BMJ Open

Prevalence of hypertension at high altitude: cross sectional survey in Ladakh, Northern India 2007-2011

Journal:	BMJ Open		
Manuscript ID:	bmjopen-2014-007026		
Article Type:	Research		
Date Submitted by the Author:	26-Oct-2014		
Complete List of Authors:	Norboo, Tsering; Ladakh Institute of prevention, Stobdan, Tsering; University of California, Tsering, Norboo; Ladakh Institute of prevention, Angchuk, Norboo; Sonam Norboo Memorial Hospital, Tsering, Phunsog; Sonam Norboo Memorial Hospital, Ahmed, Iqbal; Sonam Norboo Memorial Hospital, Chorol, Tsewang; Sonam Norboo Memorial Hospital, Kumar Sharma, Vijay; Defence Research \& Development Organization, Defence Institute of High Altitude Research Reddy, Prasanna; Defence Research \& Development Organization, Defence Institute of Physiology \& Allied Sciences Bala Singh, Shashi; Defence Research \& Development Organization, Defence Institute of Physiology \& Allied Sciences Kimura, Yumi; Kyoto University, Center for Southeast Asian Studies Sakamoto, Ryota; Kyoto University, Hakubi Center for Advanced Research Fukutomi, Eriko; Kyoto University, Center for Southeast Asian Studies		
Ishikawa, Motonao; Tokyo Women's Medical University, Medical Center			
East, Department of Medicine			
Suwa, Kuniaki; Tokyo Women's Medical University, Medical Center East,		,	Department of Medicine
:---			
Kosaka, Yasuyuki; Kyoto University, Graduate School of Asian and African			
Area Studies			
Mitsuhiro, Nose; Kyoto University, Center for Southeast Asian Studies			
Yamaguchi, Takayoshi; National Institute for Agro-Environmental Sciences,			
Tsukihara, Toshihiro; University of Fukui, Faculty of Education and Regional			
Studies			
Matsubayashi, Kozo; Kyoto University, Center for Southeast Asian Studies			
Otsuka, Kuniaki; Tokyo Women's Medical University, Medical Center East,			
Department of Medicine			
Okumiya, Kiyohito; Research Institute for Humanity and Nature,	,		

Epidemiology of hypertension in Ladakh; socio-economic, cultural, and dietary factors play bigger role than altitude.

Tsering Norboo ${ }^{1}$, Tsering Stobdan ${ }^{2}$, Norboo Tsering ${ }^{1}$, Norboo Angchuk ${ }^{3}$, Phunsog Tsering ${ }^{3}$, Iqbal Ahmed ${ }^{3}$, Tsewang Chorol ${ }^{3}$, Vijay Kumar Sharma ${ }^{4}$, Prasanna Reddy ${ }^{5}$, Shashi Bala Singh ${ }^{5}$, Yumi Kimura ${ }^{6}$, Ryota Sakamoto ${ }^{7}$, Eriko Fukutomi ${ }^{6}$, Motonao Ishikawa ${ }^{8}$, Kuniaki Suwa ${ }^{8}$, Yasuyuki Kosaka ${ }^{9}$, Mitsuhiro Nose ${ }^{6}$, Takayoshi Yamaguchi ${ }^{10}$, Toshihiro Tsukihara ${ }^{11}$, Kozo Matsubayashi ${ }^{6}$, Kuniaki Otsuka ${ }^{7}$, Kiyohito Okumiya ${ }^{6,12}$
${ }^{1}$ Ladakh Institute of prevention, Leh-Ladakh, India
${ }^{2}$ University of California, San Diego, USA
${ }^{3}$ Sonam Norboo Memorial Hospital, Leh-Ladakh, India
${ }^{4}$ Defence Institute of High Altitude Research, Defence Research \& Development Organization, Leh-Ladakh, India
${ }^{5}$ Defence Institute of Physiology \& Allied Sciences, Defence Research \& Development
Organization, Delhi, India.
${ }^{6}$ Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan
${ }^{7}$ Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
${ }^{8}$ Department of Medicine, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
${ }^{9}$ Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, Japan
${ }^{10}$ National Institute for Agro-Environmental Sciences, Tsukuba, Japan
${ }^{11}$ Faculty of Education and Regional Studies, University of Fukui, Fukui, Japan
${ }^{12}$ Research Institute for Humanity and Nature, Kyoto, Japan

*Address for correspondence:

Tsering Norboo MD

Ladakh Institute of Prevention, Dambuchan, Leh-Ladakh. India. Pin 194101
E-mail: norboonsn@yahoo.com

Key Words: Altitude, diet, ethnicity, gender, hypertension
Total Words count: 3761

Abstract

Objective:This population-based epidemiological study was aimed to determine the prevalence of hypertension and its relation to altitude, occupation, and ethnicity in a widely dispersed (45110 square kilometre) representative group of Ladakhi in Northern India (Altitude 26004900m).

Methods: 2800 subjects (age 20-94 years) were enrolled. Systolic blood pressure $\geq 140 \mathrm{~mm} \mathrm{Hg}$ and/or diastolic blood pressure of $\geq 90 \mathrm{~mm} \mathrm{Hg}$ was defined as hypertension. Measurements included height and weight for body mass index and SpO_{2}. The rural population comprised of six subdivisions with distinct altitude, dietary and occupational pattern. Subjects in the urban area of Leh consist of four groups, i.e. Tibetan or Ladakhi migrants settled in Leh from Changthang area, Tibetan born in Leh, and native Ladakhi. Their prevalence of hypertension were compared with those in Tibetan or Ladakhi nomads in Changthang and native Ladakhi in other rural areas. The effect of altitude, occupation and rural-to-urban migration to hypertension were analysed by multiple logistic regression adjusted with age, sex and overweight.

Results: The prevalence of hypertension was highest in Tibetan migrants settled in Leh (48.5 \%) followed by Ladakhi migrants (47.2\%), Tibetans born in Leh (42.4\%) and native ladakhi in Leh (40.7\%) compared with rural Ladakhi (33.9-34.5\%). The lowest prevalence of hypertension was shown in Tibetan natives (19.7 \%) living at higher altitude (4000-4900m). The associated factors with hypertension were aging, overweight, dwelling at higher altitude, engagement in modernized sedentary occupation, and rural-to-urban migration. The effect of modernized occupation and rural-to urban migration to hypertension were stronger than that of altitude by multivariate analysis adjusted with confounding factors.

Conclusions: Socio-economic and cultural factors play bigger role than altitude for the causation of hypertension in high-altitude people in Ladakh.

Strengths and limitations of this study

-This study examined most of the socio-economic environmental factors known to influence hypertension in population of different distinct geographical subdivisions of high altitude region. -This study showed the influence of aging, overweight, modernized sedentary occupation, and rural-to-urban migration to hypertension with the confounding factor of altitude by multivariate analysis.

- This study did not look into the genetic factors, as both environmental and genetic factors may contribute to regional and racial variation of blood pressure and prevalence of hypertension.

Introduction

Systemic arterial hypertension at high Altitude has evoked great interest amongst high altitude researchers as well as in sojourners and natives. There have been conflicting reports with investigators in the Himalayas generally reporting slight increase in the blood pressure level soon after arrival at high altitude and investigators in Andes reporting no such change ${ }^{1}$. Similar contradictory views also exist between the investigators of the two high altitude continents regarding the blood pressure status of the high altitude natives. Studies done in Spiti India $(4000 \mathrm{~m})$ shows lower prevalence of hypertension. ${ }^{2}$ Andean residents are reported to have low prevalence of hypertension, ${ }^{1,3}$ while prevalence of hypertension in Tibet Lhasa was found to be higher than Han migrants residing in Tibet. ${ }^{4}$ The risk of developing hypertension may depend on socio-economic factors, geographic and racial differences. It is in the backdrop of this difference in opinion that we planned this study in Ladakh, one of the highest inhabited regions in northernmost part of India. The population of the two districts of Ladakh (Leh and Kargil) was about 270,000 (Leh: 130,000, Kargil: 140,000) in 2011 by Census. ${ }^{5} 77 \%$ of the population in Leh are Buddhist and 80% of the Kargil population are Muslim. Spread over 45110 sq km, sandwiched between Karakorum in the North and Trans-Himalaya in the south and 80% comprising of rural population with many villages high up in the mountains remaining inaccessible during winter, logistics for conducting a comprehensive epidemiological study representative of the whole population is formidable. The purpose of the study is twofold. One, to determine the prevalence of hypertension in different geographical subdivisions of this widely dispersed high altitude district and second which factors among the altitude, diet, occupation, socio-economic, and lifestyle plays predominant role in causation of hypertension.

Methods

This cross sectional epidemiological study was carried out from 2007 to 2011. A total of 2800 subjects aged between 20 to 94 years were examined. Figure 1 shows the map of Ladakh region showing all the subdivisions where the study was conducted. Two-stage stratified sampling method was used to select a representative sample of the adult population over 20 years of age. The population was first stratified as urban versus rural and then in the rural sector into six geographical areas (Sub-divisions). Each geographical sub-division has different characteristics in altitude, occupation, dietary habits and socio-economic conditions and is separate administrative blocks (Table 1). Migrants from rural population now settled in Leh town subdivision since 1970s were included in the urban population as they have adopted a life style similar to the city dwellers. A house to house survey list prepared in 2007 by Tata institute of social sciences was used to draw samples of urban population. A random table was used to draw sample for study amongst age group of 20-90 years of both gender. There were no criteria for exclusion except absentees and critical and terminal illness patients who cannot report to the study centre to complete the study. Subjects in Leh town subdivision was classified into four groups, i.e. Tibetan migrants settled in Leh from Changthang area, Ladakhi migrants settled in Leh from Changthang area, Tibetan born in Leh, and other Ladakhi people, almost of whom were born in Leh including some migrants from rural areas (non-Changthang).

The rural population was subdivided into six subdivisions as each subdivision had distinct characteristics which could influence the outcome. Leh block subdivision comprised of nearly 12 villages (Phyang, Sabu, Shey, Spituk, Stakmo, Stok, Taru, Thikse, Nyemo, Matho, Igu, and Shang) within 40 km of Leh town at an altitude varying between 3000-3700 meter and their
occupation being a mix of farming, service sector and business. Nubra subdivision is in the north of Ladakh about 120 kilometres from Leh after crossing Khardong Pass (18000 Feet) one of the highest motorable road in the world. We studied the population of seven villages (Burma, Charasa, Hundar, Kuri, Panamik, Sumur, and Tershey) here. The subdivision is located on the banks of shyok and Nubra rivers between the Karokoram and Ladakh range of mountains. People are predominantly farmers and the altitude of the valley generally is around 2600-3000 m. Kargil subdivision (Panikhar and Parkachik). This subdivision is a green belt in Kargil District and is a fertile farming area on the Suru river. However fruit trees are not cultivated here. The population is mainly Muslim and the altitude is $2600-3100 \mathrm{~m}$. We studied the population of six villages (Maita-Panikhar, Paranti-Panikhar, Panti-Panikhar, Suru, Pursai-Panikhar, and Parkachik) representative of this subdivision. Sham (Khalse) subdivision is wide-ranged in altitude $(2700-3900 \mathrm{~m})$, generally more fertile and many of the villages have fruit tree like apricot, apple, almond. We studied six representative villages (Domkhar, Phanjila, Skyurbukchan, Hinju, Ursi, and Wanla) in this subdivision. Zanskar Subdivision is a remote region on the trans Himalayan range of mountain which remains closed from the rest of the world for 6 months in a year due to heavy snow fall. Though people do farming, yet the harsh weather is not conducive for productive farming. Fresh fruit and fresh vegetable are very meagre here. People rear cattle which forms their secondary source of income by selling dairy products. Altitude of the subdivision is $3500-3900 \mathrm{~m}$. We studied ten villages (Abran, Aksho, Karsha, Kushul, Padum, Raru, Skyagam, Rantaksha, Phe, and Tungri) representative of this subdivision. Changthang subdivision is the biggest and highest plateau (Altitude 4000-4900m). The population is generally nomads moving from pasture to pasture every three months along with their cattle, live stock and lives in Yak wool woven tents. Life is very hard for them because of
the high altitude and severe cold. Farming is not possible, fresh vegetables and fresh fruits are not available to them throughout the year. Meat, barley flour and local tea are their staple diet. We studied six villages (Korzok, Hanle, Sumdo; Thadsang Karu, Rina \& Nurchan; Samad Rokchen, Merak, and Zara; Kharnak) representative of the subdivision.

The occupation was interviewed from all the subjects and classified into eight groups; nomad, farmer, housewife, manual labor, monk, sedentary worker, retired sedentary worker, and no job. Housewife consist of housewife only, and both housewife and other job (nomad, famer and so on). Sedentary worker consist of office worker, shop keeper, taxi driver, government officer, travel agent, teacher and so on.

The procedure for obtaining informed consent was approved by Institutional review board of Ladakh institute of prevention and the District ethical committee, Leh, Ladakh and Research Institute for Humanity and Nature, Kyoto, Japan. The participants attended the village medical aid centre or the village community centre. Anthropometric measurement including weight and height were obtained using standard techniques. The body mass index (BMI) was calculated using the formula, weight $(\mathrm{kg}) /(\mathrm{Height})^{2}\left(\mathrm{~m}^{2}\right)$. The blood pressure was recorded with Home BP machine (Omron Dalian co., Ltd) twice in the sitting position after resting for 5 minutes. The mean of the two readings was taken as the blood pressure of the individual. Systolic blood pressure (SBP) $\geq 140 \mathrm{~mm} \mathrm{Hg}$ and/or diastolic blood pressure (DBP) of $\geq 90 \mathrm{~mm} \mathrm{Hg}$ was defined as hypertension. The mean rate of taking antihypertensive medicine was 15.8%, but almost of their intake was not continuous. The age of the participants were confirmed with reference to a
carefully prepared cross tabulation correlating their date of birth with the animal year which the rural population always remembered and to historical sentinel events in case of elderly subjects.

Chi square test and ANOVA were conducted for the analysis of the prevalence rate of hypertension or overweight $(\mathrm{BMI} \geq 25)$, mean $\mathrm{SBP}, \mathrm{DBP}, \mathrm{BMI}$ and SpO_{2}. The associations of the prevalence rate of hypertension with the above confounding factors including altitude, aging and sex were analyzed by multiple logistic regression. SPSS version 17.0 (SPSS Inc., Chicago, IL, USA) was used for the analysis.

Results

A total of 2800 subjects aged between 20 to 94 years were examined between 2007 to 2011. Table 2 shows the subjects surveyed and prevalence rates of hypertension, mean systolic blood pressure (SBP), diastolic BP (DBP), body mass index (BMI), rate of overweight (BMI ≥ 25) and mean SpO_{2} in different age groups among male and female of total Ladakh region. We found 37.0% crude prevalence rate in total Ladakh population of both male and female. Prevalence rates of hypertension, mean SBP and DBP increased significantly with aging in both male and female. Upto the age of 60 years, males tend to have higher blood pressure than females, however above 60 years women catch up and there become no significant difference between male and female. The prevalence of overweight was highest (28.5\%) in the 40-49 age group and males had higher prevalence rate of overweight than females upto 75 years. Mean SpO_{2} decreased significantly with aging in both male and female.

Table 3 shows the crude and age-standardized prevalence rate of hypertension, mean SBP, DBP, BMI, overweight (\%) and SpO_{2} in seven subdivisions in Ladakh region in each age group. As the mean age were different among the subjects of the seven subdivisions (ANOVA; $\mathrm{p}<0.0001$), age-standardized prevalence rates were calculated.

Leh town subdivision, which is inhabited by urban population have highest crude prevalence rate of hypertension (43.4\%) with age-standardized prevalence rate (45.5\%) than any other subdivisions comprising of rural population (Crude; 24.3-39.1, Age-Standardized; 24.6-36.8) (ANOVA, $\mathrm{p}<0.0001$). Especially in the younger age group of $40-59$ years, the prevalence of hypertension was extremely highest in Leh town (41.6 \%) compared with other rural subdivisions (19.6-30.7 \%) (ANOVA, $\mathrm{p}<0.0001$). Also in the old population above 60 years the prevalence of hypertension was highest in Leh town (61.7 \%) compared with other rural subdivisions (34.1-56.0 \%)(ANOVA, $\mathrm{p}=0.0001$). There was no significant difference in prevalence of hypertension in the young age group of 20-39 among the seven subdivisions (ANOVA; ns). Prevalence rates of hypertension, mean SBP and DBP increased with aging in the all subdivisions significantly (ANOVA, $\mathrm{p}=0.0017 \sim \mathrm{p}<0.0001$) except for Kargil subdivision. Mean BMI and prevalence of overweight $(\mathrm{BMI}>25)$ were highest in the middle age group of 40-59 in Leh town subdivision. SpO_{2} showed decrease significantly with age in almost all the subdivisions.

Table 4 shows the prevalence rate of hypertension in different altitude levels in each age group. Upto the altitude of 4000 m , prevalence of hypertension rose with altitude and the subjects surveyed at altitude ranging 3500-3999m had highest prevalence rate of hypertension (40.8\%)
than the other altitude range in the all subjects (ANOVA, $\mathrm{p}<0.0001$). But in the age group of 2059, people at altitude ranging $3000-3499 \mathrm{~m}$ had higher prevalence rate of hypertension than the others. While In the age group above 60 years, upto the altitude of 5000 m prevalence rate of hypertension rose with altitude, and people at altitude ranging $4000-4499 \mathrm{~m}$ had highest prevalence rate of hypertension (56.7\%)(ANOVA, $\mathrm{p}=0.0094$).

