BMJ Open

Self-perception of cardiovascular disease risk among smokers

$\left.$| Journal: | BMJ Open |
| ---: | :--- |
| Manuscript ID | bmjopen-2016-012063 |
| Article Type: | Research |
| Date Submitted by the Author: | 28-Mar-2016 |
| Complete List of Authors: | Desgraz, Benoit; Lausanne University Hospital, Policlinique Médicale
 Universitaire
 Collet, Tinh-Hai; Lausanne University Hospital, Policlinique Médicale
 Universitaire
 Rodondi, Nicolas; Inselspital Universitatsspital Bern
 Cornuz, Jacques; Lausanne University Hospital, Policlinique Médicale
 Universitaire
 Clair, Carole; Lausanne University Hospital, Policlinique Médicale
 Universitaire |
| Primary Subject | Heading: | | General practice / Family practice |
| :--- |
| Secondary Subject Heading: | | Smoking and tobacco, Epidemiology, Cardiovascular medicine |
| ---: |
| Keywords: | | PREVENTIVE MEDICINE, PRIMARY CARE, EPIDEMIOLOGY, Ischaemic heart |
| :--- |
| disease < CARDIOLOGY | \right\rvert\,

SCHOLARONE ${ }^{*}$
Manuscripts

Self-perception of cardiovascular disease risk among smokers

Benoît Desgraz, MD ${ }^{\text {a, b }}$, Tinh-Hai Collet, MD ${ }^{\text {a, }}$, Nicolas Rodondi, MD, MSc ${ }^{\text {d }}$, Jacques Cornuz, MD, MPH ${ }^{\text {a }}$, Carole Clair, MD, MSc ${ }^{\text {a }}$

a. Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
b. Service of Cardiology, University Hospital of Lausanne, Lausanne, Switzerland
c. Service of Endocrinology, Diabetes and Metabolism, University Hospital of Lausanne, Lausanne, Switzerland
d. Department of General Internal Medicine, Inselspital, Bern, University Hospital, University of Bern, Switzerland

CORRESPONDING AUTHOR

Benoît Desgraz, MD

University Hospital of Lausanne
Bugnon 46
1011 Lausanne

Switzerland

Phone: +41 795568924 // +41 786147783

E-mail:benoit.desgraz@gmail.com

Key words: Smoking cessation, Cardiovascular disease, Perception, Risk-assessment, Riskfactor, Score

Abstract: 293 words
Manuscript: 2991 words, 2 tables, 1 figure
References: 19

Abstract

Objectives: Previous studies suggest that smokers have a misperception of their 10-year cardiovascular risk. We aimed to compare 10-year cardiovascular risk self-perception and calculated risk among smokers willing to quit and assess the determinants of a possible misperception.

Design: Cross-sectional analysis of the baseline data of a randomized controlled trial

Participants: 514 participants, mean age 51.1 years, 46% women, 98% Caucasian. Eligible participants were regular smokers, aged between 40 and 70 years, with a consumption of at least 10 cigarettes per day for at least a year. None of them had experienced CVD before. Exclusion criteria comprised history of myocardial infarction, coronary heart disease (CHD), stroke, heart failure, peripheral vascular disease, carotid atherosclerosis or cardiac arrhythmia. Participants with renal or liver failure, psychiatric disorders, substance and alcohol abuse and with smoking cessation therapies were excluded.

Interventions: Participants were asked to estimate their 10-year cardiovascular risk using a 3item scale corresponding to high, moderate and low risk categories. We compared their risk perception with the Framingham and Procam score. We used multi-variable adjusted logistic regression models to determine characteristics of participants who underestimate their risk vs. those who correctly or overestimate it.

Results: Between 38-42\% of smokers correctly perceived their 10-year cardiovascular risk, $39-50 \%$ overestimated their 10 -year cardiovascular risk while $12-19 \%$ underestimated it compared to their calculated 10 -year cardiovascular risk depending on the score used. Underestimation of 10-year cardiovascular risk was associated with male gender (OR 8.16; CI 3.83-17.36), age (OR 1.06; CI 1.02-1.09), hyperlipidemia (OR 2.71; CI 1.47-5.01) and $\begin{array}{lllll}\text { diabetes } \quad \text { mellitus } & \text { (OR } & \text { 13.93; } & \text { CI } & \text { 30.66). }\end{array}$

Conclusions: Among smokers, misperception of their 10-year cardiovascular risk is common, with one fifth underestimating it. These findings may help physicians target patients with such characteristics to help them change their health behavior and adherence to risk-reduction therapy.

Strengths and limitations of this study

- This study carefully assessed self-perceived CVD risk among smokers and compared self-perception with two validated cardiovascular scores.
- The study highlights determinants of underestimation of CVD risk among smokers: male gender, age, hyperlipidemia and diabetes mellitus.
- The analyses are restricted to smokers and no comparison is possible between CVD perception of smokers, non smokers or former smokers.

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death worldwide. Ischemic heart disease and stroke are responsible for 13.2% and 11.9% of deaths, respectively[1]. Smoking is the most important modifiable risk factor for CVD and smoking cessation prevents cardiovascular mortality and morbidity in a rapid and effective manner[2]. Thus, the main strategy for CVD prevention is based on controlling modifiable risk factors such as smoking through population-wide interventions. These include smoking bans in public places, tax raises on cigarette packs as well as individual health-care interventions like counseling and medication for smokers willing to quit in primary prevention.

An adequate perception of cardiovascular disease risk might be required to better understand the goal of preventive interventions and adhere to CVD prevention. Studies assessing CVD risk using questionnaires, registration form, visual analogue scale and self-rated measurements, conducted in general practices by Frijling[3] and van der Weijden[4], have suggested that smoking predicted higher levels of risk perception. Smokers' perception of health risks is complex and underestimation or overestimation of CVD risk depends on how risk perception is assessed[5]. For instance, Weinstein et al.[5] have reported that smokers consistently acknowledged that smoking increased their risk of developing heart disease, lung cancer, bronchitis and stroke but within a smaller range compared with non-smokers. Furthermore, smokers tended to minimize their health risks. Individual misperception of smokers has also been described in another study that showed that only a minority of smokers (29 to 39\%) perceived themselves at higher risk than the average for myocardial infarction[6]. One could argue that smoking, as part of a complex addiction mechanism, might be the cause of misperception but CVD risk is also difficult to assess for experimented physicians and young doctors[7]. To our knowledge, few studies focused on CDV risk perception among
smokers[3,4], and little or no information about CVD risk (calculated by scores) was provided.

Prediction scores such as Framingham[8], Procam[9], or the European Scores[10] have been developed to estimate the 10 -year CVD risk. These prediction models are increasingly used to identify high-risk patients who would benefit from interventions on one or several risk factors and to motivate others to adhere to risk-reduction therapy. Based on previous publications, the Procam score seems to be the most appropriate score in Switzerland [9,11]. However the Framingham score is still often used for clinical or research purposes (it is the one used in International Lipid guidelines[12]) despite its tendency to overestimate the cardiovascular risk in European populations.

Awareness of cardiovascular disease risk associated with cigarette smoking might have changed during the last two decades with more prevention and information campaigns. Moreover, whether smokers have a correct perception of their own CVD risk compared with calculated CVD risk prediction scores has never been assessed and little is known about determinants that could explain the potential misperception of smokers.

The primary objective of this study was to assess the accuracy of perception of CVD risk among smokers and identify determinants associated with potential misperception in a singlecenter study conducted with smokers in Switzerland.

METHODS

Study population

We did a cross-sectional analysis of the baseline data of the CAROSS study, a randomized controlled trial assessing the effect of carotid plaque screening on smoking cessation[13]. Participants were recruited in the general population using advertisements in newspaper.

Eligible participants were regular smokers, aged between 40 and 70 years, with a consumption of at least 10 cigarettes per day for at least a year. None of them had experienced CVD before, as exclusion criteria comprised history of myocardial infarction, coronary heart disease (CHD), stroke, heart failure, peripheral vascular disease, carotid atherosclerosis or cardiac arrhythmia. Participants with renal or liver failure, psychiatric disorders, substance and alcohol abuse, and those taking smoking cessation therapies were also excluded.

All participants provided written informed consent. The study was approved by the local ethic commission of the University of Lausanne, Switzerland.

Variables of interest

Data on medical and smoking history, home and work environment, education and medication use were collected using questionnaires. Professional activity was initially classified as «Employed», «Unemployed or on social security» and «Retired». For the need of the multi-variable adjusted analysis and assuming that «Retired» participants where once «Employed», we secondarily merged «Employed» and «Retired» participants and obtained two categories «Employed or retired» and «Unemployed or on social security». Education was dichotomized by <12 years and >12 years of education.

Weight and height were measured at baseline as well as blood pressure in a sitting position with an appropriately sized cuff according to guidelines. Fasting glucose and lipids levels were measured at baseline. We defined cardiovascular risk factors as follows: Hypertension as ≥ 140 systolic mmHg and/or 90 diastolic $\mathrm{mmHg}[14]$, except for participants with diabetes mellitus ≥ 130 and $/$ or 80 mmHg ; Hyperlipidemia according to ATP-III guidelines[15] as LDL-cholesterol $\geq 2.6 \mathrm{mmol} / \mathrm{L}, \geq 3.4 \mathrm{mmol} / \mathrm{L}, \geq 4.1 \mathrm{mmol} / \mathrm{L}$ for high ($>20 \%$), moderate ($10-$ 20%) and low ($<10 \%$) risk participants, respectively; Diabetes mellitus as fasting blood glucose $\geq 7.0 \mathrm{mmol} / \mathrm{L}[16]$.

At baseline, a nurse trained in smoking cessation asked each participant about his or her perception of CVD risk. The question was standardized to avoid influencing the participants and worded as: «How do you perceive your risk of heart attack in 10 years? ». The possible responses were « none or low risk », « intermediate risk », « high risk », « don’t know » and «refuse to answer ». Participants who «didn’t know » or «refused to answer» were invited once to reconsider their choice. In this study we restricted analysis for participants who answered the self-perceived CVD risk question and had complete baseline data.

To determine the reliability and reproducibility of the CVD risk perception assessment, we asked a consecutive convenience subsample of participants $(n=48)$ to reassess their CVD risk one month after the last evaluation.

We calculated the Framingham scores based on ATP III guidelines[17]. We used the following variables at baseline to calculate the score: sex, age, cholesterol, smoking status, blood pressure, HDL-cholesterol, triglyceridemia and being treated with antihypertensive drugs. Framingham score was then encoded and CVD risk was computed for each participant.

According to Framingham scores, men with scores ≤ 11 were classified as low risk (10-year risk of cardiovascular events 8%), those with scores between 12 and 14 as intermediate risk
(10-year risk of cardiovascular events $10-16 \%$), and those with scores ≥ 15 as high risk (10 year risk of cardiovascular events $\geq 20 \%$). For women, low, intermediate and high risk corresponded to Framingham risk scores of 19 (10-year risk of cardiovascular events 8\%), 2022 (10 year risk of cardiovascular events $11-17 \%$) and ≥ 23 (10 year risk of cardiovascular events $\geq 22 \%$) points respectively.

The following variables at baseline were used to calculate Procam score: sex, age, LDLcholesterol, HDL-cholesterol, triglyceridemia, blood pressure, diabetes, cardiovascular disease before 60 years old among relatives. Procam score was encoded based on PROCAM study [18]and CVD risk was computed for each participants. Low, intermediate and high risk was defined as 10 -year risk of cardiovascular events of $<10 \%$, between $10-20 \%$ and $\geq 20 \%$ respectively. By convention, women had their risk divided by four.

Statistical Analysis

The primary outcome was misperception of CVD risk. For statistical convenience we merged participants who correctly or overestimated their risk together, believing that correct or overestimation is less detrimental than underestimation in terms of preventive medicine. We compared participants who underestimated their 10-year CVD risk to those who correctly or overestimated it. The comparison between the baseline characteristics of both groups was performed using Chi square tests and Anova or Fisher tests.

