, myocardial infarction, diabetes mellitus), psychological distress score (<13, \geq 13, missing), energy intake (sex-specific tertile, missing), and protein intake (sex-specific tertile, missing).

Title: Impact of Oral Self-care on Incident Functional Disability in Elderly Japanese: The Ohsaki Cohort 2006 Study **Authors:** Shino Bando MSc, ¹ Yasutake Tomata PhD, ¹ Jun Aida DDS, PhD, ² Kemmyo Sugiyama MD, PhD, ¹ Yumi Sugawara PhD, ¹ and Ichiro Tsuji MD, PhD ¹ BMJ Open: first published as 10.1136/bmjopen-2017-017946 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on April 20, 2024 by guest. Protected by copyright

Teeth (n=12,370).

Supplementary Table S2. The Relationship Between the Reason for the Dental Visits and Incident Functional Disability According to Number of Hazard Ratio (95% Confidence Interval)

Dental visits and Number of Teeth	Participants, n	Person-	Events, n (%)	Model 1 ^{*1}	Model 2 ^{*2}
		years			
≥ 1 dental visits for treatment per year					
≥20	4,047	21,152	476 (11.8)	1.00 (reference)	1.00 (reference)
10-19 with dental visits	1,972	10,015	330 (16.7)	1.17 (1.02-1.35)	1.15 (0.99-1.32)
10-19 with no dental visits	1,136	5,713	200 (17.6)	1.23 (1.04-1.45)	1.15 (0.98-1.36)
0-9 with dental visits	2,284	11,214	513 (22.5)	1.25 (1.10-1.42)	1.14 (1.00-1.30)
0-9 with no dental visits	2,931	13,484	810 (27.6)	1.36 (1.21-1.54)	1.24 (1.10-1.40)
≥ 1 dental visits for other reasons per year					
≥20	4,047	21,152	476 (11.8)	1.00 (reference)	1.00 (reference)
10-19 with dental visits	1,065	5,464	169 (15.9)	1.11 (0.93-1.33)	1.07 (0.90-1.28)
10-19 with no dental visits	2,043	2,043	361 (17.7)	1.23 (1.07-1.41)	1.19 (1.03-1.36)
0-9 with dental visits	1,026	4,983	240 (23.4)	1.35 (1.15-1.58)	1.21 (1.03-1.42)
0-9 with no dental visits	4,189	19,716	1083 (25.9)	1.30 (1.17-1.46)	1.19 (1.06-1.34)

*1Model 1: Adjusted for age (65-69, 70-74, 75-79, 80-84, and ≥85 y) and sex.

*²Model 2: Adjusted for model 1 + education level (age upon final graduation from school <16, 16-18, ≥19 y, missing), smoking (never, former, current, missing), alcohol drinking (never, former, current, missing), body mass index (kg/m2; <18.5, 18.5-24.9, ≥25.0, missing), time spent walking daily (<30 min/d, 30 min/d-1h/d, >1h/d, missing), history of disease (stroke, hypertension, myocardial infarction, diabetes mellitus), psychological distress score (<13, ≥13, missing), energy intake (sex-specific tertile, missing), and protein intake (sex-specific tertile, missing). *³Other reason is getting dental checkup and scaling, for example.

Title: Impact of Oral Self-care on Incident Functional Disability in Elderly Japanese: The Ohsaki Cohort 2006 Study Authors: Shino Bando MSc, ¹ Yasutake Tomata PhD, ¹ Jun Aida DDS, PhD, ² Kemmyo Sugiyama MD, PhD, ¹ Yumi Sugawara PhD, 1 and Ichiro Tsuji MD, PhD1