Table 5 shows the prevalence rate of hypertension in different altitude levels in each subdivision. In the only Sham subdivision, where altitude ranging is as wide as $2700-3900 \mathrm{~m}$, the prevalence rate of hypertension increased $(29.1,36.2,46.4 \%, \mathrm{p}=0.0067$) in accord with the elevation of altitude (2500-2999, 3000-3499, 3500-3999 m) in spite of the decrease in overweight (23.3, 18.9, $12.6 \%, \mathrm{p}=0.040$) with the altitude. In the other subdivisions there was no difference in the prevalence rate of hypertension among different altitudes.

Table 6 shows the prevalence rate of hypertension and overweight in people with different occupation in each age group. In the age group of 40-59 years sedentary workers had the highest prevalence of hypertension (48.3\%) and obesity (43.9\%), while nomads (hypertension/ obesity; $19.6 \% / 22.5 \%$) and manual labors ($11.3 \% / 20.8 \%$) had lower prevalence compared with other workers (27.3-36.1\%/ 20.1-61.1\%) (ANOVA, $\mathrm{p}<0.0001$). In the other age groups there was no significant difference in the prevalence of hypertension among different occupations.

Table 7 shows the prevalence of hypertension and overweight comparing among dwellers in rural areas and Leh town and rural-to-urban migrants. The prevalence of hypertension and overweight were highest in Tibetan migrants settled in Leh (hypertension/ overweight;
48.5\%/42.3\%) followed by Ladakhi migrants (47.2\%/ 34.0\%), Tibetans born in Leh (42.4\%/ 32.4\%) and other Ladakhi (almost born in Leh with some migrantas from non-Changthang areas) ($40.7 \% / 29.4 \%$) compared with rural Ladakhi (33.9-34.5\%/ 15.3-19.0\%). The lowest prevalence of hypertension was shown in Tibetan nomads (19.7 \%/ 38.2\%) living at higher altitude (40004900 m). The percentage of engagement in occupation were shown in each subject group.

The effect of altitude, occupation and rural-to-urban migration to hypertension were analysed in the all subjects by multiple logistic regression adjusted with age, sex and overweight in model 14 (Table 8). In model 1, the altitude range of 3000-3499 (odds ratio; 1.76) and 3500-3999 (odds ratio; 1.41) were significantly associated with high prevalence of hypertension compared with 2500-2999 (m) adjusted with age, sex and obesity. But the higher range of 4000-4499 or 4500were not associated with prevalence of hypertension. In model 2, altitude (odds ratio; 1.32 for 1000 m elevation) and occupation were independently associated with the prevalence of hypertension adjusted with age, sex and overweight. Sedentary worker had the highest association (odds ratio; 3.48) followed by no job (2.44), farmer (2.32) and Retired sedentary worker (2.25) compared with nomad. In model 3, altitude became not significant with the confounding factor of migration. Rural-to-urban migration (odds ratio; Tibetan: 4.48 / Ladakhi: 5.57) and dwelling in Leh town (odds ratio; Tibetan: 10.75 / Ladakhi: 5.11) were significantly associated with high prevalence of hypertension compared with Tibetan native living in Changthang. In model 4, some occupations, rural-to-urban migration and dwelling in Leh town were significantly associated with hypertension but altitude was not significantly associated with hypertension adjusted with age, sex and overweight.

Discussion

In the current study, we found that the one third of the population is on higher risk of hypertension. As table 2 shows prevalence of hypertension tend to increase with age in both gender. Average systolic and diastolic blood pressure in men less than 60 years-of-age was found to be higher than in age-matched women. This is consistent with prevalence of adult hypertension in US population ${ }^{6}$, in south Indian Chennai urban population study ${ }^{7}$ and rural and urban communities of Rajasthan. ${ }^{8}$ After 60 years blood pressure is found to be on the higher side (not significant) in women compared to men. This may be due to hormonal changes in females during this age, ${ }^{9}$ which neglects the altitude effect on hypertension in females. This may be also due to the effect of obesity, as the prevalence of overweight in male was higher in people under 75 years compared with female. Epidemiology of hypertension on the Tibetan plateau carried out by Sun and shinfu ${ }^{4}$ however reports a higher prevalence of hypertension in females in all age group. This difference of result might be influenced by the difference of the subjects, such as sample size of much more female representation at all age group and the possible difference of the rate of obesity not shown in this report.

Though age-standardized prevalence of hypertension in Leh block (30.7\%) was not higher compared with other rural areas (24.6-36.8\%), higher prevalence of hypertension in Leh town (45.5\%) and higher prevalence of overweight in both Leh block (32.7\%) and Leh town (33.6 \%) were found compared with other rural areas (overweight; 7.8-20.2\%). The high prevalence of overweight may be brought about because Leh block is somehow a developed subdivision than the others in this study. Urbanisation can change the life style of the people and their diet habits,
which may result in obesity and high prevalence of hypertension. Dietary quantity intake assessed by our nutritionist (Y.K) by 24 hour recall method showed that energy intake was higher in Leh town (2305 Kcal in men and 1933 kcal in women) as compared to higher altitude at Changthang (2029 Kcal in men and 1802 kcal in women). Food diversity as assessed by 11item food diversity score Kyoto was higher in Leh (6.7 ± 1.8) as compared to higher altitude Changthang $(6.1 \pm 1.5))^{10,11}$ Economic conditions, traditional food culture, harsh environment with limitation of resources affects energy intake and food diversity. In urban Leh and Leh block, economic condition of the population is better. Bread, mutton, rice, pulses, vegetables, Thugpa, and eggs forms top seven of the 11-item dietary food diversity, with snacks of sweet tea, biscuits, sweet and salt containing fast food. Such a diet increases their calories resulting in high BMI and increases their salt intake contributing to the higher prevalence of hypertension. One of the village in Leh block, Stok was a study centre in the Indian component of Intersalt study ${ }^{12}$, an international study to determine the relationship of blood pressure with dietary ingredients particularly sodium and potassium. Urinary sodium [means (and SD) calculated for men aged 20-39, men aged 40-59, women aged 20-39, and women aged 40-59 and then averaged over age and sex groups] was $203.7 \mathrm{mmol} / 24$ hour (75.0) and urinary potassium was 47.0 (19.2) mmol/24 hours with poor potassium sodium ratio. Although the data are that of 1988, there is every reason to surmise that the situation persists as condition of socio-economic improvement without parallel improvement in health awareness prevails even today.

Domkhar valley in sham subdivision situated along the Domkhar stream is about 25 km long and divided into three hamlets of different altitudinal contour and diversified environment. Paba, rice, bread ,thukpa, sku, kholak, and local beverage chang are their top seven of the 11-item
diverse food. Meat is rarely available. Fresh fruit are plenty in lower Domkhar and at some places at middle Domkhar, but none at upper Domkhar due to its high altitude location (Altitude 3800 m). Prevalence of hypertension is very high here (39.1\%) among the rural subdivisions. Especially prevalence of hypertension in Sham subdivision was as high as Leh town in the old age group above 60 years (Sham:56.0\% vs Leh town: 61.7%) and in the higher altitude level of 3500-3999 (Sham:46.4\%, Leh town: 43.5\%) in spite of much lower rate of overweight in Sham (17.1\%) compared with Leh town (33.6\%). Different from people in Leh block subdivision, people in Sham had much poor availability of foods for a long time until recently and they may have vulnerability to the recent quick change of dietary habit especially in older people and those dwelling at remote area of higher altitude. We showed the high prevalence of impaired glucose tolerance (35\%) in old people in Domkhar compared with Tibetan people in Qinghai, China in the previous report. We also suggested that there may be a vulnerability to glucose intolerance brought on by recent changes in lifestyle in people with long-term backgrounds of economically traditional lifestyles with limited food resource. ${ }^{13}$

Mutton, rice, momo (mutton), thukpa (comprising of Atta, vegetable mostly dry and dry cheese) kholak (Barley flour with local tea) and paba (A mix of baley flour, wheat flour and grounded pea cooked in plain water with salt added to taste) forms the top seven of the 11-item food diversity of Changthang population in both Ladakhi and Tibetan. Taking snackes is not in their food culture nor are modern snack items available at that remote high altitude region. Relatively lower prevalence of hypertension in Changthang Tibetan natives (19.7\%) and Changthang Ladakhi (34.5\%) living at higher altitude (4000-4900m) therefore clearly indicates that altitude do not play a major role in causation of hypertension.

Zanskar subdivision located at an intermediate high altitude ($3500-3900 \mathrm{~m}$) has a population mainly concerned with farming and cattle rearing. Butter tea, local beverage chang, Thugpa, barley flour kholak, rice, pulses, and rarely meat forms the seven of the 11-item diverse food. Fresh vegetable and fruits are usually not available in Zanskar as well as in Changthang. The crude prevalence of hypertension in Zanskar appears to be high (36.3\%) but age-standardized prevalence (32.1\%) was the same as other rural areas, as the mean age was highest in Zanskar (Table 3).

Modernized sedentary workers, Ladakhi migrants, Tibetan migrants, and Tibetans in Leh town population (Altitude $3300 \mathrm{~m}-3600 \mathrm{~m}$) had higher prevalence of hypertension and increased BMI as compared to rural population. Previous reports support our hypothesis of highlanders' vulnerability to hypertension by socioeconomic globalization. A higher prevalence of hypertension was reported in Tibetans compared with immigrant Hans in the Tibetan plateau with the prevalence greater in the urban population around Lhasa than in the rural population. ${ }^{4}$ In another report a longitudinally survey was carried out in the prevalence of hypertension in people over 15 years in different ethnic groups in China in 1991 and 2002. The prevalence of hypertension in Tibetan people increased from 17.8% to 24.7%, which was the highest compared with other seven ethnic groups including Han (from 11.3% to 16.2%). ${ }^{13}$ Blood pressure in 332 highlanders in Leh (13-81 years old, mean 50 years) was compared with those in U town, Hokkaido, Japan (24-79 years, mean 56.8) in 2004. Higher diastolic blood pressure and a larger increase in blood pressure with age were shown in people living at a high altitude, as compared with Japanese living at a low altitude. ${ }^{14}$ Younger people, but not adults and elderly people,
among Tibetan immigrants from Leh to the lowlands in India were reported to have higher blood pressure compared with those living in the highlands. Measurements of adiposity had a significant effect on BP. ${ }^{16}$ The prevalence of hypertension was higher (72.7\%) in Tibetan highlanders in Shangrila (Alt: 3300 m) compared with lowlanders in Jing Hong (57.0\%) and Tosa (59.9%). There was a significant association between living in an urban area with a higher prevalence of hypertension and obesity in younger people under 60 years compared with those living in a rural area. ${ }^{17}$ Younger people may be more vulnerable to hypertension by quick modernized lifestyle change. Also in our report the higher prevalence of hypertension in Leh town (44.7\%) were shown especially in middle-aged group of 40-59 years compared with other areas (19.6-30.7\%). Tibetan people born in Leh had very high prevalence of hypertension in spite of younger age (40.2 years).

The limitation of this paper is that it did not look into the genetic factors, as both environmental and genetic factors may contribute to regional and racial variation of blood pressure and prevalence of hypertension. The strength of this study is that it looked into most of the environmental factors known to influence hypertension in population of different distinct geographical subdivisions of high altitude region. This study showed the influence of aging, overweight, modernized sedentary occupation, and rural-to-urban migration to hypertension with the confounding factor of altitude by multivariate analysis.

The conclusion reached is that like everywhere else in the world, hypertension prevalence in high altitude population has multifactorial aetiology. Our study shows that age, gender, socio-
economic factors, diet, culture, race and changing life style plays major role than altitude in prevalence of hypertension.

Acknowledgement: This study was supported in part by Tata Institute of Social Sciences Mumbai India, Research Institute for Humanity and Nature, Kyoto, Japan, DIHAR (Defence Institute of High Altitude Research), and DIPAS (Defence Institute of Physiology \& Allied Sciences). We thank all the participants for their consent and participation. We thank our LIP staff, Mr Tsering Motup, Mrs Rigzin Dolma, Miss Ishey Lhamo (Laboratory Technicians) Mrs Sherab Dolma, Miss Rinchen Dolma (Office secretaries), Miss kunznag Dolma (ECG technician and instrument upkeep staff) for their quality work while travelling to all the difficult subdivisions of Ladakh. We thank Mr Chewang Motup and Mrs Yangdu Motup of Rimo Expedition and Mr None P Wangchuk of LIP for their invaluable help in logistics.

Author contributions: Study concept and design (TN, TS, KO). Field study and data acquisition (TN, NT, NA, PT, IA, CC, VKS, PR, SBS, YK, EF, KS, MI, RS, MN, TY, TT, KO, KO). Analysis and interpretation of the data (TS, VKS, TN, YK, KM, KO) Drafting of manuscript (TN). Critical revision of manuscript (KO, TS, VKS).

Funding: TN received research support from Tata Institute of Social Sciences Mumbai India, Research Institute for Humanity and Nature, Kyoto, Japan, DIHAR (Defence Institute of High Altitude Research), and DIPAS (Defence Institute of Physiology \& Allied Sciences). KO received research support from High Altitude Project in Research Institute for Humanity and

Nature, Kyoto, Japan.

Competing interests: None.
Participants consent: Obtained.
Ethics approval: Institutional review board of Ladakh institute of prevention and the District ethical committee, Leh, Ladakh and Research Institute for Humanity and Nature, Kyoto, Japan.

Data sharing statement: No additional data are available.

References

1. Monge M. Ann. Fac de Med (Lima) 1935; 17:34.
2. DJ Dasgupta. Study of blood pressure of a high altitude community at Spiti (4000m). Indian heart Journal 1986; 38-2:134-7.
3. Baker PT. The biology of high altitude peoples. New York: Cambridge University Press, 1978:335-6.
4. Sun S. Epidemiology of Hypertension on the Tibetan Plateau. Human Biology, 1986; 58(4):507-15
5. The Census Organization of India. The Indian Census 2011, http://www.census2011.co.in/census/district/621-leh.html, http://www.census2011.co.in/census/district/622-kargil.html, 2011.
6. Burt VI, Whelton P, Rocella EJ et al. Prevalence of hypertension in the US adult population: Results of the Third National Health and Nutrition examination survey, 19881991. Hypertension 1995;25:305-13.
7. Shanthirani CS, Pradeepa R, Deepa R, et al. Prevalence and risk factors of hypertension in a selected South Indian population- The Chennai Urban Population Study. J Assoc Physicians India 2003;51:20-7.
8. Gupta R, Sharma AK, Kapoor A, et al. Epidemiological studies and treatment of hypertension. J Assoc Physicians India 1997; 45(11): 863-4.
9. Dubey RK, Oparil S, Imthurn B, et al. Sex hormones and hypertension. Cardiovasc Res 2002;53 (3) :688-708.
10. Kimura Y, Fukutomi E, Ishikawa M, et al. Radakku niokeru jyumin no eiyou sesshuryou to tounyoubyou tono kanren.[Association between total energy intake and diabetes in Ladakh](in Japanese with English abstract). Himaraya Gakushi[Himalayan Study Monograph] 2013;14:39-45.
11. Kimura Y, Matsubayashi K, Sakamoto R, et al. Koushojyumin niokeru shokutayousei to kenkoudo tono kanren. [Food Diversity and its Relation to Health of HighlandersComparison of Urban and Rural Settings in Qinghai and Ladakh] (in Japanese with English abstract). Himaraya Gakushi [Himalayan Study Monograph] 2012;13:86-93.
12. Intersalt Cooperative Research Group. Intersalt: an international study of electrolyte excretion and blood pressure. Result for 24 hour urinary sodium and potassium excretion. BMJ 1988;297;319-28.
13. Okumiya K, Sakamoto R, Kimura Y, et al. Diabetes mellitus and hypertension in elderly highlanders in Asia. J Am Geriatr Soc 2010; 58(6): 1193-5.
14. Hu YS, Yao CH, Wang WZ, et al. Survey on the prevalence of hypertension in different ethnic groups in China in 2002. Wei Sheng Yan Jiu 2006; 35: 573-5.
15. Otsuka K, Norboo T, Otsuka Y, et al. Effect of aging on blood pressure in Leh, Ladakh, a high-altitude (3524 m) community, by comparison with a Japanese town. Biomed Pharmacother 2005; 59 Suppl 1: S54-7.
16. Vikal T, Ranjan G. Blood pressure variation among Tibetans at different altitudes. Ann Hum Biol 2007;34:470-83.
17. Okumiya K, Ishine M, Kasahara Y, et al. The effects of socioeconomic globalization on health and aging in highlanders compared to lowlanders in Yunnan, China, and Kochi, Japan. Ecol Res 2011;26:1027-8.