We first used uni-variable logistic regression to obtain the odds ratio (OR) and 95% confidence intervals (CI) and identify potential predictors of underestimation, compared to correct or overestimation of 10 -year CVD risk. Variables that were significant with a p-value <0.05 (sex, age, education, working status, hypertension, hyperlipidemia, diabetes,
cardiovascular medication) were then integrated in a multi-variable adjusted analysis. Multivariable adjusted logistic regression was used to identify variables associated with underestimation of the CVD risk compared with correct or overestimation.

We considered p-values <0.05 as significant. All data were proceeded with STATA 10 software (StataCorp, College Station; Texas).

RESULTS

The study included 536 participants, amongst whom 22 (4\%) had incomplete baseline data (18 without self-perceived CVD risk, and 4 whose high triglycerides prevented calculation of LDL-cholesterol level). Among the 514 remaining participants, 98% were Caucasians and 234 (46\%) were female (Table 1). Mean age at baseline was 51.1 ± 7.3 years. Most participants were employed or retired (92%) the rest being unemployed or on social security. About two third had lower education (< 12 years; apprenticeship or no formation). Participants were smoking with an average of 24.5 (9.8 SD) cigarettes per day for a mean duration of tobacco smoking of 32.1 (7.9 SD) years, corresponding to 39 (20 SD) pack-years. Two hundred and fifty-eight (50\%) participants had hyperlipidemia, whereas 27% had hypertension and 3.5% had diabetes.

Using the Framingham score, half of participants (51\%) were classified as low risk at 10 years, 38% as intermediate risk and 11% as high risk (Table 2A). Using the Procam risk score the proportion of low risk participant was 76%, medium risk 13% and high risk 11% (Table 2B). Participants perceived themselves at low risk for 38% of them, intermediate risk for 34% and high risk for 28% of them, using the self-perceived CVD risk questionnaire. In a
subsample of 48 participants, re-assessment of CVD risk perception (by telephone, one month after the initial evaluation) showed 83% of consistent answers (40/48) (data not shown).

According to Framingham score, less than half of the participants (42\%) correctly estimated their CVD risk, 39% overestimated it and 19% underestimated it (Table 2A). According to Procam score, 38% correctly estimated their CVD risk, 50% overestimated it and 12% underestimated it (Table 2B).

Among high-risk participants, $62-69 \%$ underestimated their CVD risk (depending on the score used) whereas 33-34\% underestimate it among intermediate risk participants (Table 2A and 2B).

Using the Framingham score, male gender (OR 9.45; CI 4.9-18.2), age (OR 1.05; CI 1.021.08), body mass index (OR 1.09; CI 1.03-1.14), hyperlipidemia (OR 5.71; CI 3.34-9.76), diabetes (OR 9.27; CI 3.39-25.38) and being on CVD medication (OR 1.75; CI 1.08-2.82) were associated with underestimation of CVD risk in univariate analysis (data not shown). In the multivariable-adjusted analysis, underestimation of CVD risk was associated with male gender (OR 8.16; CI 3.83-17.36), age (OR 1.06; CI 1.02-1.09), hyperlipidemia (OR 2.71; CI 1.47-5.01) and diabetes mellitus (OR 13.93; CI 3.83-50.66) (Figure 1). We found no association between underestimation and body mass index, socio-economical status, high blood pressure or being under CVD medication in the multivariable-adjusted analysis. Using the Procam risk score, we found similar results (data not shown).

DISCUSSION

In the present study, between 58% (for the Framingham score) and 62% (for the Procam score) of participants had a misperception of their CVD risk at 10 years. Results were almost similar when low, intermediate and high CVD risk categories were taken separately. A minority of participants (12-19\%) underestimated their CVD risk whereas 39\%-50\% overestimated it, depending of the score used the evaluation of the cardiovascular risk. Only 3% of participants couldn't provide an estimation of their CVD risk.

A majority of participants had inadequate perception of CVD risk, which is consistent with previous studies. In our study, the CVD risk was perceived inappropriately in $62-69 \%$ of high CVD risk participants and $57-61 \%$ of low risk participant, whereas Van der Weijden et al. found that 80% of high risk and 20% of low risk participants had a misperception of their CVD risk in general practices[4].

The use of the Procam risk score generated a higher proportion of low risk participants compared to the Framingham risk score, but a lower proportion of medium risk participants. The proportion of high risk participants was similar using both scores. As a consequence, compared with Framingham, a smaller proportion of participants underestimated their CVD risk when using the Procam risk score probably reflecting a better accuracy of this score in a European population.

We found that male gender, hyperlipidemia and diabetes were determinants of underestimation of CVD risk. Our results contrast at least with two other studies. Three quarter of participants with hypertension or diabetes overestimated their CVD risk in the study of Frijling et al.[3]. Similarly, Van der Weijden et al.[4] highlighted that men and diabetic participants were more likely to perceive their CVD risk inappropriately. Participants in our study responded to an advertisement inviting them to a study to help them quit smoking
whereas Frijling et al. gave questionnaires to patients visiting general office who fulfilled inclusion criteria. The fact that the participants to our study needed to actively respond to an advertisement in order to be recruited, might explain why motivation, as well as health awareness, might have been higher in the participants of the present study. This could also explain the low percentage of participants who failed to provide an estimation (correct or wrong) of their CVD risk.

Interestingly, more participants overestimated their CVD risk (too pessimistic) than underestimated it in our study. Nonetheless, we decided to focus on those who underestimated their CVD risk (too optimistic), assuming it to be more detrimental than overestimation. In our opinion, underestimation of CVD risk might decrease compliance to treatment or lifestyle modifications as well as reduce the efficacy of primary prevention and thus increase the absolute risk of CVD event. Overestimation may cause increased stress, medical seeking or overmedication, which can affect the quality of life rather than the absolute CVD risk.

To our surprise, diabetes was a determinant of underestimation of CVD risk, even though participants with diabetes presumably have had regular medical interaction and lifestyle education. However, caution is advised considering the small proportion of diabetic participants (4\%) in our study. Hyperlipidemia was also a determinant of underestimation whereas other CVD risk factors such as high blood pressure or BMI were not associated with underestimation. Finally male gender was also associated with higher odds of underestimation. Studies suggest that men are less health conscious compared with women and might be less susceptible to seek medical help [19].

Our study carefully assessed self-perceived CVD risk among smokers and compared it with two validated calculated risk score. However, because our study was limited to current smokers, we could not compare smokers' misperception to that of non-smokers or former
smokers. It would be interesting to assess risk perception among non-smokers in our general population to better contrast CVD risk perception between smokers and non-smokers.

Clinicians widely use clinical scores to estimate CVD risk in order to discuss primary prevention. This approach is only efficient when patients understand and adhere to risk reduction therapy. Smokers represent a challenge for general practitioners due to strong nicotine dependence and denial of personal risk from smoking (optimistic bias)[6].

We found that $12-19 \%$ of smokers have a misperception of their 10 -year CVD risk in the form of an underestimation, which may hinder the efficiency of interventions aimed at reducing or preventing CVD risk factors. This could lead to an increase in morbidity and mortality. Therefore clinicians must be aware that about a fifth of smokers underestimate their 10 -year CVD risk and that men as well as people suffering from hyperlipidemia or diabetes, are at increasing risk of underestimating their 10-year CVD risk.

CONTRIBUTORSHIP STATEMENT

Study concept and design: Rodondi, Collet, Cornuz and Desgraz. Acquisition of data:
Rodondi and the CARROSS study team Analysis and interpretation of data: Desgraz, Collet, Clair. Drafting of manuscript: Desgraz. Critical revision of the manuscript for important intellectual content: Clair, Collet, Rodondi, Cornuz. Statistical analysis: Collet, Desgraz Administrative, technical and material support: Rodondi, Cornuz Study supervision: Clair, Collet

COMPETING INTERESTS

The authors declare that they do not have any conflict of interest.

FUNDING

This work was supported by research grants from the Swiss National Science Foundation (SNSF 3200B0-116097 to Prof Rodondi), the Swiss Heart Foundation, the Lausanne University Hospital (CHUV) Strategic Plan and the Swiss Tobacco Prevention Funds, Federal Office of Public Health (FPT 08.002282). Dr T-H Collet's research is supported by grants from the Swiss National Science Foundation (PBLAP3-145870, P3SMP3-155318). Dre C Clair's research is supported by a grant from the Swiss National Science Foundation (PZ00P3_154732).

DATA SHARING STATEMENT

All illustrations and figures in the manuscript are entirely original and do not require reprint permission. There is no additional unpublished data.

PREVIOUS PRESENTATION

[^0]
References

1. WHO (2014) The top 10 causes of death, Fact sheet $N^{\circ} 310$. Accessed 9 Feb 2015
2. Rigotti NA, Clair C (2013) Managing tobacco use: the neglected cardiovascular disease risk factor. European heart journal 34 (42):3259-3267. doi:10.1093/eurheartj/eht352
3. Frijling BD, Lobo CM, Keus IM, Jenks KM, Akkermans RP, Hulscher ME, Prins A, van der Wouden JC, Grol RP (2004) Perceptions of cardiovascular risk among patients with hypertension or diabetes. Patient Educ Couns 52 (1):47-53
4. van der Weijden T, van Steenkiste B, Stoffers HE, Timmermans DR, Grol R (2007) Primary prevention of cardiovascular diseases in general practice: mismatch between cardiovascular risk and patients' risk perceptions. Med Decis Making 27 (6):754-761. doi:10.1177/0272989X07305323
5. Weinstein ND (1998) Accuracy of smokers' risk perceptions. Ann Behav Med 20 (2):135-140
6. Ayanian JZ, Cleary PD (1999) Perceived risks of heart disease and cancer among cigarette smokers. JAMA 281 (11):1019-1021
7. Senn M, Favrat B, Vaucher P, Burnier M (2006) Physicians' estimates of the 10 year cardiovascular risk in hypertensive patients: an evaluation in primary care physicians in training. Swiss medical weekly 136 (37-38):603-608. doi:2006/37/smw-11330
8. D'Agostino RB, Sr., Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117 (6):743-753. doi:10.1161/CIRCULATIONAHA.107.699579
9. Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10 -year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 105 (3):310-315
10. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetiere P, Jousilahti P, Keil U, Njolstad I, Oganov RG, Thomsen T, Tunstall-Pedoe H, Tverdal A, Wedel H, Whincup P, Wilhelmsen L, Graham IM (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24 (11):987-1003
11. Nanchen D, Chiolero A, Marques-Vidal PM, Cornuz J, Waeber G, Vollenweider P, Rodondi N (2010) [Statin prescription in primary prevention: which cardiovascular risk score should be used in Switzerland?]. Revue medicale suisse 6 (239):488-490, 492-483
12. An International Atherosclerosis Society Position Paper: global recommendations for the management of dyslipidemia--full report (2014). J Clin Lipidol 8 (1):29-60
13. Rodondi N, Collet TH, Nanchen D, Locatelli I, Depairon M, Aujesky D, Bovet P, Cornuz J (2012) Impact of carotid plaque screening on smoking cessation and other cardiovascular risk factors: a randomized controlled trial. Arch Intern Med 172 (4):344-352. doi:10.1001/archinternmed.2011.1326
14. Lenfant C, Chobanian AV, Jones DW, Roccella EJ (2003) Seventh Report of the Joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7):
Resetting the Hypertension Sails. Circulation 107 (24):2993-2994. doi:10.1161/01.cir.0000080481.62058.03
15. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP)

Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III) (2001). JAMA 285 (19):2486-2497
16. American Diabetes A (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37 Suppl 1:S81-90. doi:10.2337/dc14-S081
17. http://www.nhlbi.nih.gov/guidelines/cholesterol/risk tbl.htm.
18. Assmann G, Cullen P, Schulte H (2002) Simple Scoring Scheme for Calculating the Risk of Acute Coronary Events Based on the 10-Year Follow-Up of the Prospective Cardiovascular Münster (PROCAM) Study. Circulation 105 (3):310-315. doi:10.1161/hc0302.102575
19. Vaidya V (2012) Gender Differences in Utilization of Preventive Care Services in the United States. Journal of Women's Health 21 (2)

