

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association of Long COVID with Mental Health Disorders: Analysis of Real-world Data

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-079267
Article Type:	Original research
Date Submitted by the Author:	27-Aug-2023
Complete List of Authors:	Zhang, Yue; The Pennsylvania State University College of Medicine, Department of Public Health Sciences Chinchilli, Vernon; The Pennsylvania State University College of Medicine, Department of Public Health Sciences Ssentongo, Paddy; Penn State Health Milton S Hershey Medical Center, Ba, Djibril M.; The Pennsylvania State University College of Medicine, Department of Public Health Sciences
Keywords:	MENTAL HEALTH, Post-Acute COVID-19 Syndrome, COVID-19, EPIDEMIOLOGIC STUDIES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright.

2	
2	
2	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว1	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
21	
52	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
10	
44	
45	
46	
47	
48	
49	
50	
20	
51	
52	
53	
54	
55	
22	
56	
57	
58	

1	Association of Long COVID with Mental Health Disorders: Analysis of Real-world Data
2	
3	Yue Zhang, MPH ¹ , Vernon M. Chinchilli, PhD ¹ , Paddy Ssentongo, MD, PhD ^{1,2*} , Djibril M. Ba,
4	PhD, MPH ^{1*}
5	*Co-Senior Authors
6	
7	¹ Penn State College of Medicine, Department of Public Health Sciences, Hershey, PA
8	² Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA
9	
10	
11	To whom correspondence should be addressed:
12	Yue Zhang, MPH
13	Department of Public Health Sciences
14	Penn State College of Medicine
15	90 Hope Drive, Hershey, PA 17033
16	E: <u>ymz5503@psu.edu</u>
17	
18	Abstract Word Count: 299 (300 max)
19	Text word Count: 4039
20	Number of Tables: 3
21	Number of Figures: 2
22	References: 22
23	Running title: Long COVID and Mental Health Disorders
24	Conflict of Interest: None
25	

60

BMJ Open

1							
2 3 4	26	Abstract					
5 6 7	27	Objectives: Mental health disorders (MHD) rank third for US adult hospitalizations. With over					
7 8 9	28	half of SARS-CoV-2 survivors experiencing 'long COVID', this study aims to assess its					
10 11 12	29	association with increased MHD risk using extensive real-world data.					
13 14	30	Design: A retrospective cohort study with propensity score matching was conducted. We used					
15 16 17	31	the international classification of 10th revision (ICD-10) codes to identify individuals with long					
18 19	32	COVID status and COVID histories. Multivariable stratified Cox proportional hazards regression					
20 21 22	33	analysis was conducted to determine the association of long COVID status with MHD.					
23 24	34	Setting: Data was sourced from the TriNetX database, spanning records from 1 October 2021 to					
25 26 27	35	16 April 2023.					
28 29 20	36	Participants: Two distinct cohorts were established: one comprising individuals diagnosed with					
30 31 32	37	long COVID and another comprising individuals with no history of long COVID or COVID-19.					
33 34 35	38	At the start of the study, none of the participants had a recorded mental health disorder (MHD).					
35 36 37	39	Primary and secondary outcome measures: The main outcome of interest was a composite					
38 39 40	40	diagnosis of MHD. Secondary outcomes were individual mental health conditions.					
41 42	41	Results: The study included 43,060 control participants without long COVID and 4,306 long					
43 44 45	42	COVID participants, demonstrating well-balanced distribution across all covariates. After					
46 47	43	adjusting for 4 demographic factors and 10 comorbidities, long COVID was associated with					
48 49	44	MHD (aHR, 2.60; 95% CI, 2.37, 2.85). In subgroup analysis, long COVID was associated with					
50 51 52	45	major depression disorder (aHR, 3.36; 95% CI, 2.82, 4.00) and generalized anxiety disorder					
53 54	46	(aHR, 3.44; 95% CI, 2.99, 3.96). When individual MHD diagnosis was examined as outcomes,					
55 56 57	47	depression and anxiety were strongly associated with a 3-fold increased risk of MHD.					
58							