Legend of the figure and tables

Figure 1. Map of Ladakh Region showing all the subdivisions

Table 1. Characteristics of the subdivisions
MSL, mean sea level

Table 2. Prevalence of hypertension, overweight and mean $\mathbf{S p O}_{2}$ in different age groups among male and female

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; SpO_{2}, percutaneous oxygen saturation.
p; Chi square test for the comparison of the prevalence of hypertension and BMI ≥ 25 (\%) among the 4 age groups, and ANOVA for the comparison of means of SBP, DBP, BMI and SpO_{2} among the 4 age groups.
$\# ; \mathrm{p}<0.10,,^{*} ; \mathrm{p}<0.05,^{* *} ; \mathrm{p}<0.01,{ }^{* * *} ; \mathrm{p}<0.001,{ }^{* * * * ; ~} \mathrm{p}<0.0001:$ Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25$ (\%) between male and female, and ANOVA for the comparison of mean of $\mathrm{SBP}, \mathrm{DBP}, \mathrm{BMI}$ and SpO_{2} between male and female.

Table 3. Prevalence of hypertension, mean SBP, DBP, BMI, overweight (\%) and SpO_{2} in different age groups in each subdivision
p; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25$ (\%) among the 4 age groups in each subdivision, and ANOVA for the comparison of means of SBP, DBP, BMI and SpO_{2} among the 4 age groups in each subdivision.

Table 4. Prevalence of hypertension and overweight in different altitude levels in each age group

MSL, mean sea level
p ; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25$ (\%) among the 5 altitude groups, and ANOVA for the comparison of means of SBP, DBP, BMI and SpO_{2} among the 5 altitude groups.

Table 5. Prevalence of hypertension and overweight in different altitude levels in each subdivision

MSL, mean sea level
p ; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25$ (\%) among the altitude groups.

Table 6. Prevalence of hypertension and overweight in people with different occupation in each age group.
p; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25$ (\%) among the occupation groups.

Table 7. Prevalence of hypertension and overweight comparing among dwellers in rural areas and Leh town and rural-to-urban migrants.
p ; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25$ (\%) among the seven groups, and ANOVA for the comparison of mean age among the seven groups.

Table 8. The effect of altitude, occupation and rural-to-urban migration to prevalence of hypertension by multiple logistic regression analysis adjusted with age, sex and overweight.

Model 1: The effect of altitude to prevalence of hypertension by multiple logistic regression analysis adjusted with age, sex and overweight.

Model 2: The effect of altitude and occupation to prevalence of hypertension by multiple logistic regression analysis adjusted with age, sex and overweight.

Model 3: The effect of altitude and rural-to-urban migration to prevalence of hypertension by multiple logistic regression analysis adjusted with age, sex and overweight.

Model 4: The effect of altitude, occupation and rural-to-urban migration to prevalence of hypertension by multiple logistic regression analysis adjusted with age, sex and overweight.

Table 1. Characteristics of the subdivisions

Urban/ Rural	Subdivision	Altitude (meters above MSL)	Livelihood
Urban	Leh town		
	(including colonies of migrants)	$3300-3600 \mathrm{~m}$	Urban life style
Rural	Leh block villages	$3000-3700 \mathrm{~m}$	Farmer
	Nubra	Kargil (Panikhar and parkachik)	$2600-3000 \mathrm{~m}$
	Sham	Farmer	
	Zanskar	$2700-3100 \mathrm{~m}$	Farmer
	Changthang	$3500-3900 \mathrm{~m}$	Farmer
Farmer and cattle rearing			
		$4000-4900 \mathrm{~m}$	Livestock rearing nomads

MSL, mean sea level

Table 2. Prevalence of hypertension, overweight and mean SpO_{2} in different age groups among male and female

	Age Group (years)					
	20-39	40-59	60-74	75-	p	Total
Male (n)	217	489	396	138		1240
Female (n)	288	709	448	115		1560
Total (n)	505	1198	844	253		2800
Hypertension (\%)						
Male	$18.4{ }^{\text {\# }}$	$34.2{ }^{\text {\# }}$	48.2	63.8	<0.0001	39.2*
Female	12.5	29.8	50.4	67.0	<0.0001	35.3
Total	15.1	31.6	49.4	65.2	<0.0001	37.0
SBP (mmHg)						
Male	$122.2 \pm 14.3{ }^{* * * *}$	$127.7 \pm 18.0{ }^{*}$	138.9 ± 22.6	149.0 ± 26.1	<0.0001	$132.7 \pm 21.7^{* * *}$
Female	116.0 ± 14.2	125.3 ± 19.5	138.8 ± 25.5	153.7 ± 32.8	<0.0001	129.5 ± 24.2
Total	118.7 ± 14.5	126.3 ± 18.9	138.8 ± 24.2	151.1 ± 29.4	<0.0001	130.9 ± 23.2
DBP (mmHg)						
Male	$78.5 \pm 11.4{ }^{\text {\# }}$	$83.4 \pm 12.5{ }^{* * *}$	85.2 ± 12.8	87.5 ± 14.2	<0.0001	$83.6 \pm 12.9^{* * *}$
Female	76.4 ± 11.9	80.9 ± 12.0	84.5 ± 14.9	88.4 ± 17.3	<0.0001	81.7 ± 13.7
Total	77.3 ± 11.7	81.9 ± 12.3	84.9 ± 14.0	87.9 ± 15.7	<0.0001	82.5 ± 13.4
BMI						
Male	$22.4 \pm 3.2^{* * *}$	$23.3 \pm 3.6{ }^{*}$	$23.2 \pm 3.4^{* * * *}$	22.4 ± 3.4	0.0017	$23.0 \pm 3.5^{* * *}$
Female	21.4 ± 3.3	22.8 ± 3.7	22.1 ± 3.7	22.1 ± 3.7	<0.0001	22.3 ± 3.7
Total	21.8 ± 3.3	23.0 ± 3.7	22.6 ± 3.6	22.3 ± 3.5	<0.0001	
BMI ≥ 25 (\%)						
Male	$22.6{ }^{*}$	$31.7{ }^{*}$	28.4**	19.6	0.0098	$27.7{ }^{* * *}$
Female	14.6	26.2	19.5	20.9	0.0003	21.8
Total	18.0	28.5	23.6	20.2	<0.0001	
SpO_{2} (\%)						
Male	$90.8 \pm 4.4{ }^{*}$	90.4 ± 4.6	$89.1 \pm 5.3^{* *}$	$89.0 \pm 5.4^{* *}$	<0.0001	$89.9 \pm 5.0^{\#}$
Female	91.6 ± 3.6	90.3 ± 4.8	87.7 ± 6.4	86.6 ± 6.5	<0.0001	89.5 ± 5.0
Total	91.2 ± 4.0	90.4 ± 4.7	88.3 ± 5.9	87.9 ± 6.0	<0.0001	

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; SpO_{2}, percutaneous oxygen p ; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25(\%)$ among the 4 age groups, and ANOVA for the comparison of means of $\mathrm{SBP}, \mathrm{DBP}, \mathrm{BMI}$ and SpO_{2} among the 4 age groups.
$\# ; \mathrm{p}<0.10,{ }^{*} ; \mathrm{p}<0.05,{ }^{* *} ; \mathrm{p}<0.01,{ }^{* * *} ; \mathrm{p}<0.001,{ }^{* * * * ; ~} \mathrm{p}<0.0001$: Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25(\%)$ between male and female, and ANOVA for the comparison of means of SBP, DBP, BMI and SpO_{2} between male and female.

Table 3. Prevalence of hypertension, overweight and mean SpO_{2} in different age groups in each subdivision

	Age Group (years)				Total
	20-39	40-59	60-	p	
Leh ($\mathrm{n}=1002$) (mean 51.9 ± 15.5 years)	$\mathrm{n}=223$	$\mathrm{n}=447$	$\mathrm{n}=332$		
Hypertension,\%	19.7	41.6	61.7	<0.0001	43.4 (45.5)
SBP	120.2 ± 15.8	130.0 ± 17.9	146.7 ± 24.7	<0.0001	133.3 ± 22.4
DBP	79.8 ± 12.5	85.8 ± 11.7	88.4 ± 14.0	<0.0001	85.3 ± 13.1
BMI	22.1 ± 3.4	24.1 ± 3.8	23.4 ± 4.1	<0.0001	23.4 ± 3.9
$\mathrm{BMI} \geq 25$ (\%)	20.6	40.7	32.6	<0.0001	33.6
$\mathrm{SpO}_{2}(\%)$	92.3 ± 3.1	91.7 ± 2.9	89.8 ± 5.1	<0.0001	91.2 ± 3.9
Leh block ($\mathrm{n}=349$) (mean 55.6 ± 16.1 years)	$\mathrm{n}=60$	$\mathrm{n}=127$	$\mathrm{n}=162$		
Hypertension, \%	6.7	22.0	51.2	<0.0001	33.0
(Age-Standardized Prevalence Rate,\%) SBP	115.5 ± 11.6	121.6 ± 17.0	139.6 ± 22.9	<0.0001	$\begin{gathered} (30.7) \\ 128.9 \pm 21.9 \end{gathered}$
DBP	76.1 ± 10.8	79.4 ± 10.4	83.1 ± 12.9	<0.0001	80.5 ± 12.0
BMI	22.5 ± 3.6	23.4 ± 3.4	23.2 ± 3.6	ns	23.1 ± 3.6
$\mathrm{BMI} \geq 25$ (\%)	30.0	34.6	32.1	ns	32.7
SpO_{2} (\%)	90.1 ± 5.1	90.9 ± 4.4	89.4 ± 5.3	0.035	90.0 ± 5.0
Nubra ($\mathrm{n}=247$) (mean 50.5 ± 15.5 years)	$\mathrm{n}=78$	$\mathrm{n}=88$	$\mathrm{n}=82$		
Hypertension,\% (Age-Standardized Prevalence Rate \%\%)	11.5	29.5	41.5	0.0001	27.8
(Age-Standardized Prevalence Rate,\%)					(31.0)
SBP	116.8 ± 14.0	127.6 ± 19.3	139.7 ± 25.9	<0.0001	128.2 ± 22.3
DBP	75.2 ± 10.5	82.5 ± 10.5	84.5 ± 14.4	<0.0001	80.9 ± 12.5
BMI	21.2 ± 2.8	22.0 ± 3.2	21.4 ± 3.2	ns	21.6 ± 3.1
$\mathrm{BMI} \geq 25$ (\%)	9.0	17.0	14.6	ns	13.4
SpO_{2} (\%)	91.6 ± 2.9	90.3 ± 5.1	88.8 ± 4.7	0.0003	90.2 ± 4.5
Kargil ($\mathrm{n}=115$) (mean 51.9 ± 13.5 years)	$\mathrm{n}=25$	$\mathrm{n}=46$	$\mathrm{n}=44$		
Hypertension, \%	16	19.6	34.1	ns	24.3
(Age-Standardized Prevalence Rate,\%) SBP	119.4 ± 15.5	124.2 ± 23.7	129.8 ± 21.4	ns	(24.6) 125.3 ± 21.5
DBP	74.2 ± 10.8	74.0 ± 12.6	77.1 ± 11.6	ns	75.2 ± 11.8
BMI	21.3 ± 3.3	19.6 ± 2.9	21.0 ± 2.9	0.028	20.5 ± 3.1
$\mathrm{BMI} \geq 25$ (\%)	16.0	2.2	9.1	0.108	7.8
$\mathrm{SpO}_{2}(\%)$	93.4 ± 2.4	92.2 ± 4.1	90.7 ± 6.9	0.107	91.9 ± 5.1
Sham ($\mathrm{n}=451$) (mean 56.2 ± 13.8 years)	$\mathrm{n}=62$	$\mathrm{n}=189$	$\mathrm{n}=200$		
Hypertension, \%	9.7	30.7	56.0	<0.0001	39.1
(Age-Standardized Prevalence Rate,\%)					(36.8)
SBP	115.8 ± 12.5	124.1 ± 19.9	140.2 ± 24.8	<0.0001	130.1 ± 23.3
DBP	75.6 ± 11.5	83.0 ± 12.4	87.7 ± 14.1	<0.0001	84.1 ± 13.6
BMI	21.2 ± 2.8	22.1 ± 3.2	21.9 ± 3.2	ns	21.9 ± 3.1
$\mathrm{BMI} \geq 25$ (\%)	11.3	19.6	16.6	ns	17.1
SpO^{2} (\%)	91.0 ± 3.9	90.3 ± 4.2	87.9 ± 5.4	<0.0001	89.3 ± 4.9
Zanskar (n=284) (mean 59.5 ± 12.8 years)	$\mathrm{n}=10$	$\mathrm{n}=115$	$\mathrm{n}=159$		
Hypertension,\%	20.0	25.2	45.3	0.0017	36.3
(Age-Standardized Prevalence Rate,\%)	20.0	25.2	45.3	0.0017	(32.1)
SBP	126.1 ± 14.3	122.7 ± 20.7	138.4 ± 29.4	<0.0001	131.6 ± 26.8
DBP	78.6 ± 19.3	76.8 ± 11.9	83.3 ± 15.8	0.0009	80.5 ± 14.5
BMI	23.3 ± 4.3	21.8 ± 2.7	22.0 ± 2.8	ns	22.0 ± 2.8
$\mathrm{BMI} \geq 25$ (\%)	30.0	13.9	13.8	ns	14.4
SpO_{2} (\%)	93.9 ± 2.7	88.6 ± 6.2	85.5 ± 7.3	<0.0001	87.1 ± 7.0
Changthang ($\mathrm{n}=351$) (mean 52.9 ± 13.6 years)	$\mathrm{n}=47$	$\mathrm{n}=186$	$\mathrm{n}=118$		
Hypertension,\%	14.9	22.6	51.7	<0.0001	31.3
(Age-Standardized Prevalence Rate,\%)	120.2+13.7	$124.8+17.7$	$143.0+29.6$	<0.0001	${ }_{130}^{(32.6)}$
SBP	120.2 ± 13.7	124.8 ± 17.7	143.0 ± 29.6	<0.0001	130.3 ± 23.7
DBP	74.1 ± 10.3	78.0 ± 12.0	84.3 ± 14.9	<0.0001	79.6 ± 13.3
BMI	21.6 ± 2.9	22.9 ± 3.9	22.3 ± 3.5	0.077	22.5 ± 3.6
$\mathrm{BMI} \geq 25$ (\%)	12.8	24.7	16.1	0.074	20.2
$\mathrm{SpO}_{2}(\%)$	85.8 ± 3.8	87.5 ± 6.1	85.4 ± 6.1	0.0076	86.5 ± 5.9

p ; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25(\%)$ among the 4 age groups in each subdivision, and ANOVA for the comparison of means of $\mathrm{SBP}, \mathrm{DBP}, \mathrm{BMI}$ and SpO_{2} among the 4 age groups in each subdivision.

Table 4. Prevalence of hypertension and overweight in different altitude levels in each age group

	Altitude (meters above MSL)					p
	2500-2999	3000-3499	3500-3999	4000-4499	4500-4999	
All						
n	417	428	1604	174	177	
Hypertension (\%)	27.1	37.2	40.8	30.5	32.2	<0.0001
SBP	126.3 ± 21.6	128.9 ± 19.9	132.8 ± 24.0	129.7 ± 23.9	$\begin{gathered} 130.9 \pm 23 . \\ 8 \end{gathered}$	<0.0001
DBP	80.8 ± 12.2	83.5 ± 13.1	83.3 ± 13.7	80.0 ± 13.7	79.2 ± 12.8	<0.0001
BMI	21.8 ± 3.1	22.7 ± 3.7	22.8 ± 3.6	22.4 ± 3.6	22.6 ± 3.7	<0.0001
$\mathrm{BMI} \geq 25$ (\%)	16.6	25.0	27.1	20.1	20.3	<0.0001
SpO_{2}	90.2 ± 4.7	90.6 ± 4.2	90.0 ± 5.2	86.1 ± 5.8	87.0 ± 6.2	<0.0001
20-39 years						
n	119	128	211	30	17	
Hypertension (\%)	10.1	22.7	13.3	10.0	23.5	0.038
BMI ≥ 25 (\%)	11.8	17.2	23.2	6.7	23.5	0.039
40-59 years						
n	155	197	660	77	109	
Hypertension (\%)	27.1	40.6	32.4	15.6	27.5	0.0008
$\mathrm{BMI} \geq 25$ (\%)	20.6	32.5	30.2	28.6	22.0	0.052
60- years						
n	143	103	733	67	51	
Hypertension (\%)	41.3	48.5	56.2	56.7	45.1	0.0094
$\mathrm{BMI} \geq 25$ (\%)	16.2	20.4	25.5	16.4	15.7	0.040

MSL, mean sea level
p ; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25$ (\%) among the 5 altitude groups and ANOVA for the comparison of means of SBP, DBP, BMI and SpO_{2} among the 5 altitude groups.