Legends for Tables:

* Full time, part time, independent or at home
\dagger Low Blood Pressure defined as $<140 / 90 \mathrm{mmHg}$; High Blood Pressure defined as ≥ 140 and/or $90, \geq 130$ and $/$ or 80 mmHg if diabetic
\ddagger Definition: treated patient (statin of fibrate); High Risk: LDL-Chol $\geq 2.6 \mathrm{mmol} / \mathrm{L}$; Intermediate Risk: LDL-Chol $\geq 3.4 \mathrm{mmol} / \mathrm{L}$; Low Risk: LDL-Chol $\geq 4.1 \mathrm{mmol} / \mathrm{L}$
\S Fasting Glycemia $\geq 7 \mathrm{mmol} / \mathrm{L}$ or Glycemia $\geq 11.1 \mathrm{mmol} / \mathrm{L}$

Table 1 : Characteristics of study participants

	$\begin{aligned} & \text { Ove } \\ & \text { (} \mathrm{n}=5 \end{aligned}$	
Demographics		
Age (years), mean \pm SD	51.1	7.3
Women nbr, \%	234	45.5
Education nbr, \%		
< 12 years	381	74.1
> 12 years	133	25.9
Professional activity nbr, \%		
Employed*	433	84.2
Unemployed or on social security	40	7.8
Retired	41	8.0
Cardiovascular medication nbr, \%		
No treatment	390	75.9
Aspirine, statine, anti-HTA, anti-Diabetic	124	24.1
Cardiovascular variables		
Systolic Blood Pressure mmHg \pm SD Systolic Blood Pressure (per 10 mmHg)	123.0	15.4
Categories nbr, \%		
Low Blood Pressure ${ }^{+}$	376	73.2
High Blood Pressure ${ }^{+}$	138	26.8
BMI mean \pm SD	24.9	4.1
Dyslipidemia $\ddagger \mathrm{nbr}, \%$	258	50.2
treated nbr, \%	60	11.7
Diabetes type $2^{\text {§ }} \mathrm{nbr}$, \%	18	3.5
Tobacco smoking		
Number of cigarettes per day mean \pm SD	24.5	9.8
Number of pack-years py \pm SD	39	20
Fagerström Score for nicotine dependence mean \pm SD	5.0	2.1
(0 low dependence - 10 very high dependence)		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 2 A:

Meshing table between perceived CVD risk and calculated CVD risk according to Framingham score. Numbers in absolute; () is percentage of total, in column.

Perceived CV risk TO	Framingham risk score			Total		
	Low	Intermediate	High			
Low risk	111	64	22	$\begin{gathered} 197 \\ (38.3) \end{gathered}$	Underestimated CVD risk	19\%
					Correctly estimated CVD risk	42\%
Intermediate risk	79	81	14	$\begin{gathered} 174 \\ (33.8) \end{gathered}$		
					Overestimated CVD risk	39\%
High risk	70	51	22	143		
				(27.8)		
Total	$\begin{gathered} 260 \\ (50.5) \end{gathered}$	196	58	514		
		(38.1)	(11.2)	(100)		

Table 2 B:

Meshing table between perceived CVD risk and calculated CVD risk according to Procam score. Numbers in absolute; () is percentage of total, in column.

Perceived CV risk TO	Procam risk score			Total		
	Low	Intermediate	High			
Low risk	153	23	21	$\begin{gathered} 197 \\ (38.3) \end{gathered}$	Underestimated CVD risk	12\%
					Correctly estimated CVD risk	38\%
Intermediate risk	130	27	17	$\begin{gathered} 174 \\ (33.8) \end{gathered}$		
					Overestimated CVD risk	50\%
High risk	109	17	17	143		
				(27.8)		
Total	392	67	55	514		
	(76.3)	(13.0)	(10.7)	(100)		

Figure 1: Determinants of underestimation according to Framingham

Figure 1: Determinants of underestimation (Framingham)

STROBE Statement-checklist of items that should be included in reports of observational studies

	$\begin{gathered} \text { Item } \\ \text { No } \\ \hline \end{gathered}$	Recommendation	STATUS
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Done (in abstract page 3)
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Done
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Done (page 6-7)
Objectives	3	State specific objectives, including any prespecified hypotheses	Done (page 7 last paragraph)
Methods			
Study design	4	Present key elements of study design early in the paper	Done (page 8)
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Done (page 8, study pop.)
Participants	6	Cross-sectional study-Give the eligibility criteria, and the sources and methods of selection of participants	Done
		(b) Cohort study-For matched studies, give matching criteria and number of exposed and unexposed Case-control study-For matched studies, give matching criteria and the number of controls per case	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	$\begin{aligned} & \text { Done (page } \\ & 8-10 \text {) } \end{aligned}$
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Done (page 8-10)
Bias	9	Describe any efforts to address potential sources of bias	Done Multivariable model page 11)
Study size	10	Explain how the study size was arrived at	NA (secondary analyses of a RCT)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Done (see methods)
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	$\begin{aligned} & \text { Done (page } \\ & 10-11) \end{aligned}$
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	Done (results page 11)

Cross-sectional study—If applicable, describe analytical methods taking	NA
account of sampling strategy	

Continued on next page

Results			STATUS
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Done (results page 11)
		(b) Give reasons for non-participation at each stage	Done
		(c) Consider use of a flow diagram	Not provided
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Done (results page 11)
		(b) Indicate number of participants with missing data for each variable of interest	Done page 11
		(c) Cohort study-Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	NA
		Case-control study-Report numbers in each exposure category, or summary measures of exposure	NA
		Cross-sectional study-Report numbers of outcome events or summary measures	$\begin{aligned} & \text { Done (page } \\ & 12 \text {) } \\ & \hline \end{aligned}$
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Done (page 12)
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results		Summarise key results with reference to study objectives	Done (page 13)
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	$\begin{aligned} & \text { Done (page } \\ & 14-15 \text {) } \end{aligned}$
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Done
Generalisability	21	Discuss the generalisability (external validity) of the study results	Done
Other information			
Funding		Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Done (page 16)
*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.			
Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.			

BMJ Open

Self-perception of cardiovascular disease risk among smokers

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012063.R1
Article Type:	Research
Date Submitted by the Author:	08-Jul-2016
Complete List of Authors:	Desgraz, Benoit; Lausanne University Hospital, Policlinique Médicale Universitaire Collet, Tinh-Hai; Lausanne University Hospital, Policlinique Médicale Universitaire Rodondi, Nicolas; Inselspital Universitatsspital Bern Cornuz, Jacques; Lausanne University Hospital, Policlinique Médicale Universitaire Clair, Carole; Lausanne University Hospital, Policlinique Médicale Universitaire
Primary Subject	
Heading:	General practice / Family practice
Secondary Subject Heading:	Smoking and tobacco, Epidemiology, Cardiovascular medicine
Keywords:	PREVENTIVE MEDICINE, PRIMARY CARE, EPIDEMIOLOGY, Ischaemic heart disease < CARDIOLOGY

SCHOLARONE ${ }^{*}$
Manuscripts

Self-perception of cardiovascular disease risk among smokers

16 CORRESPONDING AUTHOR

17 Benoît Desgraz, MD
18 University Hospital of Lausanne

1 Key words: Smoking cessation, Cardiovascular disease, Perception, Risk-assessment, Risk-

References: 19

6

7

Abstract

Objectives: Previous studies suggest that smokers have a misperception of their 10-year cardiovascular risk. We aimed to compare 10-year cardiovascular risk self-perception and calculated risk among smokers willing to quit and assess the determinants of a possible misperception.

Design: Cross-sectional secondary analysis of baseline data from a randomized controlled trial of smoking cessation.

Participants: 514 participants, mean age 51.1 years, 46% women, 98% Caucasian. Eligible participants were regular smokers, aged between 40 and 70 years, with a consumption of at least 10 cigarettes per day for at least a year. None of them had experienced CVD before. Exclusion criteria comprised history of myocardial infarction, coronary heart disease (CHD), stroke, heart failure, peripheral vascular disease, carotid atherosclerosis or cardiac arrhythmia. Participants with renal or liver failure, psychiatric disorders, substance and alcohol abuse and with smoking cessation therapies were excluded.

Interventions: Participants were asked to estimate their 10-year cardiovascular risk using a 3item scale corresponding to high, moderate and low risk categories. We compared their risk perception with the Framingham and Procam score. We used multi-variable adjusted logistic regression models to determine characteristics of participants who underestimate their risk vs. those who correctly or overestimate it.

Results: Between 38-42\% of smokers correctly perceived their 10-year cardiovascular risk, $39-50 \%$ overestimated their 10-year cardiovascular risk while $12-19 \%$ underestimated it compared to their calculated 10 -year cardiovascular risk depending on the score used. Underestimation of 10-year cardiovascular risk was associated with male gender (OR 8.16; CI

1 3.83-17.36), older age (OR 1.06; CI 1.02-1.09), and the presence of hyperlipidemia (OR 2.71;
2 CI 1.47-5.01) and diabetes mellitus (OR 13.93; CI 3.83-50.66).

3 Conclusions: Among smokers, misperception of their 10-year cardiovascular risk is common,
4 with one fifth underestimating it. These findings may help physicians target patients with such 5 characteristics to help them change their health behavior and adherence to risk-reduction 6 therapy.

7

1 Strengths and limitations of this study

2 - This study carefully assessed self-perceived CVD risk among smokers and compared self-perception with two validated cardiovascular scores in a cross-sectional secondary data analysis of baseline data collected in a randomized controlled trial assessing the effect of carotid plaque screening on smoking cessation.

- The study highlights predictors of underestimation of CVD risk among smokers: male gender, older age, and the presence of hyperlipidemia and diabetes mellitus.
- The analyses are restricted to smokers and no comparison is possible between CVD perception of smokers, non smokers or former smokers.

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death worldwide. Ischemic heart disease and stroke are responsible for 13.2% and 11.9% of deaths, respectively[1]. Smoking is the most important modifiable risk factor for CVD and smoking cessation prevents cardiovascular mortality and morbidity in a rapid and effective manner[2]. Thus, the main strategy for CVD prevention is based on controlling modifiable risk factors such as smoking through population-wide interventions. These include smoking bans in public places, tax raises on cigarette packs as well as individual health-care interventions like counseling and medication for smokers willing to quit in primary prevention.

An adequate perception of cardiovascular disease risk might be required to better understand the goal of preventive interventions and adhere to CVD prevention. Studies assessing CVD risk using questionnaires, registration form, visual analogue scale and self-rated measurements, conducted in general practices by Frijling[3] and van der Weijden[4], have suggested that smoking predicted higher levels of risk perception. Smokers' perception of health risks is complex and underestimation or overestimation of CVD risk depends on how risk perception is assessed[5]. For instance, Weinstein et al.[5] have reported that smokers consistently acknowledged that smoking increased their risk of developing heart disease, lung cancer, bronchitis and stroke but within a smaller range compared with non-smokers. Furthermore, smokers tended to minimize their health risks. Individual misperception of smokers has also been described in another study that showed that only 29 to 39% of smokers perceived themselves at higher risk than the average for myocardial infarction[6]. One could argue that smoking, as part of a complex addiction mechanism, might be the cause of misperception but CVD risk is also difficult to assess for physicians [7]. To our knowledge,
few studies focused on CDV risk perception among smokers[3,4], and little or no information about CVD risk (calculated by scores) was provided.

Prediction scores such as Framingham[8], Procam[9], or the European Scores[10] have been developed to estimate the 10 -year CVD risk. These prediction models are increasingly used to identify high-risk patients who would benefit from interventions on one or several risk factors and to motivate others to adhere to risk-reduction therapy. Based on previous publications, the Procam score seems to be the most appropriate score in Switzerland [9,11]. However the Framingham score is still often used for clinical or research purposes (it is the one used in International Lipid guidelines[12]) despite its tendency to overestimate the cardiovascular risk in European populations.