- 3 4	48	Conclusions: In this retrospective large real-world cohort study, long COVID was associated					
5 6	49	with an increased risk of incident MHD. Considering the vast number of 'long haulers', the MHD					
7 8	50	impact is significant. Enhanced MHD screening among COVID-19 survivors should be a					
9 10 11	51	priority.					
12 13 14	52						
15 16 17	53	Strengths and limitations of this study					
18 19 20	54	• Large sample size of patients with 4,306 long COVID patients and 43,060 controls were					
21 22	55	included. We were able to control for confounders and comorbidities, thereby minimizing					
23 24	56	bias.					
25 26 27	57	• To the best of our knowledge, it is the first large national-real-world analysis to examine					
28 29	58	the association between long COVID and MHD using a comprehensive propensity score					
30 31	59	matching approach.					
32 33 34	60	• While this observational study draws from US TriNetX data, direct causality cannot be					
35 36	61	established. Nonetheless, our methodology aimed to address and exclude potential					
37 38	62	confounders and timing-related issues.					
39 40 41	63	• We acknowledge that electronic health record databases can misclassify patients based on					
42 43	64	misreporting or underreporting of diagnoses codes or medications.					
44 45	65	• Some control group members might have undiagnosed mild or asymptomatic COVID-19,					
46 47 48	66	as they weren't tested. This non-differential exposure misclassification could lead to					
49 50	67	underestimating the strength of the COVID-19 and MHD association.					
51 52	68						
53 54 55 56 57	69	Keywords: Mental Health Disorders; long COVID; real-world data; US					
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

1 2

or peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

70	Introduction
71	The coronavirus disease-2019 (COVID-19) pandemic, caused by severe acute respiratory
72	syndrome coronavirus-2 (SARS-CoV-2), has profoundly impacted individual health and well-
73	being globally ¹ . While the effects of COVID-19 vary widely, from asymptomatic or mild
74	disease to multi-organ failure and death, most people make a full recovery from the virus.
75	Unfortunately, however, a substantial proportion of survivors continue to report persistent
76	symptoms often referred to as post-acute sequelae of COVID-19 (PASC) in the literature or
77	"long COVID," presenting a significant and ongoing public health crisis ² . A recent meta-analysis
78	found an increased incidence of anxiety, depression, and appetite problems among post-COVID-
79	19 infected children, compared to those without a previous infection ³ .
80	Mental health disorders (MHD) such as depression and anxiety disorders are the third leading
81	common cause of hospitalization in the US ^{4,5} . In 2020, nearly 21 million American adults (8.4%
82	of the adult population) suffer from a major depressive disorder ⁶ .
83	Previous studies that have assessed the associations between individuals with COVID-19 and
84	MHD were limited to special populations such as children or US veterans ⁷ . Studies so far have
85	examined the impact of the pandemic on the incidence and prevalence of mental health
86	disorders. However, the direct effect of COVID-19 among survivors is scarce and has not been
87	delineated in diverse populations using large real-world data. Therefore, in this study, we aim to
88	use very large real-world data to estimate the effect of long COVID using newly developed
89	diagnosis codes on incident MHD. We hypothesize that since long COVID presents with an
90	array of symptoms that affect daily quality of life, including sleep disorders, chronic dyspnea,
91	and myalgia/arthralgia, it could have a negative impact on mental health outcomes.
92	

93 Methods

94 Data source

9 10	95	This analysis was conducted using a TriNetX database with data extracted from October 1st,
11 12	96	2020 to April 16th, 2023. TriNetX serves as a federated, multi-institutional health research
13 14 15	97	network that compiles de-identified data derived from Electronic Health Records (EHRs) across
16 17	98	a broad spectrum of healthcare organizations. These include academic medical centers,
18 19	99	specialized physician practices, and community hospitals, collectively encompassing over 250
20 21 22	100	million patients from more than 120 healthcare organizations (HCOs). This vast network enables
22 23 24	101	longitudinal patient-level healthcare claims tracking, and delivers a wealth of data including, but
25 26	102	not limited to, demographic attributes (age, race, gender, geographic location), medical histories,
27 28	103	and prescription details. TriNetX is compliant with the Health Insurance Portability and
29 30 31	104	Accountability Act (HIPAA), the US federal law which protects the privacy and security of
32 33	105	healthcare data, and any additional data privacy regulations applicable to the contributing HCO ⁸ .
34 35 36	106	Cohort derivation and assessment of exposure
30 37 38	107	Long COVID patients, aged greater than 18, were identified from October 1, 2021, to April 16,
39 40	108	2023, utilizing the International Classification of Diseases, Tenth Revision, Clinical
41 42	109	Modification (ICD-10-CM) codes (Supplemental Table 1). The Centers for Disease Control and
43 44 45	110	Prevention (CDC) officially characterizes long COVID as a post-COVID condition manifesting
46		
47	111	in patients with a confirmed or probable history of SARS-CoV-2 infection. The corresponding
47 48 49	111 112	in patients with a confirmed or probable history of SARS-CoV-2 infection. The corresponding ICD-10-CM code for this condition became effective on October 1, 2021 ⁹ .
47 48 49 50 51 52	111 112 113	in patients with a confirmed or probable history of SARS-CoV-2 infection. The corresponding ICD-10-CM code for this condition became effective on October 1, 2021 ⁹ . We identified 9,034 participants with long COVID and 500,002 random participants without