Table 5. Prevalence of hypertension and overweight in different altitude levels in each subdivision

	Altitude (meters above MSL)					p
	$\begin{aligned} & 2500- \\ & 2999 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3000- \\ 3499 \\ \hline \end{gathered}$	$\begin{gathered} 3500- \\ 3999 \\ \hline \end{gathered}$	$\begin{aligned} & 4000- \\ & 4499 \\ & \hline \end{aligned}$	$\begin{gathered} 4500- \\ 4999 \\ \hline \end{gathered}$	
Leh (3300-3600m)						
n		189	813			
Hypertension (\%)		42.9	43.5			ns
BMI ≥ 25 (\%)		32.8	33.7			ns
Leh block (3000-3700m)						
n		49	300			
Hypertension (\%)		28.6	33.7			ns
BMI ≥ 25 (\%)		40.8	31.3			ns
Nubra (2600-3000m)						
n	248					
Hypertension (\%)	27.8					
BMI ≥ 25 (\%)	13.7					
Kargil (2600-3100m)						
n	52	63				
Hypertension (\%)	19.2	28.6				ns
BMI ≥ 25 (\%)	15.4	1.6				0.0061
Sham (2700-3900m)						
n	117	127	207			
Hypertension (\%)	29.1	36.2	46.4			0.0067
BMI ≥ 25 (\%)	23.3	18.9	12.6			0.040
Zanskar (3500-3900m)						
n			284			
Hypertension (\%)			36.3			
BMI ≥ 25 (\%)			14.4			
Changthang (4000-4900m)						
n				174	177	
Hypertension (\%)				30.5	32.2	ns
BMI ≥ 25 (\%)				20.1	20.3	ns

MSL, mean sea level
p; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25(\%)$ among the altitude groups.

Table 6. Prevalence of hypertension and overweight in people with different occupation in each age group.

	20-39 years			40-59 years			60- years		
	n	Hypertension (\%)	$\mathrm{BMI} \geq 25$ (\%)	n	Hypertension (\%)	$\mathrm{BMI} \geq 25$ (\%)	n	Hypertension (\%)	$\begin{gathered} \mathrm{BMI} \geq 25 \\ (\%) \\ \hline \end{gathered}$
Farmer	46	16.7	7.1	206	27.3	20.1	371	54.4	15.7
Housewife	155	11.2	16.1	407	28.7	23.2	341	52.7	19.6
Manual labor	1	0	0	56	11.3	20.8	10	33.3	11.1
Monk	47	4.7	30.2	38	36.1	61.1	86	55.1	48.7
No job	40	13.5	16.2	27	36	36.0	81	60.8	34.2
Nomad	4	0	25	147	19.6	22.5	66	43.3	15.0
Retired sedentary	1	0	0	30	35.7	35.7	68	53.2	33.9
Sedentary	211	19.5	19.1	286	48.3	43.9	75	45.6	40.3
p		ns	ns		<0.0001	<0.0001		ns	<0.0001

p; Chi square test for the comparison of the prevalence of hypertension and BMI $\geq 25(\%)$ among the occupation groups.

> For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 7. Prevalence of hypertension and overweight comparing among dwellers in rural areas and Leh town and rural-tourban migrants.

n	Rural areas			Urban: Leh town				p
	Changthang		Others	Migrants from Changthang		Born in Leh	Others \#	
	Tibetan	Ladakhi	Ladakhi	Tibetan	Ladakhi	Tibetan	Ladakhi	
	76	275	1447	266	53	170	513	
age (years)	54.2 ± 11.7	52.5 ± 14.2	55.4 ± 14.8	58.8 ± 12.1	55.0 ± 12.7	40.2 ± 9.9	51.9 ± 16.5	<0.0001
Hypertension (\%)	19.7	34.5	33.9	48.5	47.2	42.4	40.7	<0.0001
BMI ≥ 25 (\%)	38.2	15.3	19.0	42.3	34.0	32.4	29.4	<0.0001
Occupation (\%)								
Nomad	89.5	50.6	0	0.8	3.8	0	0.3	
Farmer	1.3	27.3	35.2	1.1	0	0	9.1	
Housewife	9.2	10	41.8	31.4	17	11.8	31.2	
Manual labor	0	0	0	17.8	18.9	0	1.3	
Monk	0	5.2	8.4	0.4	0	0	7.17	
Sedentary	0	5.2	9.4	22.3	49.1	87.1	34.2	
Retired sedentary	0	0	3.2	1.9	1.9	0	9.1	
No job	0	1.6	1.8	24.2	9.4	1.2	8	

Others \#; Almost born in Leh with some migrants from non-Changthang areas
p ; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25(\%)$ among the seven groups, and ANOVA for the comparison of mean age among the seven groups.

Table 8. The effect of altitude, occupation and rural-to-urban migration to prevalence of hypertension by multiple logistic regression analysis adjusted with age, sex and overweight.

	Model-1			Model-2			Model-3			Model-4		
	Odds ratio	Confidence interval	p									
Male	1.03	0.87-1.21	ns	1.01	0.81-1.27	ns	1.03	0.87-1.22	ns	1.08	0.86-1.36	ns
BMI ≥ 25	2.58	2.13-3.11	<0.0001	2.58	2.12-3.15	<0.0001	2.52	2.08-3.06	<0.0001	2.54	2.07-3.12	<0.0001
Age (years)												
20-39	1.00											
40-59	2.42	1.83-3.21	<0.0001	2.89	2.13-3.91	<0.0001	2.81	2.10-3.77	<0.0001	3.07	2.24-4.21	<0.0001
60-74	5.64	4.23-7.53	<0.0001	6.71	4.88-9.24	<0.0001	6.97	5.13-9.47	<0.0001	7.32	5.23-10.24	<0.0001
75-	11.35	7.86-16.39	<0.0001	13.11	8.82-19.48	<0.0001	14.01	9.56-20.53	<0.0001	13.93	9.23-21.03	<0.0001
Altitude												
2500-2999 (m)	1.00											
3000-3499	1.76	1.28-2.40	0.0005									
3500-3999	1.41	1.09-1.82	0.0088									
4000-4499	1.00	0.67-1.53	ns									
4500-	1.18	0.79-1.78	ns									
Altitude (continuous)												
(/1000 m)				1.32	1.004-1.75	0.047	1.30	0.92-1.83	ns	1.24	0.85-1.81	ns
Occupation												
Nomad				1.00						1.00		
Farmer				2.32	1.45-3.70	0.0005				2.01	1.18-3.40	0.0096
Housewife				2.21	1.35-3.63	0.0017				1.77	1.02-3.10	0.043
Manual labor				0.75	0.32-1.75	ns				0.40	0.16-0.02	0.055
Monk				1.68	0.95-2.99	0.076				1.35	0.72-2.53	ns
Sedentary worker				3.48	2.13-5.68	<0.0001				1.87	1.05-3.32	0.033
Retired sedentary worker				2.25	1.19-4.25	0.012				1.56	0.78-3.13	ns
No job				2.44	1.36-4.39	0.0028				1.46	0.74-2.87	ns
Migration												
Tibetan in Changthang							1.00			1.00		
Ladakhi in Changthang							3.24	1.69-6.20	0.0004	2.62	1.32-5.18	0.0057
Ladakhi in other rural areas							3.50	1.69-7.23	0.0007	1.94	0.86-4.42	ns
Ladakhi in Leh							5.11	2.50-10.45	<0.0001	3.04	1.34-6.91	0.0081
Ladakhi migrant to Leh							5.57	2.27-13.65	0.0002	4.13	1.52-11.26	0.0055
Tibetan migrant to Leh							4.48	2.15-9.34	<0.0001	3.31	1.41-7.77	0.0059
Tibetan born in Leh							10.75	4.83-23.94	<0.0001	6.03	2.42-15.03	0.0001

Model 1: The effect of altitude to prevalence of hypertension by multiple logistic regression analysis adjusted with age, sex and overweight.
Model 2: The effect of altitude and occupation to prevalence of hypertension by multiple logistic regression analysis adjusted with age, sex and overweight.
Model 3: The effect of altitude and rural-to-urban migration to prevalence of hypertension by multiple logistic regression analysis adjusted with age, sex and overweight.
Model 4: The effect of altitude, occupation and rural-to-urban migration to prevalence of hypertension by multiple logistic regression analysis adjusted with age, sex and overweight.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

$209 \times 190 \mathrm{~mm}(150 \times 150$ DPI)

BMJ Open

Prevalence of hypertension at high altitude: cross sectional survey in Ladakh, Northern India 2007-2011

$\left.\begin{array}{|r|l|}\hline \text { Journal: } & \text { BMJ Open } \\ \hline \text { Manuscript ID: } & \text { bmjopen-2014-007026.R1 } \\ \hline \text { Article Type: } & \text { Research } \\ \hline \text { Date Submitted by the Author: } & \text { 14-Jan-2015 } \\ \hline \text { Complete List of Authors: } & \begin{array}{l}\text { Norboo, Tsering; Ladakh Institute of prevention, } \\ \text { Stobdan, Tsering; University of California, } \\ \text { Tsering, Norboo; Ladakh Institute of prevention, } \\ \text { Angchuk, Norboo; Sonam Norboo Memorial Hospital, } \\ \text { Tsering, Phunsog; Sonam Norboo Memorial Hospital, } \\ \text { Ahmed, Iqbal; Sonam Norboo Memorial Hospital, } \\ \text { Chorol, Tsewang; Sonam Norboo Memorial Hospital, } \\ \text { Kumar Sharma, Vijay; Defence Research \& Development Organization, } \\ \text { Defence Institute of High Altitude Research } \\ \text { Reddy, Prasanna; Defence Research \& Development Organization, Defence } \\ \text { Institute of Physiology \& Allied Sciences } \\ \text { Bala Singh, Shashi; Defence Research \& Development Organization, } \\ \text { Defence Institute of Physiology \& Allied Sciences } \\ \text { Kimura, Yumi; Kyoto University, Center for Southeast Asian Studies } \\ \text { Sakamoto, Ryota; Kyoto University, Hakubi Center for Advanced Research } \\ \text { Fukutomi, Eriko; Kyoto University, Center for Southeast Asian Studies }\end{array} \\ \text { Ishikawa, Motonao; Tokyo Women's Medical University, Medical Center } \\ \text { East, Department of Medicine } \\ \text { Suwa, Kuniaki; Tokyo Women's Medical University, Medical Center East, }\end{array}, \begin{array}{l}\text { Department of Medicine } \\ \text { Kosaka, Yasuyuki; Kyoto University, Graduate School of Asian and African } \\ \text { Area Studies } \\ \text { Mitsuhiro, Nose; Kyoto University, Center for Southeast Asian Studies } \\ \text { Yamaguchi, Takayoshi; National Institute for Agro-Environmental Sciences, } \\ \text { Tsukihara, Toshihiro; University of Fukui, Faculty of Education and Regional } \\ \text { Studies } \\ \text { Matsubayashi, Kozo; Kyoto University, Center for Southeast Asian Studies } \\ \text { Otsuka, Kuniaki; Tokyo Women's Medical University, Medical Center East, } \\ \text { Department of Medicine } \\ \text { Okumiya, Kiyohito; Research Institute for Humanity and Nature, ; Kyoto } \\ \text { University, Center for Southeast Asian Studies }\end{array}\right\}$

Prevalence of hypertension at high altitude: cross sectional survey in Ladakh, Northern India 2007-2011.

Tsering Norboo ${ }^{1}$, Tsering Stobdan ${ }^{2}$, Norboo Tsering ${ }^{1}$, Norboo Angchuk ${ }^{3}$, Phunsog Tsering ${ }^{3}$, Iqbal Ahmed ${ }^{3}$, Tsewang Chorol ${ }^{3}$, Vijay Kumar Sharma ${ }^{4}$, Prasanna Reddy ${ }^{5}$, Shashi Bala Singh ${ }^{5}$, Yumi Kimura ${ }^{6}$, Ryota Sakamoto ${ }^{7}$, Eriko Fukutomi ${ }^{6}$, Motonao Ishikawa ${ }^{8}$, Kuniaki Suwa ${ }^{8}$, Yasuyuki Kosaka ${ }^{9}$, Mitsuhiro Nose ${ }^{6}$, Takayoshi Yamaguchi ${ }^{10}$, Toshihiro Tsukihara ${ }^{11}$, Kozo Matsubayashi ${ }^{6}$, Kuniaki Otsuka ${ }^{7}$, Kiyohito Okumiya ${ }^{6,12}$
${ }^{1}$ Ladakh Institute of prevention, Leh-Ladakh, India
${ }^{2}$ University of California, San Diego, USA
${ }^{3}$ Sonam Norboo Memorial Hospital, Leh-Ladakh, India
${ }^{4}$ Defence Institute of High Altitude Research, Defence Research \& Development Organization, Leh-Ladakh, India
${ }^{5}$ Defence Institute of Physiology \& Allied Sciences, Defence Research \& Development Organization,
Delhi, India.
${ }^{6}$ Center for Southeast Asian Studies, Kyoto University, Kyoto, Japan
${ }^{7}$ Hakubi Center for Advanced Research, Kyoto University,Kyoto, Japan
${ }^{8}$ Department of Medicine, Tokyo Women’s Medical University, Medical Center East, Tokyo, Japan
${ }^{9}$ Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, Japan
${ }^{10}$ National Institute for Agro-Environmental Sciences, Ibaragi, Japan
${ }^{11}$ Faculty of Education and Regional Studies, University of Fukui, Fukui, Japan
${ }^{12}$ Research Institute for Humanity and Nature, Kyoto, Japan

*Address for correspondence:

Tsering Norboo MD
Ladakh Institute of Prevention, Dambuchan, Leh-Ladakh. India. Pin 194101
E-mail: norboonsn@yahoo.com
Key Words: Altitude, Ladakh, hypertension, lifestyle change
Total Words count: 4384

Abstract

Objective:This population-based cross-sectional epidemiological study was aimed to determine the prevalence of hypertension and its relation to wide-ranged altitude (2600-4900m) of hypoxic environment and lifestyle change in a widely dispersed (45110 square kilometre) representative group of Ladakhi in Northern India.

Methods: 2800 subjects (age 20-94 years) were enrolled. Systolic blood pressure $\geq 140 \mathrm{~mm} \mathrm{Hg}$ and/or diastolic blood pressure of $\geq 90 \mathrm{~mm} \mathrm{Hg}$ and/or taking current anti-hypertensive medicine was defined as hypertension. Height and weight for body mass index and SpO_{2} were examined. The rural population comprised of six subdivisions with distinct altitude, dietary and occupational pattern. Subjects in the urban area of Leh consist of two groups, i.e. migrants settled in Leh from Changthang nomadic area, and dwellers born in Leh. Their prevalence of hypertension were compared with the farrmers and nomads in rural areas. The effect of aging, hypoxia, dwelling in high-altitude, obesity, modernized occupation, dwelling in urban area, and rural-to-urban migration to hypertension were analysed by multiple logistic regression.

Results: The prevalence of hypertension was 37.0 \% in the all subjects and highest in migrants settled in Leh (48.3%) followed by dwellers born in Leh town (41.1\%) compared with rural areas (33.5\%). The prevalence of hypertension in nomads (all: 27.7 \%, Tibetan/ Ladakhi: 19.7/ 31.9 \%)) living at higher altitude (4000-4900m) were relatively low. The associated factors with hypertension were aging, overweight, dwelling at higher altitude, engagement in modernized sedentary occupation, dwelling in urban area, and rural-to-urban migration. The effect of lifestyle change and dwelling at high-altitude were independently associated with hypertension by multivariate analysis adjusted with confounding factors.

Conclusions: Socio-economic and cultural factors play big role with the effect of high altitude itself on high prevalence of hypertension in highlanders in Ladakh.

Strengths and limitations of this study

-This study examined most of the socio-economic environmental factors known to influence hypertension in population of different distinct geographical subdivisions of high altitude region. Though we did not carry out the nutritional survey in the all subjects but overweight was a decisive factor for hypertension according to lifestyle change.
-This study showed the influence of aging, overweight, modernized sedentary occupation, and rural-to-urban migration and dwelling in urban area to hypertension as well as the effect of altitude by multivariate analysis.

- This study did not look into the genetic factors, as both environmental and genetic factors may contribute to regional and racial variation of blood pressure and prevalence of hypertension.

Introduction

Systemic arterial hypertension at high Altitude has evoked great interest amongst high altitude researchers as well as in sojourners and natives. There have been conflicting reports with investigators generally reporting slight increase in the blood pressure level soon after arrival at high altitude ${ }^{1,2}$ and investigators reporting no such change ${ }^{3,4}$ or decrease followed by increase. ${ }^{5,6}$ There is no standard way of treating hypertension at high altitude for sojourners till now. ${ }^{7,8}$ Similar contradictory views also exist between the investigators of the two high altitude continents regarding the blood pressure status of the high altitude natives. Studies done in Spiti India (4000 m) shows lower prevalence of hypertension. ${ }^{9}$ Andean residents are reported to have low prevalence of hypertension ${ }^{1,10,11}$ while prevalence of hypertension in Tibet Lhasa was found to be higher than Han migrants residing in Tibet. ${ }^{12}$ Recent report showed prevalence of hypertension were higher in Tibetan highlanders ${ }^{13,14}$ than that of Chinese lowlanders. ${ }^{15}$

The risk of developing hypertension may depend on socio-economic factors, geographic and racial differences. It is in the backdrop of this difference in opinion that we planned this study in Ladakh, one of the highest inhabited regions in northen most part of India. The population of the two districts of Ladakh (Leh and Kargil) was about 270,000 (Leh: 130,000, Kargil: 140,000) in 2011 by Census. ${ }^{16} 77 \%$ of the population in Leh are

Buddhist and 80% of the Kargil population are Muslim. Spread over 45110 sq km, sandwiched between For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Karakorum in the North and Trans-Himalaya in the south and 80% comprising of rural population with many villages high up in the mountains remaining inaccessible during winter, logistics for conducting a comprehensive epidemiological study representative of the whole population is formidable. The purpose of the study is twofold. One, to determine the prevalence of hypertension in different geographical subdivisions of this widely dispersed high altitude district (from median high $2500 \sim$ to very high $\sim 4500 \mathrm{~m}$) and second which factors among the altitude, occupation, socio-economic, and lifestyle play predominant role in association with hypertension.