Awareness of cardiovascular disease risk associated with cigarette smoking might have changed during the last two decades with more prevention and information campaigns. Moreover, whether smokers have a correct perception of their own CVD risk compared with calculated CVD risk prediction scores has never been assessed and little is known about determinants that could explain the potential misperception of smokers.

The primary objective of this study was to assess the accuracy of perception of CVD risk among smokers and identify determinants associated with potential misperception in a singlecenter study conducted with smokers in Switzerland.

METHODS

Study population

We did a cross-sectional secondary analysis of the baseline data of the CAROSS trial, a randomized controlled trial assessing the effect of carotid plaque screening on smoking cessation [13]. Participants were recruited in the general population using advertisements in newspaper in multiple recruitment waves.

Eligible participants were regular smokers, aged between 40 and 70 years, with a consumption of at least 10 cigarettes per day for at least a year and no periods of smoking abstinence of at least 3 months in the previous year. None of them had experienced CVD before, as exclusion criteria comprised history of myocardial infarction, coronary heart disease (CHD), stroke, heart failure, peripheral vascular disease, carotid atherosclerosis or cardiac arrhythmia. Participants with renal or liver failure, psychiatric disorders, substance and alcohol abuse, and those taking smoking cessation therapies were also excluded.

All participants provided written informed consent. The study was approved by the local ethic commission of the University of Lausanne, Switzerland.

Variables of interest

Data on medical and smoking history, home and work environment, education and medication use were collected using questionnaires. Professional activity was initially classified as «Employed», «Unemployed or on social security» and «Retired». For the need of the multi-variable adjusted analysis and assuming that «Retired» participants where once «Employed», we secondarily merged «Employed» and «Retired» participants and
obtained two categories «Employed or retired» and «Unemployed or on social security ». Education was dichotomized by <12 years and ≥ 12 years of education. Both of these variables were used as a proxy for socio-economic status.

Weight and height were measured at baseline as well as blood pressure in a sitting position with an appropriately sized cuff according to guidelines. Fasting glucose and lipids levels were measured at baseline. We defined cardiovascular risk factors as follows: Hypertension as ≥ 140 systolic mmHg and/or 90 diastolic $\mathrm{mmHg}[14]$, except for participants with diabetes mellitus $\geq 130 \mathrm{and} /$ or 80 mmHg ; Hyperlipidemia according to ATP-III guidelines[15] as LDL-cholesterol $\geq 2.6 \mathrm{mmol} / \mathrm{L}, \geq 3.4 \mathrm{mmol} / \mathrm{L}, \geq 4.1 \mathrm{mmol} / \mathrm{L}$ for high ($>20 \%$), moderate ($10-$ 20%) and low ($<10 \%$) risk participants, respectively; Diabetes mellitus as fasting blood glucose $\geq 7.0 \mathrm{mmol} / \mathrm{L}[16]$.

At baseline, a nurse trained in smoking cessation asked each participant about his or her perception of CVD risk. The question was standardized to avoid influencing the participants and worded as: «How do you perceive your risk of heart attack in 10 years? ». The possible responses were «none or low risk », « intermediate risk », « high risk », « don’t know » and «refuse to answer». Participants who «didn’t know» or «refused to answer» were invited once to reconsider their choice. In this study we restricted analysis for participants who answered the self-perceived CVD risk question and had complete baseline data.

To determine the reliability and reproducibility of the CVD risk perception assessment, we asked a consecutive convenience subsample of participants $(\mathrm{n}=48)$ to reassess their CVD risk one month after the last evaluation.

We calculated the Framingham scores based on ATP III guidelines[17]. We used the following variables at baseline to calculate the score: sex, age, cholesterol, smoking status,
blood pressure, HDL-cholesterol, triglyceridemia and being treated with antihypertensive drugs. Framingham score was then encoded and CVD risk was computed for each participant.

According to Framingham scores, men with scores ≤ 11 were classified as low risk (10-year risk of cardiovascular events 8%), those with scores between 12 and 14 as intermediate risk (10-year risk of cardiovascular events $10-16 \%$), and those with scores ≥ 15 as high risk (10year risk of cardiovascular events $\geq 20 \%$). For women, low, intermediate and high risk corresponded to Framingham risk scores of 19 (10-year risk of cardiovascular events 8\%), 2022 (10 year risk of cardiovascular events $11-17 \%$) and ≥ 23 (10 year risk of cardiovascular events $\geq 22 \%$) points respectively.

The following variables at baseline were used to calculate Procam score: sex, age, LDLcholesterol, HDL-cholesterol, triglyceridemia, blood pressure, diabetes, cardiovascular disease before 60 years old among relatives. Procam score was encoded based on PROCAM study [18]and CVD risk was computed for each participants. Low, intermediate and high risk was defined as 10 -year risk of cardiovascular events of $<10 \%$, between $10-20 \%$ and $\geq 20 \%$ respectively. By convention, women had their risk divided by four.

Statistical Analysis

The primary outcome was misperception of CVD risk. For statistical convenience we merged participants who correctly or overestimated their risk together, believing that correct or overestimation is less detrimental than underestimation in terms of preventive medicine. We compared participants who underestimated their 10-year CVD risk to those who correctly or overestimated it. The comparison between the baseline characteristics of both groups was performed using Chi square tests and Anova or Fisher tests.

1 We first used uni-variable logistic regression to obtain the odds ratio (OR) and 95% confidence intervals (CI) and identify potential predictors of underestimation, compared to correct or overestimation of 10 -year CVD risk. Variables that were significant with a p-value <0.05 (sex, age, education, working status, hypertension, hyperlipidemia, diabetes, cardiovascular medication) were then integrated in a multi-variable adjusted analysis. Multivariable adjusted logistic regression was used to identify variables associated with underestimation of the CVD risk compared with correct or overestimation.

We considered p-values <0.05 as significant. All data were proceeded with STATA 10 software (StataCorp, College Station; Texas).

RESULTS

The study included 536 participants, amongst whom 22 (4\%) had incomplete baseline data (18 without self-perceived CVD risk, and 4 whose high triglycerides prevented calculation of LDL-cholesterol level). Among the 514 remaining participants, 98% were Caucasians and 234 (46\%) were female (Table 1). Mean age at baseline was 51.1 ± 7.3 years. Most participants were employed or retired (92%) the rest being unemployed or on social security. About two third had lower education (<12 years; apprenticeship or no formation). Participants were smoking with an average of 24.5 (9.8 SD) cigarettes per day for a mean duration of tobacco smoking of 32.1 (7.9 SD) years, corresponding to 39 (20 SD) pack-years. Two hundred and fifty-eight (50\%) participants had hyperlipidemia, whereas 27% had hypertension and 3.5% had diabetes.

Using the Framingham score, half of participants (51\%) were classified as low risk at 10 years, 38% as intermediate risk and 11% as high risk (Table 2A). Using the Procam risk score the proportion of low risk participant was 76%, medium risk 13% and high risk 11% (Table 2B). Participants perceived themselves at low risk for 38% of them, intermediate risk for 34% and high risk for 28% of them, using the self-perceived CVD risk questionnaire. In a subsample of 48 participants, re-assessment of CVD risk perception (by telephone, one month after the initial evaluation) showed 83% of consistent answers (40/48) (data not shown).

According to Framingham score, less than half of the participants (42\%) correctly estimated their CVD risk, 39% overestimated it and 19% underestimated it (Table 2A). According to Procam score, 38% correctly estimated their CVD risk, 50% overestimated it and 12% underestimated it (Table 2B).

Among high-risk participants, $62-69 \%$ underestimated their CVD risk (depending on the score used) whereas 33-34\% underestimate it among intermediate risk participants (Table 2A and 2B).

Using the Framingham score, male gender (OR 9.45; CI 4.9-18.2), older age (OR 1.05; CI 1.02-1.08), body mass index (OR 1.09; CI 1.03-1.14), hyperlipidemia (OR 5.71; CI 3.349.76), diabetes (OR 9.27; CI 3.39-25.38) and being on CVD medication (OR 1.75; CI 1.082.82) were associated with underestimation of CVD risk in univariate analysis (data not shown). In the multivariable-adjusted analysis, underestimation of CVD risk was associated with male gender (OR 8.16; CI 3.83-17.36), older age (OR 1.06; CI 1.02-1.09), hyperlipidemia (OR 2.71; CI 1.47-5.01) and diabetes mellitus (OR 13.93; CI 3.83-50.66) (Figure 1). We found no association between underestimation and body mass index, socio-
economical status, hypertension or being under CVD medication in the multivariable-adjusted analysis. Using the Procam risk score, we found similar results (Table 3).

DISCUSSION

In the present study, between 58% (for the Framingham score) and 62% (for the Procam score) of participants had a misperception of their CVD risk at 10 years. Results were almost similar when low, intermediate and high CVD risk categories were taken separately. A minority of participants (12-19\%) underestimated their CVD risk whereas 39\%-50\% overestimated it, depending of the score used the evaluation of the cardiovascular risk. Only 3% of participants couldn't provide an estimation of their CVD risk.

A majority of participants had inadequate perception of CVD risk, which is consistent with previous studies. In our study, the CVD risk was perceived inappropriately in $62-69 \%$ of high CVD risk participants and $57-61 \%$ of low risk participant, whereas Van der Weijden et al. found that 80% of high risk and 20% of low risk participants had a misperception of their CVD risk in general practices[4].

The use of the Procam risk score generated a higher proportion of low risk participants compared to the Framingham risk score, but a lower proportion of medium risk participants. The proportion of high risk participants was similar using both scores. As a consequence, compared with Framingham, a smaller proportion of participants underestimated their CVD risk when using the Procam risk score (61 vs 100 participants respectively) probably reflecting a better accuracy of this score in a European population. Table 3 compares the determinants of underestimation of the cardiovascular risk as calculated with the Framingham or the Procam scores. Of note, important differences between confidence intervals width
occurs in male gender and diabetes variables in Procam compared to Framingham. Interestingly, these 2 variables remain statistically significant even though the strengths of association were less robust mainly due to the smaller proportion of participants in Procam and the few diabetic patients of our study $(\mathrm{n}=18)$. In fact, both of these scores consider type 2 diabetes as a high CVD risk regardless of other factors. Thus, diabetic patients were automatically considered in the highest risk category which could explain why diabetes has such a high odds ratio. Further studies in a population with diabetes specifically remain needed.

We found that older age, male gender, hyperlipidemia and diabetes were determinants of underestimation of CVD risk. Our results contrast at least with two other studies. Three quarter of participants with hypertension or diabetes overestimated their CVD risk in the study of Frijling et al.[3]. Similarly, Van der Weijden et al.[4] highlighted that men and diabetic participants were more likely to perceive their CVD risk inappropriately. Participants in our study responded to an advertisement inviting them to a study to help them quit smoking whereas Frijling et al. gave questionnaires to patients visiting general office who fulfilled inclusion criteria. The fact that the participants to our study needed to actively respond to an advertisement in order to be recruited, might explain why motivation, as well as health awareness, might have been higher in the participants of the present study than in the general population of long term smokers who do not want to quit. This could also explain the low percentage of participants who failed to provide an estimation (correct or wrong) of their CVD risk.

Interestingly, more participants overestimated their CVD risk (too pessimistic) than underestimated it in our study. Nonetheless, we decided to focus on those who underestimated
their CVD risk (too optimistic), assuming it to be more detrimental than overestimation. In our opinion, underestimation of CVD risk might decrease compliance to treatment or lifestyle modifications as well as reduce the efficacy of primary prevention and thus increase the absolute risk of CVD event. Overestimation may cause increased stress, medical seeking or overmedication, which can affect the quality of life rather than the absolute CVD risk.