Page 7 of 24

BMJ Open

long COVID group were the diagnosis dates of long COVID, and random pseudo index dates were assigned to the non-long COVID group between Oct 1st, 2021, and the maximum recorded dates for each participant, using data drawn from diagnosis records, lab test results, and medication records. None of the participants had a history of MHD prior to the index dates, and those in the non-long COVID group had no record of long COVID or COVID-19 diagnoses or testing positive for SARS-CoV-2. After all the exclusions (Figure 1), we identified a total of 4,306 eligible participants with long COVID and 186,903 eligible participants without COVID and without long COVID. The nearest-neighbor propensity score matching methods were further utilized at a 1:10 matching ratio, with the "without replacement" sampling method. This led to the final selection of 4,306 participants with long COVID and a corresponding control group of 43,060 participants for in-depth analysis. (Figure 1). This study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline for cohort studies¹⁰. No.

128 Assessment of outcomes

The primary outcome was the composite of any MHD, defined using ICD-10 codes for mental health diagnosis or substance use disorders as done in previous studies (Supplemental Table 1) that occurred after index dates during the follow-up period^{11,12}. As the secondary outcomes (major depression, anxiety, other mental health conditions; Table 3), the association of long COVID with these individual MHD groups also was examined.

3 134 Assessmen

Assessment of potential covariates

To ensure a similar distribution of covariates at baseline and mitigate potential confounding
effects, propensity score matching was conducted considering 4 demographic variables and 10
comorbidities. Demographic data on age (years), sex (male/female), race (white/ black or African

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

American/ unknown/ others), and US regional location (South/ West/ Midwest/ Northeast/ Unknown) were extracted directly from TriNetX patients' databases. For the identification of comorbidity covariates, we employed the Charlson Comorbidity Index, and selected the ten most prevalent comorbidities as matching variables¹³. These included myocardial infarction, congestive heart failure, peripheral vascular disease, cerebrovascular disease, chronic pulmonary disease, rheumatoid disease, mild liver disease, diabetes, renal disease, and cancer (any malignancy)¹⁴. All these comorbidities were identified at baseline, defined as the 12 months preceding the index date, utilizing their corresponding ICD-10-CM codes (Supplemental Table 1). Vaccination status was also taken into consideration, defined as any history of COVID-19

vaccination prior to the index date, determined by Current Procedural Terminology (CPT) codes
(Supplemental Table 1)¹⁵.

149 Statistical Analysis

We summarized baseline participants characteristics across long COVID and non-long COVID groups, with mean (SD) values for continuous variables, and number and percentage for categorical variables, which was presented as before matching and after 1:10 matching. Standardized mean difference (SMD) was regarded as a measure to evaluate the matching results, and an SMD greater than 0.1 is a threshold recommended for declaring imbalance¹⁶. We calculated the person-time of follow-up for each participant following the index date to the first occurrence of an outcome of interest (MHD), death date (if applicable), or the maximum follow-up date (the latest date recorded in diagnosis records, lab test results, and medication records), whichever took place first. Long COVID status was deemed as the primary exposure. We conducted subgroup analyses by calculating the unadjusted incidence rates and corresponding 95% CI per 1000 person-years of follow-up for the two cohorts within each