Methods

This cross-sectional epidemiological study was carried out from 2007 to 2011. A total of 2800 subjects aged between 20 to 94 years were examined. Figure 1 shows the map of Ladakh region showing all the villages in the subdivisions where the study was conducted. Two-stage stratified sampling method was used to select a representative sample of the adult population over 20 years of age. The population was first stratified as urban versus rural and then in the rural sector into six geographical areas (Sub-divisions). Each geographical subdivision has different characteristics in altitude, occupation, dietary habits and socio-economic conditions and is separate administrative blocks (Table 1). Migrants from rural population now settled in Leh town subdivision since 1970s were included in the urban population as they have adopted a life style similar to the city dwellers. Tata institute of Social Sciences Mumbay (TISS) and Ladakh Autonomous hill development council (LAHDC) conducted a house to house survey of the total population of Leh (urban population) in 2007 for developing a micro-level planning in the region. ${ }^{17}$ Since this census data was the latest, we corrected and used this population survey list (age group 20-90 years) to draw our sample of urban population for the study. The list of 2000 eligible subjects were representative of the age and gender structure of Ladakhi family and they were invited as the volunteered participants to the research center in Leh town. While in the rural villages, announcement was carried out to the all people of age group of 20-90 years of both gender in the collaboration
of health staffs and village leaders. We carried out health checks of the volunteered participants in health centers or community halls in the rural villages.

There were no criteria for exclusion except absentees and critical and terminal illness patients who cannot report to the study centre to complete the study. Subjects in Leh town subdivision was classified into two groups, i.e. migrants settled in Leh town from Changthang area, and dwellers in Leh town. The former consisted of Tibetan and Ladakhy nomads. The latter consisted of Tibetan born in Leh, and other Ladakhi people, almost of whom were born in Leh including some migrants from rural areas (non-Changthang).

The rural population was subdivided into six subdivisions as each subdivision had distinct characteristics which could influence the outcome.

Leh block subdivision comprised of nearly 12 villages within 40 km of Leh town at an altitude varying between 3000-3700 meter and their occupation being a mix of farming, service sector and business. Nubra subdivision is in the north of Ladakh about 120 kilometres from Leh after crossing Khardong Pass (5400 m) one of the highest motorable road in the world. We studied the population of seven villages here. The subdivision is located on the banks of shyok and Nubra rivers between the Karokoram and Ladakh range of mountains. People are predominantly farmers and the altitude of the valley generally is around $2600-3000 \mathrm{~m}$. Kargil subdivision (Panikhar and Parkachik). This subdivision is a green belt in Kargil District and is a fertile farming area on the Suru river. However fruit trees are not cultivated here. The population is mainly Muslim and the altitude is $2600-3100 \mathrm{~m}$. We studied the population of six villages representative of this subdivision. Sham (Khalse) subdivision is wide-ranged in altitude (2700-3900m), generally more fertile and many of the villages have fruit tree like apricot, apple, almond. We studied six representative villages in this subdivision. Zanskar Subdivision is a remote region on the trans Himalayan range of mountain which remains closed from the rest of the world for 6 months in a year due to heavy snow fall. Though people do farming, yet the harsh weather is not conducive for productive farming. Fresh fruit and fresh vegetable are very meagre here.

People rear cattle which forms their secondary source of income by selling dairy products. Altitude of the subdivision is $3500-3900 \mathrm{~m}$. We studied ten villages representative of this subdivision. Changthang subdivision is the biggest and highest plateau (Altitude $4000-4900 \mathrm{~m}$). The population is generally nomads moving from pasture to pasture every three months along with their cattle, livestock and lives in Yak wool woven tents. Life is very hard for them because of the high altitude and severe cold. Farming is not possible, fresh vegetables and fresh fruits are not available to them throughout the year. Meat, barley flour and local tea are their staple diet. We studied six villages representative of the subdivision.

The occupation was interviewed from all the subjects and classified into four groups; farmer, nomad, sedentary worker and others (housewife, manual labor, monk, retired sedentary worker, and no job). Full-time housewife was ragarded as housewife. Housewife who also work as nomad or farmer was classified as nomad or farmer. People engaged in work closely associated with urban lifestyle are classified into sedentary worker consisting of office worker, business, shop keeper, taxi driver, government officer, travel agent, teacher and so on.

The procedure for obtaining informed consent was approved by Institutional review board of Ladakh institute of prevention and the District ethical committee, Leh, Ladakh and Research Institute for Humanity and Nature, Kyoto, Japan. The participants attended the village medical aid centre or the village community centre. Anthropometric measurement including weight and height were obtained using standard techniques. The body mass index (BMI) was calculated using the formula, weight $(\mathrm{kg}) /(\operatorname{Height}(\mathrm{m}))^{2}$. Blood pressure was measured in an arm using an automatic device (HEM 7000; OMRON Life Science Co. Ltd, Kyoto, Japan) based on the cuff oscillometric principle, and its accuracy has been validated in previous studies. ${ }^{18-20}$ Oxyhemoglobin saturation (SpO2) was measured by a pulse oximeter (PULSOX-300; KONICA MINOLTA Co. Ltd, Tokyo, Japan). Blood pressure and SpO 2 were measured twice after taking at least a 5 -minute rest in a sitting position and the mean of systolic blood pressure (SBP), diastolic blood pressure (DBP) and SpO 2 were calculated. $\mathrm{SBP} \geq 140 \mathrm{~mm} \mathrm{Hg}$ and/or DBP of $\geq 90 \mathrm{~mm} \mathrm{Hg}$ and/or taking current anti-hypertensive medicine was defined as hypertension. ${ }^{21}$ The mean rate of current antihypertensive medication was 2.1%.

The age of the participants were confirmed with reference to a carefully prepared cross tabulation correlating their date of birth with the animal year which the rural population always remembered and to historical sentinel events in case of elderly subjects.

Statistical analysis
Chi square test, Student's t-test and one-way ANOVA were conducted for the analysis of the prevalence rate of hypertension or overweight ($\mathrm{BMI} \geq 25$), mean SBP , DBP , BMI and SpO_{2}. The associations of hypertension with the above confounding factors including altitude, aging, sex, obesity, occupation and dwelling area were analyzed by multiple logistic regression. Hypertension as the dependent variable was defined as $\mathrm{SBP} \geq 140 \mathrm{~mm}$ Hg and/or DBP of $\geq 90 \mathrm{~mm} \mathrm{Hg}$ and/or taking current anti-hypertensive medicine. ${ }^{21}$ SPSS version 17.0 (SPSS Inc., Chicago, IL, USA) was used for the analysis. Statistically significant level was $\mathrm{p}<0.05$.

Results

A total of 2800 subjects aged between 20 to 94 years were examined between 2007 to 2011 .
Table 2 shows the characteristics of all variables and those association with hypertension was overviewed. We found 37.0% crude prevalence rate in total Ladakh population of both male and female. Male and older people, and those with overweight had more prevalence of hypertension but SpO 2 was not associated with hypertension. Dwelling at altitude of 3000-3999 m had more prevalence of hypertension compared with altitude below 3000 or above 4000 m . People dwelling at urban area had more prevalence of hypertension compared with those in rural areas. Nomad had lower prevalence of hypertension compared with farmer or sedentary worker.

Table 3 shows the subjects surveyed and prevalence rates of hypertension, mean systolic blood pressure (SBP), diastolic $\mathrm{BP}(\mathrm{DBP})$, body mass index (BMI), rate of overweight ($\mathrm{BMI} \geq 25$) and mean SpO_{2} according to sex and age groups in Ladakh region. Prevalence rates of hypertension, mean SBP and DBP increased significantly
with aging in both male and female. Upto the age of 60 years, males tend to have higher blood pressure than females, however there become no significant difference between male and female aged 60 years or over. The prevalence of overweight was highest (28.5\%) in the 40-59 age group and males had higher prevalence rate of overweight than females upto 75 years. Mean SpO_{2} decreased significantly with aging in both male and female.

Table 4 shows the crude and age-standardized prevalence rate of hypertension, and overweight (\%) in seven subdivisions in Ladakh region in each age group. As the mean age were different among the subjects of the seven subdivisions (ANOVA; $\mathrm{p}<0.0001$), age-standardized prevalence rates were calculated.

Leh town subdivision, which is inhabited by urban population have highest crude prevalence rate of hypertension (43.4\%) with age-standardized prevalence rate (45.5\%) than any other subdivisions comprising of rural population (Crude; 24.3-39.1, Age-Standardized; 24.6-36.8) (ANOVA, $\mathrm{p}<0.0001$). Especially in the younger age group of 40-59 years, the prevalence of hypertension was extremely highest in Leh town (41.6 \%) compared with other rural subdivisions (19.6-30.7 \%) (ANOVA, $\mathrm{p}<0.0001$). Also in the old population above 60 years the prevalence of hypertension was highest in Leh town (61.7%) compared with other rural subdivisions (34.1-56.0 \%)(ANOVA, $\mathrm{p}=0.0001$). There was no significant difference in prevalence of hypertension in the young age group of 20-39 among the seven subdivisions (ANOVA; ns). Prevalence rates of hypertension increased with aging in the all subdivisions significantly (ANOVA, $\mathrm{p}<0.01 \sim \mathrm{p}<0.0001$) except for Kargil subdivision. Prevalence of overweight $(\mathrm{BMI} \geq 25)$ were highest in the middle age group of 40-59 in Leh town subdivision.

Table 5 shows the prevalence rate of hypertension in different altitude levels according to age and occupation group. Upto the altitude of 4000 m , prevalence of hypertension rose with altitude and the subjects surveyed at altitude ranging $3500-3999 \mathrm{~m}$ had highest prevalence rate of hypertension (40.8%) than the other altitude range in the all subjects (ANOVA, $\mathrm{p}<0.0001$). But in the age group of $20-59$, people at altitude ranging $3000-3499 \mathrm{~m}$ had higher prevalence rate of hypertension than the others. While In the age group of $60 \sim 74$ years, upto the
altitude of 4499 m prevalence rate of hypertension rose with altitude, and people at altitude ranging 40004499 m had highest prevalence rate of hypertension (55.8%)(ANOVA, $\mathrm{p}<0.05$). In the age group of 75 years and more, the prevalence of hypertension was highest and there was no difference among altitude levels.

According to occupation group, prevalence of hypertension rose closely with altitude remarkably in agriculture ($\mathrm{p}<0.001$), mildly in sedentary worker $(\mathrm{p}=0.09)$ and insignificantly in nomad.

Table 6 shows the prevalence rate of hypertension in different altitude levels in each subdivision. In the only Sham subdivision, where altitude ranging is as wide as $2700-3900 \mathrm{~m}$, the prevalence rate of hypertension increased (29.1, 36.2, $46.4 \%, \mathrm{p}=0.0067$) in accord with the elevation of altitude (2500-2999, 3000-3499, 35003999 m) in spite of the decrease in overweight ($23.3,18.9,12.6 \%, \mathrm{p}=0.040$) with the altitude. In the other subdivisions there was no difference in the prevalence rate of hypertension among different altitudes.

Table 7 shows the prevalence rate of hypertension and overweight in people with different occupation. In the age group of 40-59 years sedentary workers had the highest prevalence of hypertension (48.3\%) and obesity (43.9\%), while nomads (hypertension/ obesity; 19.6\%/22.5\%) and manual labors (11.3\%/20.8\%) had lower prevalence compared with other workers (27.3-36.1\%/ 20.1-61.1\%) (ANOVA, $\mathrm{p}<0.0001$). In the other age groups there was no or little significant difference in the prevalence of hypertension among different occupations.

Table 8 shows the prevalence of hypertension and overweight comparing among dwellers in rural areas and Leh town and rural-to-urban migrants. The prevalence of hypertension and overweight were highest in migrants settled in Leh (hypertension/ overweight; 48.3\%/40.9\%) followed by dwelling in Leh town (41.1\%/30.2\%) compared with rural areas ($33.5 \% / 15.3-19.3 \%$). The percentage of engagement in occupation were shown in each subject group.

There was the difference in the prevalence of hypertension between Tibetan and Ladakhi nomads. The lowest prevalence of hypertension in spite of higher prevalence of overweight was shown in Tibetan nomads ($\mathrm{n}=76$)
(hypertension/ overweight; 19.7 \%/ 39.5\%) compared with Ladakhi nomads ($\mathrm{n}=144$) ($31.9 \% / 10.4 \%$) living at higher altitude (4000-4900m).

The effect of altitude, occupation and dwelling area to hypertension were analysed in the all subjects by multiple logistic regression adjusted with age, sex and overweight in model 1-3 (Table 9). In model 1, the altitude range of 3000-3499 (odds ratio; 1.78) and 3500-3999 (odds ratio; 1.42) were significantly associated with high prevalence of hypertension compared with 2500-2999 (m) adjusted with age, sex and obesity. But the higher range of 4000-4499 or 4500- were not associated with hypertension. In model 2 with further adjustment by occupation, the altitude range of 3000-3499 (odds ratio; 1.62), 3500-3999 (odds ratio; 1.34) and the highest range of 4500- (odds ratio; 2.57) became significantly associated with hypertension. Sedentary worker had the higher association (odds ratio; 1.56) compared with farmer, while nomad had lower association (odds ratio; 0.42). In model 3 , with further adjustment by dwelling area, the altitude range of 3000-3499 (odds ratio; 1.44) and the highest altitude range of 4500- (odds ratio; 2.69) kept significant association with hypertension independent of occupation and dwelling area. People dwelling in Leh town (odds ratio; 1.92) and migrants from Changthang (odds ratio; 1.70) were significantly associated with high prevalence of hypertension compared with those dwelling in rural areas.

Discussion

In the current study, we found that the one third of the population is on higher risk of hypertension. As table 3 shows prevalence of hypertension tend to increase with age in both gender. Average systolic and diastolic blood pressure in men less than 60 years-of-age was found to be higher than in age-matched women. This is consistent with prevalence of adult hypertension in US population, ${ }^{22}$ in south Indian Chennai urban population study ${ }^{23}$ and rural and urban communities of Rajasthan. ${ }^{24}$ The cause of lower blood pressure in women below 60 years may be due to hormonal effect in females during this age, i.e. premenopausal women having a lower arterial blood pressure than age-matched men. ${ }^{25}$ This may be also due to the effect of obesity, as the prevalence of overweight
in male was higher in people under 75 years compared with female. Epidemiology of hypertension on the Tibetan plateau carried out by Sun and shinfu ${ }^{12}$ however reports a higher prevalence of hypertension in females in all age group. This difference of result might be influenced by the difference of the subjects, such as sample size of much more female representation at all age group and the possible difference of the rate of obesity not shown in this report.

Though age-standardized prevalence of hypertension in Leh block (30.7\%) was not higher compared with other rural areas (24.6-36.8\%), higher prevalence of hypertension in Leh town (45.5\%) and higher prevalence of overweight in both Leh block (32.7\%) and Leh town (33.6 \%) were found compared with other rural areas (overweight; 7.8-20.2\%). The high prevalence of overweight may be brought about because Leh block is somehow a developed subdivision than the others in this study. Urbanisation can change the life style of the people and their diet habits, which may result in obesity and high prevalence of hypertension. Dietary quantity intake assessed by our nutritionist (Y.K) by 24 hour recall method showed that energy intake was higher in Leh town (2305 Kcal in men and 1933 kcal in women) as compared to higher altitude at Changthang (2029 Kcal in men and 1802 kcal in women). Food diversity as assessed by 11-item food diversity score Kyoto was higher in Leh (6.7 ± 1.8) as compared to higher altitude Changthang (6.1 ± 1.5)..26,27,28 Economic conditions, traditional food culture, harsh environment with limitation of resources affects energy intake and food diversity. In urban Leh and Leh block, economic condition of the population is better. Bread, mutton, rice, pulses, vegetables, Thugpa, and eggs forms top seven of the 11-item dietary food diversity, with snacks of sweet tea, biscuits, sweet and salt containing fast food. Such a diet increases their calories resulting in high BMI and increases their salt intake contributing to the higher prevalence of hypertension. One of the village in Leh block, Stok was a study centre in the Indian component of Intersalt study ${ }^{29}$, an international study to determine the relationship of blood pressure with dietary ingredients particularly sodium and potassium. Urinary sodium [means (and SD) calculated for men aged 20-39, men aged 40-59, women aged 20-39, and women aged 40-59 and then averaged over age and sex groups] was $203.7 \mathrm{mmol} / 24$ hour (75.0) and urinary potassium was $47.0(19.2) \mathrm{mmol} / 24$ hours with poor potassium sodium ratio. Although the data are that of 1988, there is every reason to surmise that the
situation persists as condition of socio-economic improvement without parallel improvement in health awareness prevails even today. There is a recent report on the effect of using a low-sodium, high-potassium salt substitute for Tibetan highlanders with hypertension. ${ }^{30}$

Domkhar valley in sham subdivision situated along the Domkhar stream is about 25 km long and divided into three hamlets of different altitudinal contour and diversified environment. Paba, rice, bread ,thukpa, sku, kholak, and local beverage chang are their top seven of the 11-item diverse food. Meat is rarely available. Fresh fruit are plenty in lower Domkhar and at some places at middle Domkhar, but none at upper Domkhar due to its high altitude location (Altitude 3800m). Prevalence of hypertension is very high here (39.1\%) among the rural subdivisions. Especially prevalence of hypertension in Sham subdivision was as high as Leh town in the old age group above 60 years (Sham:56.0\% vs Leh town: 61.7\%) and in the higher altitude level of 3500-3999 (Sham:46.4\%, Leh town: 43.5\%) in spite of much lower rate of overweight in Sham (17.1\%) compared with Leh town (33.6\%). Different from people in Leh block subdivision, people in Sham had much poor availability of foods for a long time until recently and they may have vulnerability to the recent quick change of dietary habit especially in older people and those dwelling at remote area of higher altitude. We showed the high prevalence of impaired glucose tolerance (35\%) in old people in Domkhar compared with Tibetan people in Qinghai, China in the previous report. We also suggested that there may be a vulnerability to glucose intolerance brought on by recent changes in lifestyle in people with long-term backgrounds of economically traditional lifestyles with limited food resource. ${ }^{31}$

Mutton, rice, momo (mutton), thukpa (comprising of Atta, vegetable mostly dry and dry cheese) kholak (Barley flour with local tea) and paba (A mix of baley flour, wheat flour and grounded pea cooked in plain water with salt added to taste) forms the top seven of the 11-item food diversity of Changthang population in both Ladakhi and Tibetan. Taking snackes is not in their food culture nor are modern snack items available at that remote high altitude region. Relatively lower prevalence of hypertension in Changthang Tibetan natives (19.7\%) and Changthang Ladakhi (31.9\%) living at higher altitude (4000-4900m) were shown.