	Item	Recommendation	Page or line numbers where the checklist
	No	Recommendation	items are located in this paper*
Fitle and	1	(a) Indicate the study's design with a commonly used term in the	Line 2-3, Page 1
ıbstract		title or the abstract	Line 4, Page 3
		(b) Provide in the abstract an informative and balanced summary	Line 1-18, Page 3
		of what was done and what was found	
ntroduction			
Background/	2	Explain the scientific background and rationale for the	Line 2-18, Page 5
ationale		investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	Line 13, Page 5
			Line 19, Page 5 - Line 1-2,Page 6
Aethods			
study design	4	Present key elements of study design early in the paper	Line 2, Page 7 – Line 1, Page 8
Setting	5	Describe the setting, locations, and relevant dates, including	Line 4-13 page 7
		periods of recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	Line 10, Page 7 – Line 1, Page 8
		methods of selection of participants. Describe methods of	Line 10-17, page 10
		follow-up	
		(b) Cohort study—For matched studies, give matching criteria and	(This is not a matched studies)
		number of exposed and unexposed	
/ariables	7	Clearly define all outcomes, exposures, predictors, potential	Line 7, Page 8 - Line 17, Page 10
		confounders, and effect modifiers. Give diagnostic criteria, if	
		applicable	
Data sources/	8	For each variable of interest, give sources of data and details of	Line 7, Page 8 - Line 8, Page 10
neasurement		methods of assessment (measurement). Describe comparability of	
		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	Line 16, Page 11 - Line 4, Page12
tudy size	10	Explain how the study size was arrived at	Line 4-6, 10-15, Page 7
Quantitative	11	Explain how quantitative variables were handled in the analyses. If	Line 18, Page 8 – Line 2, Page 9
ariables		applicable, describe which groupings were chosen and why	
Statistical	12	(a) Describe all statistical methods, including those used to control	Line 8, page 11-Line 16, page 12
nethods		for confounding	L: 70 D 14
		(<i>b</i>) Describe any methods used to examine subgroups and interactions	Line 7-8, Page 14
		(c) Explain how missing data were addressed	Line 11-12, Page 14 Line 16, Page 11 - Line 4, Page12
		(c) Explain now missing data were addressed	Line 10, rage 11 - Lille 4, rage12
		(d) Cohort study—If applicable, explain how loss to follow-up was	Line 2-5, Page 8
		addressed	
		(<u>e</u>) Describe any sensitivity analyses	Line 11-12, page 14

Page 31 of 31

BMJ Open

Results							
		(a) Report numbers of individuals at each stage of study—eg	Line 13, Page 7 – Line 1, Page 8				
		numbers potentially eligible, examined for eligibility, confirmed					
Participants	13	eligible, included in the study, completing follow-up, and analysed					
		(b) Give reasons for non-participation at each stage	Line 13, Page 7 – Line 1, Page 8				
		(c) Consider use of a flow diagram					
		(a) Give characteristics of study participants (eg demographic,	Line2-7, Page 13				
		clinical, social) and information on exposures and potential	Table 1, Page 25				
Descriptive		confounders					
data	14	(b) Indicate number of participants with missing data for each	Line 15, Page 7 – Line 1, Page 8				
uata		variable of interest					
		(c) Cohort study—Summarise follow-up time (eg, average and	Line 4-5, Page 8				
		total amount)	Table 2, Page 26				
		Cohort study—Report numbers of outcome events or summary	Line 4-5, Page 8				
		measures over time	Table 2, Page 26				
		Case-control study—Report numbers in each exposure category, or					
Outcome data	15	summary measures of exposure	N/A				
		Cross-sectional study-Report numbers of outcome events or					
		summary measures	N/A				
		(a) Give unadjusted estimates and, if applicable,	Table 2, Page 26				
		confounder-adjusted estimates and their precision (eg, 95%	Line 16, Page 13-Line 6, Page 1				
		confidence interval). Make clear which confounders were adjusted					
		for and why they were included					
Main results	16	(b) Report category boundaries when continuous variables were	Line 16, Page 11 - Line 4, Page				
		categorized	2				
		(c) If relevant, consider translating estimates of relative risk into					
		absolute risk for a meaningful time period	N/A				
			Line 7-19, Page 14				
Other analyses	17	Report other analyses done—eg analyses of subgroups and	Table 3, Page 27				
	- ,	interactions, and sensitivity analyses	Supplementary Table S2, Page 2				
Discussion							
Key results	18	Summarise key results with reference to study objectives	Line 3-7, Page 16				
-		Discuss limitations of the study, taking into account sources of	Line 5-17, Page 17				
Limitations	19	potential bias or imprecision. Discuss both direction and					
		magnitude of any potential bias					
		Give a cautious overall interpretation of results considering	Line 3-10, Page 16				
Interpretation	20	objectives, limitations, multiplicity of analyses, results from	Line 15, Page 16-Line 4, Page 17				
morprotation	20	similar studies, and other relevant evidence	Ente 19, 1 age 10-Ente 4, 1 age 1				
Generalisability	21	Discuss the generalisability (external validity) of the study results					
Other information		Diseass the generalisating (external values) of the study results					
Sener mormatic	,11	Give the source of funding and the role of the funders for the	Line 10-13, Page 19				
Funding	22	present study and, if applicable, for the original study on which the	2.110 10 13,1 uge 17				
1 anomg		present study and, if applicable, for the original study on which the					