Page 9 of 24

BMJ Open

subgroup. Having confirmed no violations of the proportional hazards assumption (Supplemental Figure 1), we initially applied a stratified Cox proportional hazards regression model adjusting for age and sex to calculate the hazard ratio (HR) and 95% confidence interval (95% CI). Subsequently, we implemented another stratified Cox proportional hazards regression model using a matching ID constructed from the propensity scores with the 4 demographic factors and 10 comorbidities, which provided an adjusted HR and 95% CI. Secondary analyses were additionally performed using stratified Cox proportional hazards regression models, focusing specifically on different dimensions of MHD, including major depression, anxiety, and other mental health conditions. In addition, we assessed effect modification effects of baseline vaccination status, which was accomplished by examining the significance of the interaction term between long COVID status and vaccination within the confines of the stratified Cox proportional hazards regression model. Data were analyzed in R software version 3.6.2 (R Foundation for Statistical Computing, Vienna, Austria) and SAS Software version 9.4 (SAS Institute Inc; Cary, NC) using a two-tailed alpha level of 0.05.

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

Results

The present analysis incorporated 43,060 non-long COVID participants (mean [SD] age 54.43 [16.66] years; 58.3% female; 69.5% white) and 4,306 long COVID participants (mean [SD] age 54.62 [15.34] years; 58.2% female; 69.6% white). Prior to matching, imbalances in distribution were noted for patient regional location (SMD = 0.265), baseline congestive heart failure status (SMD = 0.131), baseline chronic pulmonary disease status (SMD = 0.396), and baseline diabetes status (SMD = 0.147). After the matching process, we observed balanced distributions across all covariates, with all SMDs falling below 0.1 (Table 1). The overall cumulative incidence rate of MHD was higher among those with long COVID than those without long COVID (Figure 2). Similar results were observed when individual MHD diagnosis was examined as outcomes (Figure 2). The overall unadjusted incidence rate of MHD was higher among long COVID (251.1 per 1000 persons-years [PY])) compared to those without long COVID (99.5 per 1000-PY) (Table 2). In age and sex-adjusted stratified Cox model, long COVID was associated with higher risk of incident MHD (adjusted Hazard Ratio (aHR), 2.53; 95% CI, 2.32 - 2.75). Additional adjustment of the model with 4 demographic factors and 10 comorbidities did not dilute the association (aHR, 2.60; 95% CI, 2.37, 2.85) (Table 2). In subgroup analyses, we observed a significant effect of long COVID on major depression (aHR, 3.36; 95% CI, 2.82, 4.00), generalized anxiety disorder (aHR, 3.44; 95% CI, 2.99, 3.96), in the full adjusted stratified Cox regression models. Conversely, while the influence of long COVID on other mental health conditions was statistically significant, the magnitude of the effect was smaller than the overall effects (aHR, 1.31; 95% CI, 1.08, 1.60) (Table 3). Baseline

³ 197 vaccination status did not modify the association between long COVID and MHD (P-value for

56 198 interaction = 0.96).

BMJ Open

Discussion In the present analysis of real-world data using propensity score matching, survivors of COVID-19 with long COVID were more than twice as likely to develop MHD. The impact was largest for major depressive disorders and generalized anxiety disorders. In 2010, the global economic costs of mental disorders were estimated at US\$2.5 trillion¹⁷. The pandemic has worsened the MHD given the millions of survivors of COVID-19 globally, the cost of MHD is likely to climb on dramatically. The effect estimates from our study was stronger than in the study by veteran study by Xie et al that found a nearly 40% increase in depression and anxiety disorders. The weakness of the prior study is the lack of generalizability due to the demographic composition of the cohort that were mostly older white men and the limited time study time frame of nearly 30 days following acute COVID-19 illness and yet there is a temporal dynamic nature of the epidemiology of mental health outcomes in the post-acute phase of COVID-19. The pathophysiological of MHD among long haulers is not fully understood. However, there is emerging evidence of both direct and indirect effect of the virus on the brain and phycological outcomes respectively. Starting with the direct effect, the SARS-CoV-2 virus is neurotropic, indicating a direct invasion of the nervous system causing inflammation and gliosis¹⁸. These changes in the neuronal vascular coupling could lead to further break down in the blood brain barrier allowing for the worsening of the inflammatory cases ace and the influx of inflammatory cells that causes injury to the neurons. Such a direct and neurotropic effect of the virus has been seen in HIV, EBV, and CMV¹⁹. Indirectly, the pandemic been associated with psychological distress²⁰ due to increased isolation, increased rates of domestic violence²¹, a disruption of social

Page 12 of 24

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

BMJ Open

networks and unemployment²², all risk factors of MHD. But much more research is needed to get
a clear picture of how all of these variables may have contributed to MHD.