Zanskar subdivision located at an intermediate high altitude (3500-3900m) has a population mainly concerned with farming and cattle rearing. Butter tea, local beverage chang, Thugpa, barley flour kholak, rice, pulses, and rarely meat forms the seven of the 11 -item diverse food. Fresh vegetable and fruits are usually not available in Zanskar as well as in Changthang. The crude prevalence of hypertension in Zanskar appears to be high (36.3\%) but age-standardized prevalence (32.1%) was the same as other rural areas, as the mean age was highest in Zanskar (Table 4).

Modernized sedentary workers, rural-to urban migrants, and dwelling in urban area population (Altitude $3300 \mathrm{~m}-3600 \mathrm{~m}$) had higher prevalence of hypertension and increased BMI as compared to rural population. Previous reports support our hypothesis of highlanders' vulnerability to hypertension by socioeconomic globalization. ${ }^{12-14,31-34} \mathrm{~A}$ higher prevalence of hypertension was reported in Tibetans compared with immigrant Hans in the Tibetan plateau with the prevalence greater in the urban population around Lhasa than in the rural population. ${ }^{12}$ In another report a longitudinally survey was carried out in the prevalence of hypertension in people over 15 years in different ethnic groups in China in 1991 and 2002. The prevalence of hypertension in Tibetan people increased from 17.8% (in 1991) to 24.7% (in 2002), which was the highest compared with other seven ethnic groups including Han (from 11.3% to 16.2%). ${ }^{32}$ Recent report showed the prevalence of hypertension ($\mathrm{SBP} \geq 140$ or $\mathrm{DBP} \geq 90$ or treatment) in 1289 Tibetan highlanders (Lhasa and suburbs; 3700~4200 m) aged 18 and more were $39 \% .{ }^{13}$ Another report showed the prevalence of hypertension in 692 Tibetan highlanders (rural area of Lhasa; 3700 m) aged $30-80$ years were $37 \%\left(\mathrm{SBP} \geq 130\right.$ or $\mathrm{DBP} \geq 85$ or treatment). ${ }^{14}$ Those prevalence of hypertension were close to our result of 37% and higher than that of Chinese lowlanders aged 20 years and more (27% in 2007-2008). ${ }^{15}$ Blood pressure in 332 highlanders in Leh (13-81 years old, mean 50 years) was compared with those in U town, Hokkaido, Japan (24-79 years, mean 56.8) in 2004. Higher diastolic blood pressure and a larger increase in blood pressure with age were shown in people living at a high altitude, as compared with Japanese living at a low altitude. ${ }^{35}$ Younger people, but not adults and elderly people, among Tibetan immigrants from Leh to the lowlands in India were reported to have higher blood
pressure compared with those living in the highlands. Measurements of adiposity had a significant effect on BP. ${ }^{33}$ The prevalence of hypertension was higher (72.7\%) in Tibetan highlanders in Shangrila (Alt: 3300 m) compared with lowlanders in Jing Hong (57.0\%) and Tosa (59.9\%). There was a significant association between living in an urban area with a higher prevalence of hypertension and obesity in younger people under 60 years compared with those living in a rural area. ${ }^{34}$ Younger people may be more vulnerable to hypertension by quick modernized lifestyle change. Also in our report the higher prevalence of hypertension in Leh town (44.7\%) were shown especially in middle-aged group of 40-59 years compared with other areas (19.6-30.7\%).

The higher Odds ratio of altitudes from $3000 \mathrm{~m}-3999 \mathrm{~m}$ compared with altitude below 3000 m was shown after adjustment with age, sex and overweight. One reason may be socio-economic factor, as this altitude level was compatible with that of urban area of Leh town and urban dwellers had higher rate of hypertension and obesity by lifestyle change compared with rural dwellers. Another reason may be the effect of high altitude itself, as the dwellers in Sham subdivision at the altitude of 3000 to 3999 m had higher prevalence of hypertension in spite of lower prevalence of overweight compared with those dwelling below 3000 m . The highest prevalence in older people was shown at more higher altitude over 4000 m . Moreover prevalence of hypertension rose closely with altitude remarkably in farmer ($\mathrm{p}<0.001$), mildly in sedentary worker $(\mathrm{p}=0.09)$ and insignificantly in nomad (Table 5). That's why the higher altitude range of 3000-3999 and 4500- (odds ratio; 2.18) kept significant association with hypertension after adjustment with age, occupation or dwelling area by the multivariate analysis, which also support the effect of high altitude itself to hypertension.

The limitation of this paper is that it did not look into the genetic factors, as both environmental and genetic factors may contribute to regional and racial variation of blood pressure and prevalence of hypertension. Genetic evidence for high-altitude adaptation in Tibetan people were reported recently. ${ }^{36,37}$ Relatively lower prevalence of hypertension in spite of higher one of overweight in Changthang Tibetan natives (hypertension/ overweight; 19.7% vs $31.9 \% / 39.5 \%$ vs 10.4%) compared with Changthang Ladakhi living at higher altitude ($4000-4900 \mathrm{~m}$) were shown in our report. The association between hypoxic adaptation gene and hypertension For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
should be further studied. The strength of this study is that it looked into most of the environmental factors known to influence hypertension in population of different distinct geographical subdivisions of high altitude region. This study showed the influence of aging, overweight, modernized sedentary occupation, and rural-tourban migration and dwelling in urban area to hypertension as well as the effect of high altitude to hypertension by multivariate analysis.

The conclusion reached is that like everywhere else in the world, hypertension prevalence in high altitude population has multifactorial aetiology. Our study shows that age, gender, socio-economic factors, culture, race and changing life style plays big role with the effect of high altitude itself on high prevalence of hypertension.

Acknowledgement: This study was supported in part by Tata Institute of Social Sciences Mumbai India, Research Institute for Humanity and Nature, Kyoto, Japan, DIHAR (Defence Institute of High Altitude Research), and DIPAS (Defence Institute of Physiology \& Allied Sciences). We thank all the participants for their consent and participation. We thank our LIP staff, Mr Tsering Motup, Mrs Rigzin Dolma, Miss Ishey Lhamo (Laboratory Technicians) Mrs Sherab Dolma, Miss Rinchen Dolma (Office secretaries), Miss kunznag Dolma (ECG technician and instrument upkeep staff) for their quality work while travelling to all the difficult subdivisions of Ladakh. We thank Mr Chewang Motup and Mrs Yangdu Motup of Rimo Expedition and Mr None P Wangchuk of LIP for their invaluable help in logistics.

Author contributions: Study concept and design (TN, TS, KO). Field study and data acquisition (TN, NT, NA, PT, IA, CC, VKS, PR, SBS, YK, EF, KS, MI, RS, MN, TY, TT, KO, KO). Analysis and interpretation of the data (TS, VKS, TN, YK, KM, KO) Drafting of manuscript (TN). Critical revision of manuscript (KO, TS, VKS).

Funding: TN received research support from Tata Institute of Social Sciences Mumbai India, Research Institute
for Humanity and Nature, Kyoto, Japan, DIHAR (Defence Institute of High Altitude Research), and DIPAS (Defence Institute of Physiology \& Allied Sciences). KO received research support from High Altitude Project in Research Institute for Humanity and Nature, Kyoto, Japan.

Competing interests: None declared.
Participants consent: Obtained.
Ethics approval: Institutional review board of Ladakh institute of prevention and the District ethical committee, Leh, Ladakh and Research Institute for Humanity and Nature, Kyoto, Japan.

Data sharing statement: No additional data are available.

Reference

1. Siques P, Brito J, Banegas JR et al. Blood pressure responses in young adults first exposed to high altitude for 12 months at 3550 m . High Alt. Med. Biol 2009; 10: 329-335.
2. Parati G, Bilo G, Faini A et al. Changes in 24 h ambulatory blood pressure and effects of angiotensin II receptor blockade during acute and prolonged high-altitude exposure: a randomized clinical trial. Eur Heart J 2014; 35: 3113-3122.
3. Monge M. Ann. Fac.de Med. (Lima) 1935; 17:34.
4. Somers V.K., Mark A.L., and Abboud F.M. Potentiation of sympathetic nerve responses to hypoxia in borderline hypertensive subjects. Hypertension 1988; 11:608-612.
5. Levine B.D., Zuckerman J.H., and deFilippi C.R. Effect of high-altitude exposure in the elderly: the Tenth Mountain Division study. Circulation 1997;96:1224-1232.
6. Baggish AL,Wolfel EE, Levine BD. Cardiovascular system. In: Swenson ER, Bartsch P,eds. High Altitude:Human Adaptation to Hypoxia.NewYork: Springer; 2014. p103-140.
7. Luks AM. Should travelers with hypertension adjust their medications when traveling to high altitude?

High Alt Med Biol. 2009;10:11-15.
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
8. Velasco A, Vongpatanasin W, Levine BD. Treating hypertension at high altitude: the quest for a magic bullet continues. Eur Heart J. 2014; 35:3083-3084.
9. DJ Dasgupta. Study of blood pressure of a high altitude community at Spiti (4000m). Indian heart Journal. 1986; 38-2:134-137.
10. Baker PT. The biology of high altitude peoples. Cambridge University Press, Cambridge New York, 1978, pp 335-336.
11. Toselli S, Tarazona-Santos E, and Pettener D. Body size, composition, and blood pressure of highaltitude Quechua from the Peruvian Central Andes (Huancavelica, 3,680 m). Am J Hum Biol. 2001;13:539-547.
12. Sun, Shinfu. Epidemiology of Hypertension on the Tibetan Plateua. Human Biology, 1986; 58(4):507515.
13. ChenW, Liu Q,Wang H et al. Prevalence and risk factors of chronic kidney disease: a population study in the Tibetan population. Nephrol Dial Transplant 2011;26:1592-1599.
14. Sherpa LY, Deji, Stigum H et al. Prevalence of metabolic syndrome and common metabolic components in high altitude farmers and herdsmen at 3700 m in Tibet. High Alt Med Biol. 2013;14(1):37-44.
15. Gao Y, Chen G, Tian H et al. China National Diabetes and Metabolic Disorders Study Group. Prevalence of hypertension in China: a cross-sectional study. PLoS One 2013;8:e65938. 28
16. The Census Organization of India. The Indian Census 2011, http://www.census2011.co.in/census/district/621-leh.html, http://www.census2011.co.in/census/district/622-kargil.html, 2011.5
17. Tata institute of social sciences and Ladakh automonous hill development council. Micro level plans (MLP 2010)- Leh District, District report, p11-17. http://download.tiss.edu/fap/gyurja/gyurja_reports/mlp_combined_1.pdf.
18. Imai Y, Abe K, Sasaki S et al. Clinical evaluation of semiautomatic and automatic devices for home blood pressure measurement: comparison between cuff-oscillometric and microphone methods. J Hypertens. 1989;7:983-990.
19. Imai Y, Satoh H, Nagai K et al. Characteristics of a community-based distribution of home blood pressure in Ohasama in northern Japan. J Hypertens. 1993;11:1441-1449.
20. Okumiya K, Matsubayashi K, Wada T et al. A U-shaped association between home systolic blood pressure and four-year mortality in community-dwelling older men. J Am Geriatr Soc. 1999;47:14151421.
21. Chobanian AV, Bakris GL, Black HR et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206-1252.
22. Burt VI, Whelton P, Rocella EJ et al. Prevalence of hypertension in the US adult population: Results of the Third National Health and Nutrition examination survey, 1988-1991. Hypertension 1995;25:305313.
23. Shantirani CS, Pradeepa R, Deepa R et al. Prevalence and risk factors of hypertension in a selected south Indian population- The Chennai urban population study. J Assoc Physicians India 2003;51:20-27.
24. Gupta R, Sharma AK, kapoor A, et al. Epidemiological studies and treatment of hypertension in rural and urban community of Rajasthan. JAPI 1997; 45(11): 863-864. 8
25. Dubey RK, Oparil S, Imthurn B et al. Sex hormones and hypertension. Review. Cardiovasc Res 2002;53:688-708.
26. Kimura Y, Fukitomi E, Ishikawa M, et al. Association between Total Energy Intake and Diabetes in Ladakh. Himalayan Study Monograph. 2013;14:39-45.
27. Kimura Y, Matsubayashi K, Sakamoto R, et al. Food Diversity and its Relation to Health of Highlanders- Comparison of Urban and Rural Settings in Qinghai and Ladakh. Himalayan Study Monograph 2012; 13:86-93.
28. Kimura Y, Wada T, Ishine M et al. Food diversity is closely associated with activities of daily living, depression, and quality of life in community-dwelling elderly people. J Am Geriatr Soc. 2009;57 :922924.
29. Intersalt cooperative research group. INTERSALT: An international study of electrolyte excretion and blood pressure. Result for 24 hour urinary sodium and potassium excretion. BMJ 1988;297;319-328.
30. Zhao X, Yin X, Li X et al. Using a low-sodium, high-potassium salt substitute to reduce blood pressure among Tibetans with high blood pressure: a patient-blinded randomized controlled trial. PLoS One. 2014; 22;9(10):e110131. doi: 10.1371/journal.pone.0110131. eCollection 2014.
31. Okumiya K, Sakamoto R, Kimura Y, et al. Diabetes mellitus and hypertension in elderly highlanders in Asia. J Am Geriatr Soc 2010; 58(6): 1193-1195.
32. Hu YS, Yao CH, Wang WZ, et al. Survey on the prevalence of hypertension in different ethnic groups in China in 2002. Wei Sheng Yan Jiu 2006; 35: 573-575.
33. Vikal T, Ranjan G. Blood pressure variation among Tibetans at different altitudes. Ann Hum Biol 2007;34:470-483.
34. Okumiya K, Ishine M, Kasahara Y, et al. The effects of socioeconomic globalization on health and aging in highlanders compared to lowlanders in Yunnan, China, and Kochi, Japan. Ecol Res 2011; 26: 1027-1038.
35. Otsuka K, Norboo T, Otsuka Y, et al. Effect of aging on blood pressure in Leh, Ladakh, a high-altitude (3524 m) community, by comparison with a Japanese town. Biomed Pharmacother 2005; 59 Suppl 1: S54-57.
36. Beall CM, Cavalleri GL, Deng L. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A. 2010;107:11459-11464.
37. Simonson TS, Yang Y, Huff CD. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010;329(5987):72-75.

Legend of the figure and tables

Figure 1. Map of Ladakh Region showing all the field sites

The map of Ladakh region showing all the villages in the subdivisions where the study was conducted.

Table 1. Characteristics of the subdivisions in Ladakh region.
MSL, mean sea level

Table 2. Characteristics of all variables and those association with hypertension in Ladakh region. \#; Almost born in Leh with some migrants from no-Changthang areas.

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; SpO 2 , oxyhemoglobin saturation measured by pulse oximeter.
p ; Chi square test for the comparison of the rate of valuables, and Student's t-test for the comparison of mean of valuables between hypertension and non-hypertension.

Table 3. Prevalence of hypertension and related variables according to sex and age groups in Ladakh region.
$\mathrm{p} \ddagger$; Chi square test for the comparison of the prevalence of hypertension and BMI $\geq 25(\%)$ among the 4 age groups, and ANOVA for the comparison of mean of $\mathrm{SBP}, \mathrm{DBP}, \mathrm{BMI}$ and SpO 2 among the 4 age groups in the whole population ($\mathrm{n}=2800$).
; $\mathrm{p}<0.05,{ }^{ *} ; \mathrm{p}<0.01,{ }^{* * *} ; \mathrm{p}<0.001,{ }^{* * * * ;} \mathrm{p}<0.0001$:Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25$ (\%) and $\mathrm{SpO} 2<89$ (\%) between male and female, and Student's t-test for the comparison of mean of SBP, DBP, BMI and SpO2between male and female in each age group.