To our surprise, diabetes was a determinant of underestimation of CVD risk, even though participants with diabetes presumably have had regular medical interaction and lifestyle education. However, caution is advised considering the small proportion of diabetic participants (4\%) in our study. Hyperlipidemia was also a determinant of underestimation whereas other CVD risk factors such as hypertension or BMI were not associated with underestimation. Finally male gender was also associated with higher odds of underestimation. Studies suggest that men are less health conscious compared with women and might be less susceptible to seek medical help [19].

Our study carefully assessed self-perceived CVD risk among smokers and compared it with two validated calculated risk score. However, because our study was limited to current smokers, we could not compare smokers' misperception to that of non-smokers or former smokers. It would be interesting to assess risk perception among non-smokers in our general population to better contrast CVD risk perception between smokers and non-smokers.

We assessed CVD risk perception asking about the risk of developing a heart attack within 10 years. It would also have been interesting to assess whether the self-perceived risk of heart attack vs stroke would have been different in smokers. However, we used the perceived risk of heart attack as a proxy for the overall cardiovascular risk and did not collect any data about stroke.

1 Clinicians widely use clinical scores to estimate CVD risk in order to discuss primary 2 prevention. This approach is only efficient when patients understand and adhere to risk 3 reduction therapy. Smokers represent a challenge for general practitioners due to strong 4 nicotine dependence and denial of personal risk from smoking (optimistic bias)[6].

5 We found that 12-19\% of smokers have a misperception of their 10-year CVD risk in the 6 form of an underestimation, which may hinder the efficiency of interventions aimed at 7 reducing or preventing CVD risk factors. This could lead to an increase in morbidity and 8 mortality. Therefore clinicians must be aware that about a fifth of smokers underestimate their 9 10-year CVD risk and that men as well as people suffering from hyperlipidemia or diabetes, 10 are at increasing risk of underestimating their 10 -year CVD risk.

References

1. WHO (2014) The top 10 causes of death, Fact sheet $N^{\circ} 310$. Accessed 9 Feb 2015
2. Rigotti NA, Clair C (2013) Managing tobacco use: the neglected cardiovascular disease risk factor. European heart journal 34 (42):3259-3267. doi:10.1093/eurheartj/eht352
3. Frijling BD, Lobo CM, Keus IM, Jenks KM, Akkermans RP, Hulscher ME, Prins A, van der Wouden JC, Grol RP (2004) Perceptions of cardiovascular risk among patients with hypertension or diabetes. Patient Educ Couns 52 (1):47-53
4. van der Weijden T, van Steenkiste B, Stoffers HE, Timmermans DR, Grol R (2007) Primary prevention of cardiovascular diseases in general practice: mismatch between cardiovascular risk and patients' risk perceptions. Med Decis Making 27 (6):754-761. doi:10.1177/0272989X07305323
5. Weinstein ND (1998) Accuracy of smokers' risk perceptions. Ann Behav Med 20 (2):135-140
6. Ayanian JZ, Cleary PD (1999) Perceived risks of heart disease and cancer among cigarette smokers. JAMA 281 (11):1019-1021
7. Senn M, Favrat B, Vaucher P, Burnier M (2006) Physicians' estimates of the 10 year cardiovascular risk in hypertensive patients: an evaluation in primary care physicians in training. Swiss medical weekly 136 (37-38):603-608. doi:2006/37/smw-11330
8. D'Agostino RB, Sr., Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117 (6):743-753. doi:10.1161/CIRCULATIONAHA.107.699579
9. Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10 -year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 105 (3):310-315
10. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetiere P, Jousilahti P, Keil U, Njolstad I, Oganov RG, Thomsen T, Tunstall-Pedoe H, Tverdal A, Wedel H, Whincup P, Wilhelmsen L, Graham IM (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24 (11):987-1003
11. Nanchen D, Chiolero A, Marques-Vidal PM, Cornuz J, Waeber G, Vollenweider P, Rodondi N (2010) [Statin prescription in primary prevention: which cardiovascular risk score should be used in Switzerland?]. Revue medicale suisse 6 (239):488-490, 492-483
12. An International Atherosclerosis Society Position Paper: global recommendations for the management of dyslipidemia--full report (2014). J Clin Lipidol 8 (1):29-60
13. Rodondi N, Collet TH, Nanchen D, Locatelli I, Depairon M, Aujesky D, Bovet P, Cornuz J (2012) Impact of carotid plaque screening on smoking cessation and other cardiovascular risk factors: a randomized controlled trial. Arch Intern Med 172 (4):344-352. doi:10.1001/archinternmed.2011.1326
14. Lenfant C, Chobanian AV, Jones DW, Roccella EJ (2003) Seventh Report of the Joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7):
Resetting the Hypertension Sails. Circulation $107 \quad$ (24):2993-2994.
doi:10.1161/01.cir.0000080481.62058.03
15. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP)

Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III) (2001). JAMA 285 (19):2486-2497
16. American Diabetes A (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37 Suppl 1:S81-90. doi:10.2337/dc14-S081
17. http://www.nhlbi.nih.gov/guidelines/cholesterol/risk tbl.htm.
18. Assmann G, Cullen P, Schulte H (2002) Simple Scoring Scheme for Calculating the Risk of Acute Coronary Events Based on the 10-Year Follow-Up of the Prospective Cardiovascular Münster (PROCAM) Study. Circulation 105 (3):310-315. doi:10.1161/hc0302.102575
19. Vaidya V (2012) Gender Differences in Utilization of Preventive Care Services in the United States.

Journal of Women's Health 21 (2)

2 Legends for Tables:

3 * Full time, part time, independent or at home
$4 \dagger$ Low Blood Pressure defined as $<140 / 90 \mathrm{mmHg}$; High Blood Pressure defined as ≥ 140
$6 \ddagger$ Definition: treated patient (statin of fibrate); High Risk: LDL-Chol $\geq 2.6 \mathrm{mmol} / \mathrm{L}$;
7 Intermediate Risk: LDL-Chol $\geq 3.4 \mathrm{mmol} / \mathrm{L}$; Low Risk: LDL-Chol $\geq 4.1 \mathrm{mmol} / \mathrm{L}$
$8 \quad$ § Fasting Glycemia $\geq 7 \mathrm{mmol} / \mathrm{L}$ or Glycemia $\geq 11.1 \mathrm{mmol} / \mathrm{L}$

1
1
2 Table 1: Characteristics of study participants

	Overall$(n=514)$	
Demographics		
Age (years), mean \pm SD	51.1	7.3
Women nbr, \%	234	45.5
Education nbr, \%		
< 12 years	381	74.1
≥ 12 years	133	25.9
Professional activity nbr, \%		
Employed*	433	84.2
Unemployed or on social security	40	7.8
Retired	41	8.0
Cardiovascular medication nbr, \%		
No treatment	390	75.9
Aspirine, statine, anti-HTA, anti-Diabetic	124	24.1
Cardiovascular variables		
Systolic Blood Pressure $\mathrm{mmHg} \pm \mathrm{SD}$ Systolic Blood Pressure (per 10 mmHg)	123.0	15.4
Categories nbr, \%		
Low Blood Pressure ${ }^{+}$	376	73.2
High Blood Pressure ${ }^{\dagger}$	138	26.8
BMI mean \pm SD	24.9	4.1
Dyslipidemia $\ddagger \mathrm{nbr}$, \%	258	50.2
treated nbr, \%	60	11.7
Diabetes type $2^{\S} \mathrm{nbr}, \%$	18	3.5
Tobacco smoking		
Number of cigarettes per day mean \pm SD	24.5	9.8
Number of pack-years py \pm SD	39	20
Fagerström Score for nicotine dependence mean \pm SD	5.0	2.1
(0 low dependence - 10 very high dependence)		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 2 A:

Meshing table between perceived CVD risk and calculated CVD risk according to Framingham score. Numbers in absolute; () is percentage of total, in column.

Perceived CV risk TO	Framingham risk score			Total		
	Low	Intermediate	High			
Low risk	111	64	22	$\begin{gathered} 197 \\ (38.3) \end{gathered}$	Underestimated CVD risk	19\%
					Correctly estimated CVD risk	42\%
Intermediate risk	79	81	14	$\begin{gathered} 174 \\ (33.8) \end{gathered}$		
					Overestimated CVD risk	39\%
High risk	70	51	22	143		
				(27.8)		
Total	260	196	58	514		
	(50.5)	(38.1)	(11.2)	(100)		

1

2

Table 2 B:

Meshing table between perceived CVD risk and calculated CVD risk according to Procam score. Numbers in absolute; () is percentage of total, in column.

Perceived CV risk TO	Procam risk score			Total		
	Low	Intermediate	High			
Low risk	153	23	21	$\begin{gathered} 197 \\ (38.3) \end{gathered}$	Underestimated CVD risk	12\%
					Correctly estimated CVD risk	38\%
Intermediate risk	130	27	17	$\begin{gathered} 174 \\ (33.8) \end{gathered}$		
					Overestimated CVD risk	50\%
High risk	109	17	17	143		
				(27.8)		
Total	392	67	55	514		
	(76.3)	(13.0)	(10.7)	(100)		

1
2

1 Table 3: Determinants of underestimation according to Framingham or Procam score 2

	FRAMINGHAM			PROCAM		
Variables	Odds Ratio	[95\% Conf. Interval]		Odds Ratio	[95\% Conf. Interval]	
Male gender	8.16	3.83	17.36	38.82	7.28	206.91
Age, years	1.06	1.02	1.09	1.22	1.15	1.30
Education ≥ 12 years	1.41	0.82	2.45	0.70	0.31	1.60
Unemployed or on social security	0.62	0.20	1.96	0.52	0.09	3.10
Hypertension	0.80	0.42	1.50	0.35	0.14	0.89
Hyperlipidemia	2.71	1.47	5.01	4.49	1.59	12.70
Diabetes mellitus	13.93	3.83	50.66	192.49	24.82	1493.12
Cardiovascular medication	0.73	0.37	1.45	0.29	0.11	0.80
Obesity	1.06	0.99	1.13	1.10	1.00	1.21

3

Figure 1: Determinants of underestimation (Framingham)

"The odds ratios and respective 95\% confidence intervals are presented on a log scale. Values above 1.0 (right of the dashed vertical line) present an increased risk of underestimating cardiovascular risk according to Framingham risk score (ref 8, D'Agostino and al, Circulation, 2008), while values below 1.0 (left of the
dashed line) present a decreased risk of underestimating cardiovascular risk.
All characteristics were analyzed as categorical variables, except for age in years as a continuous variable. The presence of hypertension was defined as a blood pressure $\geq 140 / 90 \mathrm{mmHg}$ in patients without diabetes and $\geq 130 / 80 \mathrm{mmHg}$ in patients with diabetes. The presence of hyperlipidemia was defined according to the level of cardiovascular risk: The threshold for patients with high, intermediate and low cardiovascular risk was $\geq 2.6 \mathrm{mmol} / \mathrm{I}, \geq 3.4 \mathrm{mmol} / \mathrm{I}$ and $\geq 4.1 \mathrm{mmol} / \mathrm{l}$, respectively. The presence of diabetes was defined by levels of fasting glucose $\geq 7 \mathrm{mmol} / \mathrm{l}$ or glucose at any time $\geq 11.1 \mathrm{mmol} / \mathrm{l}$. Obesity was defined as a body mass index $\geq 30 \mathrm{~kg} / \mathrm{m} 2$ (weight in kilograms divided by height in meters squared)."
$675 \times 342 \mathrm{~mm}(72 \times 72$ DPI)

STROBE Statement-checklist of items that should be included in reports of observational studies

	$\begin{gathered} \text { Item } \\ \text { No } \\ \hline \end{gathered}$	Recommendation	STATUS
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Done (in abstract page 3)
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Done
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Done (page 6-7)
Objectives	3	State specific objectives, including any prespecified hypotheses	Done (page 7 last paragraph)
Methods			
Study design	4	Present key elements of study design early in the paper	Done (page 8)
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Done (page 8, study pop.)
Participants	6	Cross-sectional study-Give the eligibility criteria, and the sources and methods of selection of participants	Done
		(b) Cohort study-For matched studies, give matching criteria and number of exposed and unexposed Case-control study-For matched studies, give matching criteria and the number of controls per case	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	$\begin{aligned} & \text { Done (page } \\ & 8-10 \text {) } \end{aligned}$
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Done (page 8-10)
Bias	9	Describe any efforts to address potential sources of bias	Done Multivariable model page 11)
Study size	10	Explain how the study size was arrived at	NA (secondary analyses of a RCT)
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Done (see methods)
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	$\begin{aligned} & \text { Done (page } \\ & 10-11) \end{aligned}$
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	Done (results page 11)

Cross-sectional study—If applicable, describe analytical methods taking	NA
account of sampling strategy	

Continued on next page

Results			STATUS
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Done (results page 11)
		(b) Give reasons for non-participation at each stage	Done
		(c) Consider use of a flow diagram	Not provided
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Done (results page 11)
		(b) Indicate number of participants with missing data for each variable of interest	Done page 11
		(c) Cohort study-Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	NA
		Case-control study-Report numbers in each exposure category, or summary measures of exposure	NA
		Cross-sectional study-Report numbers of outcome events or summary measures	$\begin{aligned} & \text { Done (page } \\ & 12 \text {) } \\ & \hline \end{aligned}$
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Done (page 12)
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results		Summarise key results with reference to study objectives	Done (page 13)
Limitations		Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	$\begin{aligned} & \text { Done (page } \\ & 14-15 \text {) } \\ & \hline \end{aligned}$
Interpretation		Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Done
Generalisability	21	Discuss the generalisability (external validity) of the study results	Done
Other information			
Funding		Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Done (page 17)
*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.			
Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.			