Table 4. Prevalence of hypertension and related variables in different age groups in each subdivision in Ladakh region.

MSL, mean sea level
p; Chi square test for the comparison of the prevalence of Hypertension and BMI $\geq 25(\%)$ among the 4 age groups in each subdivision.

Table 5. Prevalence of hypertension and related variables according to altitude, age and occupation in Ladakh region.
p; Chi square test for the comparison of the prevalence of Hypertension, $\mathrm{BMI} \geq 25$ (\%) and $\mathrm{SpO} 2<89$ (\%) among the 5 altitude groups.

Table 6. Prevalence of hypertension and overweight in different altitude levels in each subdivision in Ladakh region.
p ; Chi square test for the comparison of the prevalence of Hypertension and $\mathrm{BMI} \geq 25(\%)$ among the altitude groups.

Table 7. Prevalence of hypertension and overweight in people with different occupation in each age group in Ladakh region.
p ; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25(\%)$ among the 4 occupation groups; farmer, nomad, sedentary worker and others.

Table 8. Prevalence of hypertension and related variables in different dwelling areas in Ladakh region. p ; Chi square test for the comparison of the prevalence of hypertension and BMI $\geq 25(\%)$ among the 3 groups, and ANOVA for the comparison of mean age among the 3 groups.

Table 9. The effect of altitude, occupation and dwelling area to hypertension adjusted with age, sex and overweight by multiple logistic regression analysis.

Model-1: The effect of altitude to hypertension adjusted with age, sex and overweight.
Model-2: The effect of altitude and occupation to hypertension adjusted with age, sex and overweight.
Model-3: The effect of altitude, occupation and dwelling area to hypertension adjusted with age, sex and overweight.

Table 1. Characteristics of the subdivisions

Urban/ Rural	Subdivision	Altitude (meters above MSL)	Livelihood
Urban	Leh town	$3300-3600 \mathrm{~m}$	Urban life style
(including colonies of migrants)	$3000-3700 \mathrm{~m}$	Farmer	
Leh block villages	$3600-3000 \mathrm{~m}$	Farmer	
Rural	Nubra	$2600-3100 \mathrm{~m}$	Farmer
	Kargil (Panikhar and parkachik)	$2700-3900 \mathrm{~m}$	Farmer
	Sham	$3500-3900 \mathrm{~m}$	Farmer and
	Zanskar	$4000-4900 \mathrm{~m}$	Livestock rearing
	Changthang		
MSL, mean sea level			

MSL, mean sea level

Table 2. Characteristics of all variables and those association with hypertension in Ladakh region.

	All	Hypertension (+)	Hypertension (-)	P
n	2800	1037	1763	
(\%)		37.0 (35.2-38.8)	63.0 (61.2-64.8)	
Male (\%)	44.3 (41.8-46.8)	46.9 (43.9-49.9)	42.8 (40.5-45.1)	0.03
age (years)	53.8 ± 15.0	60.1 ± 13.8	50.1 ± 14.4	<0.0001
weight (kg)	55.3 ± 11.1	57.4 ± 12.2	54.1 ± 10.2	<0.0001
BMI	22.6 ± 3.6	23.6 ± 3.9	22.0 ± 3.3	<0.0001
Overweight ($\mathrm{BMI} \geq 25$) (\%)	24.4 (22.8-26.0)	34.9 (32.0-37.8)	18.2 (16.4-20.0)	<0.0001
SpO2 (\%)	89.7 ± 5.2	89.5 ± 5.4	89.8 ± 5.2	ns
SpO2 < 89 (\%)	32.5 (30.8-34.2)	32.1 (29.3-34.9)	32.7 (30.5-34.9)	ns
SBP (mmHg)	130.9 ± 23.2	153.8 ± 19.9	117.5 ± 11.7	<0.0001
DBP (mmHg)	82.5 ± 13.4	94.6 ± 11.2	75.4 ± 8.5	<0.0001
Altitude (m)	3514.4 ± 432.2	3524.6 ± 388.6	3508.3 ± 455.9	ns

	n		Hypertension $(+)$	Hypertension (-)	P
Altitude $(\mathrm{n}=2800)$			$(\%)$	$(\%)$	<0.0001
$2500-2999 \mathrm{~m}$	417		$27.1(22.8-31.4)$	$72.9(68.6-77.2)$	
$3000-3499 \mathrm{~m}$	428		$37.4(32.8-42.0)$	$62.6(58.0-67.2)$	
$3500-3999 \mathrm{~m}$	1604		$40.8(38.4-43.2)$	$59.2(56.8-61.6)$	
$4000-4499 \mathrm{~m}$	174		$30.5(23.7-37.3)$	$69.5(62.7-76.3)$	
$4500-4999 \mathrm{~m}$	177		$32.2(25.3-39.1)$	$67.8(60.9-74.7)$	

		n	Hypertension (+)	Hypertension (-)	
Dwelling area ($\mathrm{n}=2800$)			(\%)	(\%)	<0.0001
Rural areas	1798		33.5 (31.3-35.7)	66.5 (64.3-68.7)	
Leh block (3000-3700m)		349	33.0 (28.1-37.9)	67.0 (62.1-71.9)	
Nubra (2600-3000m)		248	27.8 (22.2-33.4)	72.2 (66.6-77.8)	
Kargil (2600-3100m)		115	24.3 (16.5-32.1)	75.7 (67.9-83.5)	
Sham (2700-3900m)		451	39.2 (34.7-43.7)	60.8 (56.3-65.3)	
Zanskar (3500-3900m)		284	36.3 (30.7-41.9)	63.7 (58.1-69.3)	
Changthang (4000-4900m)		351	31.3 (26.4-36.2)	68.7 (63.8-73.6)	
Urban area: Leh town (3300-3600m)	1002		43.4 (40.3-46.5)	56.6 (53.5-59.7)	
Dwellers in Leh town\#		683	41.1 (37.4-44.8)	58.9 (55.2-62.6)	
Migrants from Changthang		319	48.3 (42.8-53.8)	51.7 (46.2-57.2)	

| | n | | Hypertension $(+)$ | Hypertension $(-)$ | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Occupation $(\mathrm{n}=2800)$ | | | $(\%)$ | $(\%)$ | <0.0001 |
| Farmer | 1247 | | $36.6(33.9-39.3)$ | $63.4(60.7-66.1)$ | |
| Nomad | 220 | | $27.7(21.8-33.6)$ | $72.3(66.4-78.2)$ | |
| Sedentary worker | 549 | | $37.3(33.3-41.3)$ | $62.7(58.7-66.7)$ | |
| Others | 784 | | $40.2(36.8-43.6)$ | $59.8(56.4-63.2)$ | |
| Housewife | 325 | | $42.5(37.1-47.9)$ | $57.5(52.1-62.9)$ | |
| Manual labor | 63 | | $14.3(5.7-22.9)$ | $85.7(77.1-94.3)$ | |
| Monk | 157 | | $36.9(29.4-44.4)$ | $63.1(55.6-70.6)$ | |
| No job | 138 | | $44.2(35.9-52.5)$ | $55.8(47.5-64.1)$ | |
| Retired sedentary | 101 | | $48.5(38.8-58.2)$ | $51.5(41.8-61.2)$ | |

Mean \pm SD, \% (95\% CI)
\#; Almost born in Leh with some migrants from no-Changthang areas.
SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; SpO2, oxyhemoglobin saturation measured by pulse oximeter.
p; Chi square test for the comparison of the rate of valuables, and Student's t-test for the comparison of mean of valuables between hypertension and non-hypertension.

Table 3. Prevalence of hypertension and related variables according to sex and age groups in Ladakh region.

	Age Group (Years)						-
	20-39	40-59	60-74	75-	p^{\dagger}	All	$\stackrel{\square}{\bar{O}}$
Male (n)	217	489	396	138		1240	$\stackrel{\square}{\text { ® }}$
Female (n)	288	709	448	115		1560	0
All (n)	505	1198	844	253		2800	$\stackrel{\rightharpoonup}{0}$
Hypertension (\%)							$\stackrel{\rightharpoonup}{\omega}$
Male	18.4 (13.2-23.6)	34.2 (30.0-38.4)	48.2 (43.3-53.1)	63.8 (55.8-71.8)	<0.0001	39.2 (36.5-41.9)*	$\stackrel{\text { O}}{0}$
Female	12.5 (8.7-16.3)	29.9 (26.5-33.3)	50.4 (45.8-55.0)	67.0 (58.4-75.6)	<0.0001	35.3 (32.9-37.7)	$\stackrel{3}{0}$
All	15.1 (12.0-18.2)	31.6 (29.0-34.2)	49.4 (46.0-52.8)	65.2 (59.3-71.1)	<0.0001	37.0 (35.2-38.8)	O
SBP (mmHg)							へ
Male	$122.2 \pm 14.3^{* * *}$	$127.7 \pm 18.0^{*}$	138.9 ± 22.6	149.0 ± 26.1	<0.0001	$132.7 \pm 21.7^{* * *}$	$\stackrel{\rightharpoonup}{+}$
Female	116.0 ± 14.2	125.3 ± 19.5	138.8 ± 25.5	153.7 ± 32.8	<0.0001	129.5 ± 24.2	
All	118.7 ± 14.5	126.3 ± 18.9	138.8 ± 24.2	151.1 ± 29.4	<0.0001	130.9 ± 23.2	-0
DBP (mmHg)							\bigcirc
Male	78.5 ± 11.4	$83.4 \pm 12.5{ }^{* * *}$	85.2 ± 12.8	87.5 ± 14.2	<0.0001	$83.6 \pm 12.9{ }^{* * *}$	N
Female	76.4 ± 11.9	80.9 ± 12.0	84.5 ± 14.9	88.4 ± 17.3	<0.0001	81.7 ± 13.7	$\stackrel{\square}{0}$
All	77.3 ± 11.7	81.9 ± 12.3	84.9 ± 14.0	87.9 ± 15.7	<0.0001	82.5 ± 13.4	J
BMI							O
Male	$22.4 \pm 3.2^{* * *}$	23.3 ± 3.6 *	$23.2 \pm 3.4{ }^{* * * *}$	22.4 ± 3.4	0.0017	$23.0 \pm 3.5^{* * * *}$	O
Female	21.4 ± 3.3	22.8 ± 3.7	22.1 ± 3.7	22.1 ± 3.7	<0.0001	22.3 ± 3.7	\sum^{0}
All	21.8 ± 3.3	23.0 ± 3.7	22.6 ± 3.6	22.3 ± 3.5	<0.0001	22.6 ± 3.6	\%
BMI ≥ 25 (\%)							$\stackrel{\circ}{\circ}$
Male	22.6 (17.0-28.2) ${ }^{*}$	31.7 (27.6-35.8)*	28.4 (24.0-32.8)**	19.6 (13.0-26.2)	0.0098	27.7 (25.2-30.2)**	$\stackrel{\rightharpoonup}{\text { ® }}$
Female	14.6 (10.5-18.7)	26.2 (23.0-29.4)	19.5 (15.8-23.2)	20.9 (13.5-28.3)	0.0003	21.8 (19.8-23.8)	3
All	18.0 (14.6-21.4)	28.5 (25.9-31.1)	23.6 (20.7-26.5)	20.2 (15.3-25.1)	<0.0001	24.4 (22.8-26.0)	?
SpO2 (\%)							앙
Male	$90.8 \pm 4.4^{*}$	90.4 ± 4.6	$89.1 \pm 5.3^{* *}$	$89.0 \pm 5.4^{* *}$	<0.0001	89.9 ± 5.0	$\stackrel{\square}{\circ}$
Female	91.6 ± 3.6	90.3 ± 4.8	87.7 ± 6.4	86.6 ± 6.5	<0.0001	89.5 ± 5.0	$\stackrel{1}{3}$
All	91.2 ± 4.0	90.4 ± 4.7	88.3 ± 5.9	87.9 ± 6.0	<0.0001	89.7 ± 5.2	3
SpO2 < 89 (\%)							¢8
Male	25.7 (19.9-31.5)*	29.0 (25.0-33.0)	37.1 (32.3-41.9)**	39.4 (31.2-47.6)*	0.0029	32.2 (29.6-34.8)	\bigcirc
Female	17.7 (13.3-22.1)	27.2 (23.9-30.5)	46.3 (41.7-50.9)	52.2 (43.1-61.3)	<0.0001	32.8 (30.5-35.1)	\bigcirc
All	21.1 (17.5-24.7)	27.9 (25.4-30.4)	42.0 (38.7-45.3)	45.2 (36.1-54.3)	<0.0001	32.5 (30.8-34.2)	,

$\mathrm{p} \ddagger$; Chi square test for the comparison of the prevalence of hypertension and $\mathrm{BMI} \geq 25(\%)$ among the 4 age groups, and ANOVA for the comparison of mean of SBP, DBP, BMI and SpO2 among the 4 age groups in the whole population ($\mathrm{n}=2800$).
$* ; \mathrm{p}<0.05,{ }^{* *} ; \mathrm{p}<0.01,{ }^{* * *} ; \mathrm{p}<0.001, * * * * ; \mathrm{p}<0.0001$: Chi square test for the comparison of the prevalence of hypertension and BMI \geq $25(\%)$ and $\mathrm{SpO} 2<89(\%)$ between male and female, and Student's t-test for the comparison of mean of SBP, DBP, BMI and SpO2 between male and female in each age group.

Table 4. Prevalence of hypertension and related variables in different age groups in each subdivision in Ladakh region.

	Age Group (years)					All
	20-39	40-59	60-74	75-	p	
Leh ($\mathrm{n}=1002$) (mean 51.9 ± 15.5 years)	$\mathrm{n}=223$	$\mathrm{n}=447$	$\mathrm{n}=245$	$\mathrm{n}=87$		
Hypertension,\% (Age-Standardized Prevalence Rate,\%)	19.7 (14.5-24.9)	41.6 (37.0-46.2)	58.8 (52.6-65.0)	70.1 (60.5-79.7)	<0.0001	$\begin{aligned} & 43.4(40.3-46.5) \\ & 45.5(42.4-48.6) \end{aligned}$
$\mathrm{BMI} \geq 25$ (\%)	20.6 (15.3-25.9)	40.7 (36.1-45.3)	34.8 (28.8-40.8)	26.4 (17.1-35.7)	<0.0001	33.6 (30.7-36.5)
Leh block ($\mathrm{n}=349$) (mean 55.6 ± 16.1 years)	$\mathrm{n}=60$	$\mathrm{n}=127$	$\mathrm{n}=123$	$\mathrm{n}=39$		
Hypertension,\%	6.7 (0.4-13.0)	22.0 (14.8-29.2)	48.0 (39.2-56.8)	61.5 (46.2-76.8)	<0.0001	$\begin{aligned} & 33.0(28.1-37.9) \\ & 30.7(25.9-35.5) \end{aligned}$
$\mathrm{BMI} \geq 25$ (\%)	30.0 (18.4-41.6)	34.6 (26.3-42.9)	35.0 (26.6-43.4)	23.1 (9.9-36.3)	ns	32.7 (27.8-37.6)
Nubra ($\mathrm{n}=248$) (mean 50.5 ± 15.5 years)	$\mathrm{n}=78$	$\mathrm{n}=88$	$\mathrm{n}=64$	$\mathrm{n}=18$		
Hypertension,\%	11.5 (4.4-18.6)	29.5 (20.0-39.0)	37.5 (25.6-49.4)	55.6 (32.6-78.6)	0.0001	$27.8(22.2-33.4)$
(Age-Standardized Prevalence Rate,\%) $\text { BMI } \geq 25 \text { (\%) }$	9.0 (2.6-15.4)	17.0 (9.2-24.8)	14.1 (5.6-22.6)	16.7 (0-33.9)	ns	$\begin{array}{r} 31.0(25.2-36.8) \\ 13.4(9.2-17.6) \\ \hline \end{array}$
Kargil ($\mathrm{n}=115$) (mean 51.9 ± 13.5 years)	$\mathrm{n}=25$	$\mathrm{n}=46$	$\mathrm{n}=42$	$\mathrm{n}=2$		
	16.0 (1.6-30.4)	19.6 (8.1-31.1)	33.3 (19.0-47.6)		ns	24.3 (16.5-32.1)
(Age-Standardized Prevalence Rate, \%)	16.0 (1.6-30.4)	19.6 (8.1-31.1)	33.3 (19.0-47.6)	50.0 (0-100)	ns	24.6 (16.7-32.5)
BMI ≥ 25 (\%)	16.0 (1.6-30.4)	2.2 (0-6.4)	9.5 (0.6-18.4)	0	ns	7.8 (2.9-12.7)
Sham ($\mathrm{n}=451$) (mean 56.2 ± 13.8 years)	$\mathrm{n}=62$	$\mathrm{n}=189$	$\mathrm{n}=150$	$\mathrm{n}=50$		
Hypertension,\%	9.7 (2.3-17.1)	31.2 (24.6-37.8)	50.7 (42.7-58.7)	72.0 (59.6-84.4)	<0.0001	39.2 (34.7-43.7)
(Age-Standardized Prevalence Rate,\%)	9.7 (2.3-17.1)	31.2 (24.6-37.8)	50.7 (42.7-58.7)	72.0 (59.6-84.4)	<0.0001	36.9 (32.4-41.4)
BMI ≥ 25 (\%)	11.3 (3.4-19.2)	19.6 (13.9-25.3)	17.5 (11.4-23.6)	14.0 (4.4-23.6)	ns	17.1 (13.6-20.6)
Zanskar (n=284) (mean 59.5 ± 12.8 years)	$\mathrm{n}=10$	$\mathrm{n}=115$	$\mathrm{n}=127$	$\mathrm{n}=32$		
Hypertension,\%	20.0 (0-44.8)		42.5 (33.9-51.1)	56.3 (39.1-73.5)	<0.01	36.3 (30.7-41.9)
(Age-Standardized Prevalence Rate,\%)	20.0 (0-44.8)	25.2 (17.3-33.1)	42.5 (33.9-51.1)	56.3 (39.1-73.5)	<0.01	32.1 (26.7-37.5)
BMI ≥ 25 (\%)	30.0 (1.6-58.4)	13.9 (7.6-20.2)	13.4 (7.5-19.3)	15.6 (3.0-28.2)	ns	14.4 (10.3-18.5)
Changthang ($\mathrm{n}=351$) (mean 52.9 ± 13.6 years)	$\mathrm{n}=47$	$\mathrm{n}=186$	$\mathrm{n}=93$	$\mathrm{n}=25$		
Hypertension,\%	14.9 (4.7-25.1)		49.5 (39.3-59.72)	60.0 (40.8-79.2)	<0.0001	31.3 (26.4-36.2)
(Age-Standardized Prevalence Rate,\%)	14.9 (4.7-25.1)	22.6 (16.6-28.6)	49.5 (39.3-59.72)	60.0 (40.8-79.2)	<0.0001	32.6 (27.7-37.5)
BMI ≥ 25 (\%)	12.8 (3.2-22.4)	24.7 (18.5-30.9)	16.1 (8.6-23.6)	16.0 (1.6-30.4)	ns	20.2 (16.0-24.4)

p ; Chi square test for the comparison of the prevalence of Hypertension and BMI >25 (\%) among the 4 age groups in each subdivision.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 31

BMJ Open
Table 5. Prevalence of hypertension and related variables according to altitude, age and occupation in Ladakh region.

	Altitude (meters above MSL)					p
	2500-2999 m	3000-3499 m	3500-3999 m	4000-4499 m	4500-4999 m	
All	$\mathrm{n}=417$	$\mathrm{n}=428$	$\mathrm{n}=1604$	$\mathrm{n}=174$	$\mathrm{n}=177$	
Hypertension (\%)	27.1 (22.8-31.4)	37.4 (32.8-42.0)	40.8 (38.4-43.2)	30.5 (23.7-37.3)	32.2 (25.3-39.1)	<0.0001
SBP	126.3 ± 21.6	128.9 ± 19.9	132.8 ± 24.0	129.7 ± 23.9	130.9 ± 23.8	<0.0001
DBP	80.8 ± 12.2	83.5 ± 13.1	83.3 ± 13.7	80.0 ± 13.7	79.2 ± 12.8	<0.0001
BMI	21.8 ± 3.1	22.7 ± 3.7	22.8 ± 3.6	22.4 ± 3.6	22.6 ± 3.7	<0.0001
BMI ≥ 25 (\%)	16.6 (13.0-20.2)	25.0	27.1	20.1	20.3	<0.0001
SpO_{2}	90.2 ± 4.7	90.6 ± 4.2	90.0 ± 5.2	86.1 ± 5.8	86.7 ± 5.7	<0.0001
SpO2 <89 (\%)	26.2 (22.0-30.4)	23.6 (19.6-27.6)	28.8 (26.6-31.0)	67.1 (60.1-74.1)	68.2 (61.3-75.1)	<0.0001
20-39 years	$\mathrm{n}=119$	$\mathrm{n}=128$	$\mathrm{n}=211$	$\mathrm{n}=30$	$\mathrm{n}=17$	
Hypertension (\%)	10.1 (4.7-15.5)	22.7 (15.4-30.0)	13.3 (8.7-17.9)	10.0 (0-20.7)	23.5 (3.3-43.7)	<0.05
BMI ≥ 25 (\%)	11.8 (6.0-17.6)	17.2 (10.7-23.7)	23.2 (17.5-28.9)	6.7 (0-15.6)	23.5 (3.3-43.7)	<0.05
SpO2<89 (\%)	15.4 (8.9-21.9)	16.4 (10.0-22.8)	14.5 (9.7-19.3)	69.0 (52.4-85.6)	100.0	<0.0001
40-59 years	$\mathrm{n}=155$	$\mathrm{n}=197$	$\mathrm{n}=660$	$\mathrm{n}=77$	$\mathrm{n}=109$	
Hypertension (\%)	27.1 (20.1-34.1)	41.1 (34.2-48.0)	32.4 (28.8-36.0)	15.6 (7.5-23.7)	27.5 (19.1-35.9)	<0.001
BMI ≥ 25 (\%)	20.6 (14.2-27.0)	32.5 (26.0-39.0)	30.2 (26.7-33.7)	28.6 (18.5-38.7)	22.0 (14.2-29.8)	ns
SpO2<89 (\%)	22.6 (16.0-29.2)	24.1 (18.1-30.1)	20.5 (17.4-23.6)	55.8 (44.7-66.9)	67.9 (59.1-76.7)	<0.0001
60-74 years	$\mathrm{n}=114$	$\mathrm{n}=81$	$\mathrm{n}=556$	$\mathrm{n}=52$	$\mathrm{n}=41$	
Hypertension (\%)	38.6 (29.7-47.5)	44.4 (33.6-55.2)	52.3 (48.1-56.5)	55.8 (42.3-69.3)	41.5 (26.4-56.6)	<0.05
BMI ≥ 25 (\%)	15.9 (9.2-22.6)	23.5 (14.3-32.7)	26.5 (22.8-30.2)	15.4 (5.6-25.2)	17.1 (5.6-28.6)	ns
$\mathrm{SpO} 2<89$ (\%)	36.6 (27.8-45.4)	30.4 (20.4-40.4)	40.2 (36.1-44.3)	78.8 (67.7-89.9)	56.1 (40.9-71.3)	<0.0001
75- years	$\mathrm{n}=29$	$\mathrm{n}=22$	$\mathrm{n}=177$	$\mathrm{n}=15$	$\mathrm{n}=10$	
Hypertension (\%)	51.7 (33.5-69.9)	63.6 (43.5-83.7)	68.4 (61.6-75.2)	60.0 (35.2-84.8)	60.0 (29.6-90.4)	ns
BMI ≥ 25 (\%)	17.2 (3.5-30.9)	9.1 (0-21.1)	22.6 (16.4-28.8)	20.0 (0-40.2)	10.0 (0-28.6)	ns
$\mathrm{SpO} 2<89$ (\%)	48.3 (30.1-66.5)	36.4 (16.3-56.5)	41.5 (34.2-48.8)	80.0 (59.8-100)	70.0 (41.6-98.4)	<0.05
Farmer	$\mathrm{n}=348$	$\mathrm{n}=178$	$\mathrm{n}=620$	$\mathrm{n}=81$	$\mathrm{n}=20$	
Hypertension (\%)	27.6 (22.9-32.3)	33.7 (26.8-40.6)	41.3 (37.4-45.2)	40.7 (30.0-51.4)	55.0 (33.2-76.8)	<0.001
BMI ≥ 25 (\%)	14.7 (11.0-18.4)	12.4 (7.6-17.2)	15.6 (12.7-18.5)	19.8 (11.1-28.5)	20.0 (2.5-37.5)	ns
SpO2 <89 (\%)	23.8 (19.3-28.3)	24.4 (18.1-30.7)	41.5 (37.6-45.4)	85.0 (77.2-92.8)	94.7 (84.9-100)	<0.0001
Nomad				$\mathrm{n}=67$	$\mathrm{n}=145$	
Hypertension (\%)				22.4 (12.4-32.4)	29.0 (21.6-36.4)	ns
BMI ≥ 25 (\%)				25.4 (15.0-35.8)	17.9 (11.7-24.1)	ns
SpO2<89 (\%)				46.3 (34.4-58.2)	63.9 (56.1-71.7)	<0.05
Sedentary worker	$\mathrm{n}=33$	$\mathrm{n}=176$	$\mathrm{n}=340$			
Hypertension (\%)	21.2 (7.3-5.1)	40.9 (33.6-48.2)	38.8 (33.6-44.0)			$\mathrm{ns}(0.09)$
BMI ≥ 25 (\%)	21.2 (7.3-5.1)	35.2 (28.1-42.3)	36.6 (31.5-41.7)			
$\mathrm{SpO} 2<89$ (\%)	42.4 (25.5-59.3)	20.2 (14.3-26.1)	15.7 (11.8-19.6)			<0.001

[^0]For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 6. Prevalence of hypertension and overweight in different altitude levels in each subdivision in Ladakh region.

	Altitude (meters above MSL)					p
	2500-2999 m	3000-3499 m	3500-3999 m	4000-4499 m	4500-4999 m	
Leh (3300-3600m)						
n		189	813			
Hypertension (\%)		42.9 (35.8-50.0)	43.5 (40.1-46.9)			ns
$\mathrm{BMI} \geq 25(\%)$		$32.8 \text { (26.1-39.5) }$	$33.7 \text { (30.5-36.9) }$			ns
Leh block (3000-3700m)						
n		49	300			
Hypertension (\%)		$28.6 \text { (15.9-41.3) }$	$33.7 \text { (28.4-39.0) }$			ns
$\mathrm{BMI} \geq 25(\%)$		$40.8 \text { (35.8-63.8) }$	$31.3 \text { (26.1-36.5) }$			ns
Nubra (2600-3000m)						
n	248					
Hypertension (\%)	$27.8(22.2-33.4)$					
$\mathrm{BMI} \geq 25(\%)$	$13.7 \text { (9.4-18.0) }$					
Kargil (2600-3100m)						
n	52	63				
Hypertension (\%)	$19.2 \text { (8.5-29.9) }$	$28.6 \text { (17.4-39.8) }$				ns
$\mathrm{BMI} \geq 25(\%)$	$15.4(5.6-25.2)$	$1.6(0-4.7)$				<0.01
Sham (2700-3900m)						
n	117	127	207			
Hypertension (\%)	$29.1 \text { (20.9-37.3) }$	$37.0 \text { (28.6-45.4) }$	$46.4 \text { (39.6-53.2) }$			<0.01
$\mathrm{BMI} \geq 25(\%)$	$23.3 \text { (15.6-31.0) }$	$18.9 \text { (12.1-25.7) }$	12.6 (8.1-17.1)			<0.05
Zanskar (3500-3900m)						
n			284			
Hypertension (\%)			$36.3 \text { (30.7-41.9) }$			
$\mathrm{BMI} \geq 25(\%)$			$14.4 \text { (10.3-18.5) }$			
Changthang (4000-4900m)						
n				174	177	
Hypertension (\%)				$30.5 \text { (23.7-37.3) }$	$32.2 \text { (25.3-39.1) }$	ns
$\mathrm{BMI} \geq 25(\%)$				20.1 (14.1-26.1)	$20.3 \text { (14.4-26.2) }$	ns
MSL, mean sea level						

Table 7. Prevalence of hypertension and overweight in people with different occupation in each age group in Ladakh region.

	20-39 years			40-59 years			60-74 years			75-years		
	n	Hypertension	$\mathrm{BMI} \geq 25$									
		(\%)	(\%)		(\%)	(\%)		(\%)	(\%)		(\%)	(\%)
Farmer	171	12.9 (7.9-17.9)	12.3 (7.4-17.2)	476	26.3 (22.3-30.3)	16.0 (12.7-19.3)	465	47.3 (42.8-51.8)	15.9 (12.6-19.2)	135	65.9 (57.9-73.9)	14.1 (8.2-20.0)
Nomad	4	0	25.0 (0-67.4)	146	19.9 (13.4-26.4)	23.3 (16.4-30.2)	54	40.7 (27.6-53.8)	11.1 (2.7-19.5)	16	62.5 (38.8-86.2)	25.0 (3.8-46.2)
Sedentary worker	204	19.5 (14.1-24.9)	19.1 (13.7-24.5)	277	48.0 (42.1-53.9)	44.0 (38.2-49.8)	61	45.9 (33.4-58.4)	39.3 (27.0-51.6)	7	42.9 (6.2-79.6)	42.9 (6.2-79.6)
Others	126	10.3 (5.0-15.6)	23.8 (16.4-31.2)	299	30.8 (25.6-32.1)	36.5 (23.2-36.0)	264	55.7 (49.7-61.7)	36.4 (30.6-42.2)	95	66.3 (56.8-75.8)	26.3 (17.4-35.2)
Housewife	44	13.6 (3.5-23.7)	25.0 (12.2-37.8)	157	29.0 (21.9-36.1)	36.3 (28.8-43.8)	98	57.1 (47.3-66.9)	25.5 (16.9-34.1)	26	84.6 (70.7-98.5)	23.1 (12.1-31.7)
Manual labor	1	0	0	53	11.3 (2.8-19.8)	20.8 (9.9-31.7)	9	33.3 (2.5-64.1)	11.1 (0-31.6)	0		
Monk	43	4.7 (0-11.0)	30.2 (16.5-43.9)	36	36.1 (20.4-51.8)	61.1 (45.2-77.0)	57	56.1 (43.2-69.0)	52.6 (39.6-65.6)	21	52.4 (31.0-73.8)	38.1 (17.3-58.9)
No job	37	13.5 (2.5-24.5)	16.2 (4.3-28.1)	25	36.0 (17.2-54.8)	36.0 (17.2-54.8)	44	61.4 (47.0-75.8)	38.6 (24.2-53.0)	32	62.5 (45.7-79.3)	28.1 (12.5-43.7)
Retired sedentary	1	0	0	28	35.7 (18.0-53.4)	35.7 (18.0-53.4)	56	51.8 (38.7-64.9)	41.1 (28.2-54.0)	16	62.5 (38.8-86.2)	12.5 (0-28.7)
p		$\mathrm{ns}(0.05)$	$\mathrm{ns}(0.07)$		<0.0001	<0.0001		$\mathrm{ns}(0.07)$	<0.0001		ns	<0.05

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 8. Prevalence of hypertension and related variables in different dwelling areas in Ladakh region.

n	Rural areas	Urban: Leh town		p
		Dwellers in Leh town\#	Migrants from Changthang	
	1798	683	319	
age (years)	54.9 ± 14.6	49.0 ± 15.9	58.2 ± 12.3	<0.0001
Hypertension (\%)	33.5 (31.3-35.7)	41.1 (37.4-44.8)	48.3 (42.8-53.8)	<0.0001
$\mathrm{BMI} \geq 25$ (\%)	19.3 (17.5-21.1)	30.2 (26.8-33.6)	40.9 (35.5-46.3)	<0.0001
SpO 2	88.8 ± 5.6	90.7 ± 4.2	92.3 ± 3.2	<0.0001
SpO2<89 (\%)	40.6 (38.3-42.9)	21.7 (18.6-24.8)	10.1 (6.8-13.4)	<0.0001
Altitude (m)	3543.2 ± 534.1	3449.0 ± 86.9	3491.9 ± 39.6	<0.0001
Occupation (\%)				
Farmer	66.8 (64.6-69.0)	6.3 (4.5-8.1)	0.9 (0-1.9)	
Nomad	12.0 (10.5-13.5)	0	1.3 (0.1-2.5)	
Sedentary	8.0 (6.7-9.3)	47.0 (43.3-50.7)	26.6 (21.8-31.4)	
Others	13.2 (11.6-14.8)	46.7 (43.0-50.4)	71.2 (66.2-76.2	
Housewife	2.6 (1.9-3.3)	27.2 (23.9-30.5)	28.8 (23.8-33.8)	
Manual labor	0	0.9 (0.2-1.6)	17.9 (13.7-22.1)	
Monk	6.8 (5.6-8.0)	5.0 (3.4-6.6)	0.3 (0-0.9)	
No job	1.5 (0.9-2.1)	5.9 (4.1-7.7)	22.3 (17.7-26.9)	
Retired sedentary	2.3 (1.6-3.0)	7.8 (5.8-9.8)	1.9 (0.4-3.4)	

p ; Chi square test for the comparison of the prevalence of hypertension and BMI $\geq 25(\%)$ among the 3 groups, and ANOVA for the comparison of mean age among the 3 groups.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 9. The effect of altitude, occupation and dwelling area to hypertension adjusted with age, sex and overweight by multiple logistic regression analysis.

Model-1: The effect of altitude to hypertension adjusted with age, sex and overweight.
Model-2: The effect of altitude and occupation to hypertension adjusted with age, sex and overweight.
Model-3: The effect of altitude, occupation and dwelling area to hypertension adjusted with age, sex and overweight.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

$$
209 \times 190 \mathrm{~mm}(300 \times 300 \text { DPI })
$$

[^0]: p ; Chi square test for the comparison of the prevalence of Hypertension, $\mathrm{BMI} \geq 25(\%)$ and $\mathrm{SpO} 2<89(\%)$ among the 5 altitude groups.