BMJ Open

Comparison of self-perceived cardiovascular disease risk among smokers with Framingham and Procam scores: a cross-sectional analysis of baseline data from a randomized controlled trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2016-012063.R2
Article Type:	Research
Date Submitted by the Author:	$30-$ Sep-2016
Complete List of Authors:	Desgraz, Benoit; Lausanne University Hospital, Policlinique Médicale Universitaire Collet, Tinh-Hai; Lausanne University Hospital, Policlinique Médicale Universitaire Rodondi, Nicolas; Inselspital Universitatsspital Bern, Department of General Internal Medicine; University of Bern, Institute of Primary Health Care Cornuz, Jacques; Lausanne University Hospital, Policlinique Médicale Universitaire Clair, Carole; Lausanne University Hospital, Policlinique Médicale Universitaire
Secondary Subject Heading:	Smoking and tobacco, Epidemiology, Cardiovascular medicine
Keywords:	PREVENTIVE MEDICINE, PRIMARY CARE, EPIDEMIOLOGY, Ischaemic heart disease < CARDIOLOGY
Heading:	General practice / Family practice
Primary Subject	

SCHOLARONE ${ }^{\text {m }}$
Manuscripts

17 CORRESPONDING AUTHOR Lausanne, Switzerland Lausanne, Switzerland University of Bern, Switzerland

Benoît Desgraz, MD
University Hospital of Lausanne
Bugnon 46
1011 Lausanne
Switzerland
Phone: +41 795568924 // +41 786147783
E-mail: benoit.desgraz@gmail.com

Comparison of self-perceived cardiovascular disease risk among smokers with Framingham and Procam scores: a cross-sectional analysis of baseline data from a randomized controlled trial

Benoît Desgraz, MD ${ }^{\text {a,b }}$, Tinh-Hai Collet, MD ${ }^{\text {a, },}$, Nicolas Rodondi, MD, MSc ${ }^{\text {d, e }}$, Jacques Cornuz, MD, MPH ${ }^{\text {a }}$, Carole Clair, MD, MSc ${ }^{\text {a }}$

a. Department of Ambulatory Care and Community Medicine, University of Lausanne,
b. Service of Cardiology, University Hospital of Lausanne, Lausanne, Switzerland
c. Service of Endocrinology, Diabetes and Metabolism, University Hospital of Lausanne,
d. Department of General Internal Medicine, Inselspital, Bern University Hospital,
e. Institute of Primary Health Care (BIHAM), University of Bern, Switzerland

1 Key words: Smoking cessation, Cardiovascular disease, Perception, Risk-assessment, Risk-
factor, Score

3

4 Manuscript: 4751 words, 3 tables, 1 figure

5 References: 20

6

Abstract

Objectives: Previous studies suggest that smokers have a misperception of their 10-year cardiovascular risk. We aimed to compare 10-year cardiovascular risk self-perception and calculated risk among smokers willing to quit and assess the determinants of a possible misperception.

Design: Cross-sectional secondary analysis of baseline data from a randomized controlled trial of smoking cessation.

Participants: 514 participants, mean age 51.1 years, 46% women, 98% Caucasian. Eligible participants were regular smokers, aged between 40 and 70 years, with a consumption of at least 10 cigarettes per day for at least a year. None of them had experienced CVD before. Exclusion criteria comprised history of myocardial infarction, coronary heart disease (CHD), stroke, heart failure, peripheral vascular disease, carotid atherosclerosis or cardiac arrhythmia. Participants with renal or liver failure, psychiatric disorders, substance and alcohol abuse and with smoking cessation therapies were excluded.

Interventions: Participants were asked to estimate their 10-year cardiovascular risk using a 3item scale corresponding to high, moderate and low risk categories. We compared their risk perception with the Framingham and Procam score. We used multi-variable adjusted logistic regression models to determine characteristics of participants who underestimate their risk vs. those who correctly or overestimate it.

Results: Between $38-42 \%$ of smokers correctly perceived their 10 -year cardiovascular risk, $39-50 \%$ overestimated their 10-year cardiovascular risk while $12-19 \%$ underestimated it compared to their calculated 10 -year cardiovascular risk depending on the score used. Underestimation of 10-year cardiovascular risk was associated with male gender (OR 8.16; CI

1 3.83-17.36), older age (OR 1.06; CI 1.02-1.09), and the presence of hyperlipidemia (OR 2.71;
2 CI 1.47-5.01) and diabetes mellitus (OR 13.93; CI 3.83-50.66).

3 Conclusions: Among smokers, misperception of their 10-year cardiovascular risk is common,
4 with one fifth underestimating it. These findings may help physicians target patients with such 5 characteristics to help them change their health behavior and adherence to risk-reduction 6 therapy.

7

1 Strengths and limitations of this study

2 - This study carefully assessed self-perceived CVD risk among smokers and compared

3
4 self-perception with two validated cardiovascular scores in a cross-sectional secondary data analysis of baseline data collected in a randomized controlled trial assessing the effect of carotid plaque screening on smoking cessation.

- The study highlights predictors of underestimation of CVD risk among smokers: male gender, older age, and the presence of hyperlipidemia and diabetes mellitus.
- The analyses are restricted to smokers and no comparison is possible between CVD perception of smokers, non-smokers or former smokers.
- The analyses are restricted to smokers who underestimated their cardiovascular risk and predictors of overestimation were not assessed.

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death worldwide. Ischemic heart disease and stroke are responsible for 13.2% and 11.9% of deaths, respectively[1]. Smoking is the most important modifiable risk factor for CVD and smoking cessation prevents cardiovascular mortality and morbidity in a rapid and effective manner[2]. Thus, the main strategy for CVD prevention is based on controlling modifiable risk factors such as smoking through population-wide interventions. These include smoking bans in public places, tax raises on cigarette packs as well as individual health-care interventions like counselling and medication for smokers willing to quit.

An adequate perception of cardiovascular disease risk might be required to better understand the goal of preventive interventions and adhere to CVD prevention. Studies assessing CVD risk using questionnaires, registration form, visual analogue scale and self-rated measurements, conducted in general practices by Frijling[3] and van der Weijden[4], have suggested that smoking predicted higher levels of risk perception. Smokers' perception of health risks is complex and underestimation or overestimation of CVD risk depends on how risk perception is assessed[5]. For instance, Weinstein et al.[5] have reported that smokers consistently acknowledged that smoking increased their risk of developing heart disease, lung cancer, bronchitis and stroke but within a smaller range compared with non-smokers. Furthermore, smokers tended to minimize their health risks. Individual misperception of smokers has also been described in another study that showed that only 29 to 39% of smokers perceived themselves at higher risk than the average for myocardial infarction[6]. One could argue that smoking, as part of a complex addiction mechanism, might be the cause of misperception but CVD risk is also difficult to assess for physicians [7]. To our knowledge,
few studies focused on CDV risk perception among smokers[3,4], and little or no information about CVD risk (calculated by scores) was provided.

Prediction scores such as Framingham[8], Procam[9], or the European Scores[10] have been developed to estimate the 10 -year CVD risk. These prediction models are increasingly used to identify high-risk patients who would benefit from interventions on one or several risk factors and to motivate others to adhere to risk-reduction therapy. Based on previous publications, the Procam score seems to be the most appropriate score in Switzerland [9,11]. However the Framingham score is still often used for clinical or research purposes (it is the one used in International Lipid guidelines[12]) despite its tendency to overestimate the cardiovascular risk in European populations.

Awareness of cardiovascular disease risk associated with cigarette smoking might have changed during the last two decades with more prevention and information campaigns. Moreover, whether smokers have a correct perception of their own CVD risk compared with calculated CVD risk prediction scores has never been assessed and little is known about determinants that could explain the potential misperception of smokers.

The primary objective of this study was to assess the accuracy of perception of CVD risk among smokers and identify determinants associated with potential misperception in a singlecenter study conducted with smokers in Switzerland.

22

METHODS

Study population

We did a cross-sectional secondary analysis of the baseline data of the CAROSS trial, a randomized controlled trial assessing the effect of carotid plaque screening on smoking cessation [13]. Participants were recruited in the general population using advertisements in newspaper in multiple recruitment waves.

Eligible participants were regular smokers, aged between 40 and 70 years, with a consumption of at least 10 cigarettes per day for at least a year and no periods of smoking abstinence of at least 3 months in the previous year. None of them had experienced CVD before, as exclusion criteria comprised history of myocardial infarction, coronary heart disease (CHD), stroke, heart failure, peripheral vascular disease, carotid atherosclerosis or cardiac arrhythmia. Participants with renal or liver failure, psychiatric disorders, substance and alcohol abuse, and those taking smoking cessation therapies were also excluded.

All participants provided written informed consent. The study was approved by the local ethic commission of the University of Lausanne, Switzerland.

Variables of interest

Data on medical and smoking history, home and work environment, education and medication use were collected using questionnaires. At baseline, a nurse trained in smoking cessation asked each participant about his or her perception of CVD risk. The question was standardized to avoid influencing the participants and worded as: «How do you perceive your risk of heart attack in 10 years? ». The possible responses were «none or low risk »,
« intermediate risk », « high risk », « don’t know » and «refuse to answer ». Participants who «didn’t know » or «refused to answer » were invited once to reconsider their choice. In this study we restricted analysis for participants who answered the self-perceived CVD risk question and had complete baseline data.

To determine the reliability and reproducibility of the CVD risk perception assessment, we asked a consecutive convenience subsample of participants ($\mathrm{n}=48$) to reassess their CVD risk one month after the last evaluation.

We calculated the Framingham scores based on ATP III guidelines[14]. We used the following variables at baseline to calculate the score: sex, age, cholesterol, smoking status, blood pressure, HDL-cholesterol, triglyceridemia and being treated with antihypertensive drugs. Framingham score was then encoded and CVD risk was computed for each participant.

According to Framingham scores, men with scores ≤ 11 were classified as low risk (10-year risk of cardiovascular events 8%), those with scores between 12 and 14 as intermediate risk (10-year risk of cardiovascular events $10-16 \%$), and those with scores ≥ 15 as high risk (10 year risk of cardiovascular events $\geq 20 \%$). For women, low, intermediate and high risk corresponded to Framingham risk scores of 19 (10-year risk of cardiovascular events 8\%), 2022 (10-year risk of cardiovascular events $11-17 \%$) and ≥ 23 (10 -year risk of cardiovascular events $\geq 22 \%$) points respectively.

The following variables at baseline were used to calculate Procam score: sex, age, LDLcholesterol, HDL-cholesterol, triglyceridemia, blood pressure, diabetes, cardiovascular disease before 60 years old among relatives. Procam score was encoded based on PROCAM study [15] and CVD risk was computed for each participants. Low, intermediate and high risk was defined as 10 -year risk of cardiovascular events of $<10 \%$, between $10-20 \%$ and $\geq 20 \%$ respectively. By convention, women had their risk divided by four.

Professional activity was initially classified as «Employed», «Unemployed or on social security » and «Retired». For the need of the multi-variable adjusted analysis and assuming that «Retired» participants where once «Employed», we secondarily merged «Employed» and «Retired» participants and obtained two categories «Employed or retired» and «Unemployed or on social security». Education was dichotomized by <12 years and ≥ 12 years of education. Both of these variables were used as a proxy for socio-economic status.

Weight and height were measured at baseline as well as blood pressure in a sitting position with an appropriately sized cuff according to guidelines. Fasting glucose and lipids levels were measured at baseline. We defined cardiovascular risk factors as follows: Hypertension as ≥ 140 systolic mmHg and/or 90 diastolic $\mathrm{mmHg}[16]$, except for participants with diabetes mellitus $\geq 130 \mathrm{and} /$ or 80 mmHg ; Hyperlipidemia according to ATP-III guidelines[17] as LDL-cholesterol $\geq 2.6 \mathrm{mmol} / \mathrm{L}, \geq 3.4 \mathrm{mmol} / \mathrm{L}, \geq 4.1 \mathrm{mmol} / \mathrm{L}$ for high ($>20 \%$), moderate ($10-$ 20%) and low ($<10 \%$) risk participants, respectively; Diabetes mellitus as fasting blood glucose $\geq 7.0 \mathrm{mmol} / \mathrm{L}[18]$.

Statistical Analysis

The primary outcome was misperception of CVD risk. For statistical convenience we merged participants who correctly or overestimated their risk together, believing that correct or overestimation is less detrimental than underestimation in terms of preventive medicine. We compared participants who underestimated their 10-year CVD risk to those who correctly or overestimated it. The comparison between the baseline characteristics of both groups was performed using Chi square tests and Anova or Fisher tests.

1 We first used uni-variable logistic regression to obtain the odds ratio (OR) and 95\% confidence intervals (CI) and identify potential predictors of underestimation, compared to correct or overestimation of 10 -year CVD risk. Variables that were significant with a p-value <0.05 (sex, age, education, working status, hypertension, hyperlipidemia, diabetes, cardiovascular medication) were then integrated in a multi-variable adjusted analysis. Multivariable adjusted logistic regression was used to identify variables associated with underestimation of the CVD risk compared with correct or overestimation.

We considered p-values <0.05 as significant. All data were proceeded with STATA 10 software (StataCorp, College Station; Texas).

RESULTS

The study included 536 participants, amongst whom 22 (4\%) had incomplete baseline data (18 without self-perceived CVD risk, and 4 whose high triglycerides prevented calculation of LDL-cholesterol level). Among the 514 remaining participants, 98% were Caucasians and 234 (46\%) were female (Table 1). Mean age at baseline was 51.1 ± 7.3 years. Most participants were employed or retired (92\%) the rest being unemployed or on social security. About two third had lower education (< 12 years; apprenticeship or no education). Participants were smoking with an average of 24.5 (9.8 SD) cigarettes per day for a mean duration of tobacco smoking of 32.1 (7.9 SD) years, corresponding to 39 (20 SD) pack-years. Two hundred and fifty-eight (50\%) participants had hyperlipidemia, whereas 27% had hypertension and 3.5% had diabetes.

Using the Framingham score, half of participants (51\%) were classified as low risk at 10 years, 38% as intermediate risk and 11% as high risk (Table 2A). Using the Procam risk score the proportion of low risk participant was 76%, medium risk 13% and high risk 11% (Table 2B). Participants perceived themselves at low risk for 38% of them, intermediate risk for 34% and high risk for 28% of them, using the self-perceived CVD risk questionnaire. In a subsample of 48 participants, re-assessment of CVD risk perception (by telephone, one month after the initial evaluation) showed 83% of consistent answers (40/48) (data not shown).

According to Framingham score, less than half of the participants (42\%) correctly estimated their CVD risk, 39% overestimated it and 19% underestimated it (Table 2A). According to Procam score, 38% correctly estimated their CVD risk, 50% overestimated it and 12% underestimated it (Table 2B).

Among high-risk participants, $62-69 \%$ underestimated their CVD risk (depending on the score used) whereas $33-34 \%$ underestimate it among intermediate risk participants (Table 2A and 2B).

Using the Framingham score, male gender (OR 9.45; CI 4.9-18.2), older age (OR 1.05; CI 1.02-1.08), body mass index (OR 1.09; CI 1.03-1.14), hyperlipidemia (OR 5.71; CI 3.349.76), diabetes (OR 9.27; CI 3.39-25.38) and being on CVD medication (OR 1.75; CI 1.082.82) were associated with underestimation of CVD risk in univariate analysis (data not shown). In the multivariable-adjusted analysis, underestimation of CVD risk was associated with male gender (OR 8.16; CI 3.83-17.36), older age (OR 1.06; CI 1.02-1.09), hyperlipidemia (OR 2.71; CI 1.47-5.01) and diabetes mellitus (OR 13.93; CI 3.83-50.66) (Figure 1). We found no association between underestimation and body mass index, socio-
economical status, hypertension or being under CVD medication in the multivariable-adjusted analysis. Using the Procam risk score, we found similar results (Table 3).

DISCUSSION

In the present study, between 58% (for the Framingham score) and 62% (for the Procam score) of participants had a misperception of their CVD risk at 10 years. Results were almost similar when low, intermediate and high CVD risk categories were taken separately. A minority of participants (12-19\%) underestimated their CVD risk whereas 39\%-50\% overestimated it, depending of the score used for the evaluation of the cardiovascular risk. Only 3\% of participants couldn't provide an estimation of their CVD risk.

A majority of participants had inadequate perception of CVD risk, which is consistent with previous studies. In our study, the CVD risk was perceived inappropriately in $62-69 \%$ of high CVD risk participants and $57-61 \%$ of low risk participant, whereas Van der Weijden et al. found that 80% of high risk and 20% of low risk participants had a misperception of their CVD risk in general practices[4].

The use of the Procam risk score generated a higher proportion of low risk participants compared to the Framingham risk score, but a lower proportion of medium risk participants. The proportion of high risk participants was similar using both scores. As a consequence, compared with Framingham, a smaller proportion of participants underestimated their CVD risk when using the Procam risk score (61 vs 100 participants respectively) probably reflecting a better accuracy of this score in a European population. Table 3 compares the determinants of underestimation of the cardiovascular risk as calculated with the Framingham or the Procam scores. Of note, important differences between confidence intervals width
occurs in male gender and diabetes variables in Procam compared to Framingham. Interestingly, these 2 variables remain statistically significant even though the strengths of association were less robust mainly due to the smaller proportion of participants in Procam and the few diabetic patients of our study ($\mathrm{n}=18$). In fact, both of these scores consider type 2 diabetes as a high CVD risk regardless of other factors. Thus, diabetic patients were automatically considered in the highest risk category which could explain why diabetes has such a high odds ratio. Further studies in a population with diabetes specifically remain needed.

We found that older age, male gender, hyperlipidemia and diabetes were determinants of underestimation of CVD risk. Our results contrast at least with two other studies. Three quarter of participants with hypertension or diabetes overestimated their CVD risk in the study of Frijling et al.[3]. Similarly, Van der Weijden et al.[4] highlighted that men and diabetic participants were more likely to perceive their CVD risk inappropriately. However, caution is advised when comparing these studies because the design and the baseline population differ substantially. First, only 29% and 20% of participants were smokers in Van der Weijden et al., and Frijling et al., respectively. Secondly, participants in our study responded to an advertisement inviting them to a study to help them quit smoking whereas Frijling et al. gave questionnaires to patients visiting general office who fulfilled inclusion criteria. The fact that the participants to our study needed to actively respond to an advertisement in order to be recruited, might explain why motivation, as well as health awareness, might have been higher in the participants of the present study than in the general population of long term smokers who do not want to quit. This could also explain the low percentage of participants who failed to provide an estimation (correct or wrong) of their CVD risk.

Interestingly, more participants overestimated their CVD risk (too pessimistic) than underestimated it in our study. Nonetheless, we decided to focus on those who underestimated their CVD risk (too optimistic), assuming it to be more detrimental than overestimation. In our opinion, underestimation of CVD risk might decrease compliance to treatment or lifestyle modifications as well as reduce the efficacy of primary prevention and thus increase the absolute risk of CVD event. Overestimation may cause increased stress, medical seeking or overmedication, which can affect the quality of life rather than the absolute CVD risk.

To our surprise, diabetes was a determinant of underestimation of CVD risk, even though participants with diabetes presumably have had regular medical interaction and lifestyle education. However, caution is advised considering the small proportion of diabetic participants (4\%) in our study. Hyperlipidemia was also a determinant of underestimation whereas other CVD risk factors such as hypertension or BMI were not associated with underestimation. Finally male gender was also associated with higher odds of underestimation. Studies suggest that men are less health conscious compared with women and might be less susceptible to seek medical help [19].

Our study carefully assessed self-perceived CVD risk among smokers and compared it with two validated calculated risk score. However, because our study was limited to current smokers, we could not compare smokers' misperception to that of non-smokers or former smokers. It would be interesting to assess risk perception among non-smokers in our general population to better contrast CVD risk perception between smokers and non-smokers.

We assessed CVD risk perception asking about the risk of developing a heart attack within 10 years. It would also have been interesting to assess whether the self-perceived risk of heart attack vs stroke would have been different in smokers. However, we used the perceived risk
of heart attack as a proxy for the overall cardiovascular risk and did not collect any data about stroke.

Patients with psychiatric disorders are known to be at risk for substance abuse and have a high prevalence of smoking, and consequently are exposed to high morbidity [20]. These patients were excluded from the CAROSS trial to ensure that consent was fully informed and that participants would carefully follow the smoking cessation advices. This understudied population would benefit from future trials specifically aimed at new approaches for smoking cessation.

Clinicians widely use clinical scores to estimate CVD risk in order to discuss primary prevention. This approach is only efficient when patients understand and adhere to risk reduction therapy. Smokers represent a challenge for general practitioners due to strong nicotine dependence and denial of personal risk from smoking (optimistic bias)[6].

We found that $12-19 \%$ of smokers have a misperception of their 10 -year CVD risk in the form of an underestimation, which may hinder the efficiency of interventions aimed at reducing or preventing CVD risk factors. This could lead to an increase in morbidity and mortality. Therefore clinicians must be aware that about a fifth of smokers underestimate their 10 -year CVD risk and that men as well as people suffering from hyperlipidemia or diabetes, are at increasing risk of underestimating their 10-year CVD risk.

9 None Declared

CONTRIBUTORSHIP STATEMENT

8 COMPETING INTERESTS

FUNDING

 (PZ00P3_154732).
DATA SHARING STATEMENT

PREVIOUS PRESENTATION

Study concept and design: Rodondi, Collet, Cornuz and Desgraz. Acquisition of data:
Rodondi, Collet and the CAROSS trial team. Analysis and interpretation of data: Desgraz,
Clair, Collet, Rodondi, Cornuz. Drafting of manuscript: Desgraz. Critical revision of the
manuscript for important intellectual content: Desgraz, Clair, Collet, Rodondi, Cornuz.
Statistical analyses: Collet, Desgraz. Administrative, technical and material support:
Rodondi, Cornuz. Study supervision: Clair, Collet, Rodondi, Cornuz.

This work was supported by research grants from the Swiss National Science Foundation (SNSF 3200B0-116097 to Prof Rodondi), the Swiss Heart Foundation, the Lausanne University Hospital (CHUV) Strategic Plan and the Swiss Tobacco Prevention Funds, Federal Office of Public Health (FPT 08.002282). Dr T-H Collet's research is supported by grants from the Swiss National Science Foundation (PBLAP3-145870, P3SMP3-155318). Dre C Clair's research is supported by a grant from the Swiss National Science Foundation

All illustrations and figures in the manuscript are entirely original and do not require reprint permission. There is no additional unpublished data.

Intermediate results were presented at SGIM meeting in Orlando, in May 2012.

References

1. WHO (2014) The top 10 causes of death, Fact sheet $N^{\circ} 310$. Accessed 9 Feb 2015
2. Rigotti NA, Clair C (2013) Managing tobacco use: the neglected cardiovascular disease risk factor. European heart journal 34 (42):3259-3267. doi:10.1093/eurheartj/eht352
3. Frijling BD, Lobo CM, Keus IM, Jenks KM, Akkermans RP, Hulscher ME, Prins A, van der Wouden JC, Grol RP (2004) Perceptions of cardiovascular risk among patients with hypertension or diabetes. Patient Educ Couns 52 (1):47-53
4. van der Weijden T, van Steenkiste B, Stoffers HE, Timmermans DR, Grol R (2007) Primary prevention of cardiovascular diseases in general practice: mismatch between cardiovascular risk and patients' risk perceptions. Med Decis Making 27 (6):754-761. doi:10.1177/0272989X07305323
5. Weinstein ND (1998) Accuracy of smokers' risk perceptions. Ann Behav Med 20 (2):135-140
6. Ayanian JZ, Cleary PD (1999) Perceived risks of heart disease and cancer among cigarette smokers. JAMA 281 (11):1019-1021
7. Senn M, Favrat B, Vaucher P, Burnier M (2006) Physicians' estimates of the 10 year cardiovascular risk in hypertensive patients: an evaluation in primary care physicians in training. Swiss medical weekly 136 (37-38):603-608. doi:2006/37/smw-11330
8. D'Agostino RB, Sr., Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117 (6):743-753. doi:10.1161/CIRCULATIONAHA.107.699579
9. Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 105 (3):310-315
10. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetiere P, Jousilahti P, Keil U, Njolstad I, Oganov RG, Thomsen T, Tunstall-Pedoe H, Tverdal A, Wedel H, Whincup P, Wilhelmsen L, Graham IM (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24 (11):987-1003
11. Nanchen D, Chiolero A, Marques-Vidal PM, Cornuz J, Waeber G, Vollenweider P, Rodondi N (2010) [Statin prescription in primary prevention: which cardiovascular risk score should be used in Switzerland?]. Revue medicale suisse 6 (239):488-490, 492-483
12. An International Atherosclerosis Society Position Paper: global recommendations for the management of dyslipidemia--full report (2014). J Clin Lipidol 8 (1):29-60
13. Rodondi N, Collet TH, Nanchen D, Locatelli I, Depairon M, Aujesky D, Bovet P, Cornuz J (2012) Impact of carotid plaque screening on smoking cessation and other cardiovascular risk factors: a randomized controlled trial. Arch Intern Med 172 (4):344-352. doi:10.1001/archinternmed.2011.1326
14. http://www.nhlbi.nih.gov/guidelines/cholesterol/risk tbl.htm.
15. Assmann G, Cullen P, Schulte H (2002) Simple Scoring Scheme for Calculating the Risk of Acute Coronary Events Based on the $10-Y e a r$ Follow-Up of the Prospective Cardiovascular Münster (PROCAM) Study. Circulation 105 (3):310-315. doi:10.1161/hc0302.102575
16. Lenfant C, Chobanian AV, Jones DW, Roccella EJ (2003) Seventh Report of the Joint National Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7):
Resetting the Hypertension Sails. Circulation 107 (24):2993-2994. doi:10.1161/01.cir.0000080481.62058.03
17. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III) (2001). JAMA 285 (19):2486-2497
18. American Diabetes A (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37

Suppl 1:S81-90. doi:10.2337/dc14-S081
19. Vaidya V (2012) Gender Differences in Utilization of Preventive Care Services in the United States. Journal of Women's Health 21 (2)
20. Bizzarri JV, Casetti V, Panzani P, Unterhauser J, Mulas S, Fanolla A, Zitelli C, Briani A, Giupponi G, Maremmani I, Conca A (2016) Risky use and misuse of alcohol and cigarettes in psychiatric inpatients: a screening questionnaire study. Compr Psychiatry 70:9-16. doi:10.1016/j.comppsych.2016.05.011

Legends for Tables:

* Full time, part time, independent or at home
\dagger Low Blood Pressure defined as $<140 / 90 \mathrm{mmHg}$; High Blood Pressure defined as ≥ 140 and/or $90, \geq 130$ and $/$ or 80 mmHg if diabetic
\ddagger Definition of hyperlipidemia:
- Any treated patient (statin or fibrate);
- For high risk patients when LDL-cholesterol $\geq 2.6 \mathrm{mmol} / \mathrm{L}$;
- For intermediate risk patients when LDL-cholesterol $\geq 3.4 \mathrm{mmol} / \mathrm{L}$;
- For low risk patients when LDL-cholesterol $\geq 4.1 \mathrm{mmol} / \mathrm{L}$
\S Fasting Glycemia $\geq 7 \mathrm{mmol} / \mathrm{L}$ or Glycemia $\geq 11.1 \mathrm{mmol} / \mathrm{L}$

1
1
2 Table 1:Characteristics of study participants

	$\begin{aligned} & \text { Ovel } \\ & (n=5 \end{aligned}$	
Demographics		
Age (years), mean \pm SD	51.1	7.3
Women nbr, \%	234	45.5
Education nbr, \%		
< 12 years	381	74.1
≥ 12 years	133	25.9
Professional activity nbr, \%		
Employed*	433	84.2
Unemployed or on social security	40	7.8
Retired	41	8.0
Cardiovascular medication nbr, \%		
No treatment	390	75.9
Aspirine, statine, anti-HTA, anti-Diabetic	124	24.1
Cardiovascular variables		
Systolic Blood Pressure $\mathrm{mmHg} \pm \mathrm{SD}$ Systolic Blood Pressure (per 10 mmHg)	123.0	15.4
Categories nbr, \%		
Low Blood Pressure ${ }^{+}$	376	73.2
High Blood Pressure ${ }^{\dagger}$	138	26.8
BMI mean \pm SD	24.9	4.1
Hyperlipidemia $\ddagger \mathrm{nbr}$, \%	258	50.2
treated nbr, \%	60	11.7
Diabetes type $2^{\text {§ }} \mathrm{nbr}, \%$	18	3.5
Tobacco smoking		
Number of cigarettes per day mean \pm SD	24.5	9.8
Number of pack-years py \pm SD	39	20

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Fagerström Score for nicotine dependence mean \pm SD
(0 low dependence - 10 very high dependence)
Table 2 A:

Meshing table between perceived CVD risk and calculated CVD risk according to Framingham score. Numbers in absolute; () is percentage of total, in column.

1

2

Table 2 B:

Meshing table between perceived CVD risk and calculated CVD risk according to Procam score. Numbers in absolute; () is percentage of total, in column.

Perceived CV risk TO	Procam risk score			Total		
	Low	Intermediate	High			
Low risk	153	23	21	$\begin{gathered} 197 \\ (38.3) \end{gathered}$	Underestimated CVD risk	12\%
					Correctly estimated CVD risk	38\%
Intermediate risk	130	27	17	$\begin{gathered} 174 \\ (33.8) \end{gathered}$		
					Overestimated CVD risk	50\%
High risk	109	17	17	143		
				(27.8)		
Total	392	67	55	514		
	(76.3)	(13.0)	(10.7)	(100)		

1
2

1 Table 3: Determinants of underestimation according to Framingham or Procam score 2

	FRAMINGHAM		PROCAM			
[95\% Conf.	Odds Ratio	[95\% Conf. Interval]				
Variables	Odds Ratio	Interval]		Odd	$\mathbf{3 8 . 8 2}$	7.28
Male gender	$\mathbf{8 . 1 6}$	3.83	17.36	$\mathbf{1 . 2 2}$	1.15	1.30
Age, years	$\mathbf{1 . 0 6}$	1.02	1.09	$\mathbf{0 . 7 0}$	0.31	1.60
Education $\mathbf{\geq 1 2}$ years	$\mathbf{1 . 4 1}$	0.82	2.45			
Unemployed or on social security	$\mathbf{0 . 6 2}$	0.20	1.96	$\mathbf{0 . 5 2}$	0.09	3.10
Hypertension	$\mathbf{0 . 8 0}$	0.42	1.50	$\mathbf{0 . 3 5}$	0.14	0.89
Hyperlipidemia	$\mathbf{2 . 7 1}$	1.47	5.01	$\mathbf{4 . 4 9}$	1.59	12.70
Diabetes mellitus	$\mathbf{1 3 . 9 3}$	3.83	50.66	$\mathbf{1 9 2 . 4 9}$	24.82	1493.12
Cardiovascular medication Obesity	$\mathbf{0 . 7 3}$	0.37	1.45	$\mathbf{0 . 2 9}$	0.11	0.80

3

Figure 1: Determinants of underestimation (Framingham)

"The odds ratios and respective 95\% confidence intervals are presented on a log scale. Values above 1.0 (right of the dashed vertical line) present an increased risk of underestimating cardiovascular risk according to Framingham risk score (ref 8, D'Agostino and al, Circulation, 2008), while values below 1.0 (left of the
dashed line) present a decreased risk of underestimating cardiovascular risk.
All characteristics were analyzed as categorical variables, except for age in years as a continuous variable. The presence of hypertension was defined as a blood pressure $\geq 140 / 90 \mathrm{mmHg}$ in patients without diabetes and $\geq 130 / 80 \mathrm{mmHg}$ in patients with diabetes. The presence of hyperlipidemia was defined according to the level of cardiovascular risk: The threshold for patients with high, intermediate and low cardiovascular risk was $\geq 2.6 \mathrm{mmol} / \mathrm{I}, \geq 3.4 \mathrm{mmol} / \mathrm{I}$ and $\geq 4.1 \mathrm{mmol} / \mathrm{I}$, respectively. The presence of diabetes was defined by levels of fasting glucose $\geq 7 \mathrm{mmol} / \mathrm{l}$ or glucose at any time $\geq 11.1 \mathrm{mmol} / \mathrm{l}$. Obesity was defined as a body mass index $\geq 30 \mathrm{~kg} / \mathrm{m} 2$ (weight in kilograms divided by height in meters squared)."
$675 \times 342 \mathrm{~mm}(72 \times 72$ DPI)

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No		Recommendation

Cross-sectional study-If applicable, describe analytical methods taking NA
account of sampling strategy
(e) Describe any sensitivity analyses

Results			STATUS
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Done (results page 11)
		(b) Give reasons for non-participation at each stage	Done
		(c) Consider use of a flow diagram	Not provided
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	Done (results page 11)
		(b) Indicate number of participants with missing data for each variable of interest	Done page 11
		(c) Cohort study-Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	NA
		Case-control study-Report numbers in each exposure category, or summary measures of exposure	NA
		Cross-sectional study-Report numbers of outcome events or summary measures	$\begin{aligned} & \text { Done (page } \\ & 12 \text {) } \\ & \hline \end{aligned}$
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Done (page 12)
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results		Summarise key results with reference to study objectives	Done (page 13)
Limitations		Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	$\begin{aligned} & \text { Done (page } \\ & 14-15 \text {) } \\ & \hline \end{aligned}$
Interpretation		Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Done
Generalisability	21	Discuss the generalisability (external validity) of the study results	Done
Other information			
Funding		Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Done (page 17)
*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.			
Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.			

[^0]: Intermediate results were presented at SGIM meeting in Orlando, in May 2012.