The findings of the current study have great public health and clinical implications. First, the stigma attached to MHD could hinder health care utilization and thereby worsen the prognosing of the outcomes with a shift towards suicidality and homicidally. Next, given the disproportionality in lack of access to care in the marginalized communities including people of color and the poor communities and yet these are the same communities that were mostly affected by severe COVID, the burden of untreated mental health is likely to yield negative outcomes in such communities. For the health care providers particularly primary health care providers, they should have a lower threshold to screen and treat mental health disorders in this survivor of COVID-19.

232 Study strengths and limitations

Strengths of our study include an analysis based on longitudinal data of a large sample of long COVID individuals using most recently approved ICD-10 code and clean controls without any diagnosis of long COVID or COVID-19 diagnoses or testing positive for SARS-CoV-2. To the best of our knowledge, it also is the first large national-real-world analysis to examine the association between long COVID and MHD using comprehensive propensity score matching approach. Nevertheless, our study has several limitations that should be addressed when interpreting the results. This is an observational study that used US TriNetX data and therefore causality cannot be inferred. We acknowledge that electronic health record databases can misclassify patients based on misreporting or underreporting of diagnoses codes or medications. Moreover, even though we excluded any patients with long COVID or COVID-19 diagnoses or testing positive for SARS-CoV-2, some individuals in the control group might still have

	ш
	≌
	Ś
	<u> </u>
	0
	ğ
	Φ
	÷
	2.
	5
	0
	ĕ
	õ
	÷
	5
	۳.
	ŏ
	~
	SE
	0,
	1
	0
	<u> </u>
	<u>~</u>
	ω
	<u>ಲ</u>
	ਰੁ
	3
•	б.
	8
	ă
	ž
	7
	2
	び
	ω
	Ĩ.
	0
	2
	8
	പ്
	~
	~`
	Ч
	ω
	П
	φ,
	õ
	Ē.
	5
	۳
	<
	N
	õ
	Ň
	4
	Q
	9
	≤
	Ľ
	nlc
	solu
	nload
	nloade
	nloaded
	nloaded f
	nloaded frc
	nloaded fron
	nloaded from
	nloaded from h
	nloaded from htt
	nloaded from http.
	nloaded from http://
	nloaded from http://b
	nloaded from http://bm
-	nloaded from http://bmj
	nloaded from http://bmjou
	nloaded from http://bmjope
-	nloaded from http://bmjoper
	nloaded from http://bmjopen.
-	nloaded from http://bmjopen.br
	nloaded from http://bmjopen.bm
	nloaded from http://bmjopen.bmj.
	nloaded from http://bmjopen.bmj.cc
	nloaded from http://bmjopen.bmj.cor
	nloaded from http://bmjopen.bmj.com
	nloaded from http://bmjopen.bmj.com/ u
	nloaded from http://bmjopen.bmj.com/ or
-	nloaded from http://bmjopen.bmj.com/ on
	nloaded from http://bmjopen.bmj.com/ on A
•	nloaded from http://bmjopen.bmj.com/ on Ap
	nloaded from http://bmjopen.bmj.com/ on April
	nloaded from http://bmjopen.bmj.com/ on April 2
•	nloaded from http://bmjopen.bmj.com/ on April 27
•	nloaded from http://bmjopen.bmj.com/ on April 27,
•	nloaded from http://bmjopen.bmj.com/ on April 27, 2
•	nloaded from http://bmjopen.bmj.com/ on April 27, 20
•	nloaded from http://bmjopen.bmj.com/ on April 27, 202.
•	nloaded from http://bmjopen.bmj.com/ on April 27, 2024
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 b
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by c
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by gu
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by gue
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by gues
-	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest.
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. F
-	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Pr
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Prot
-	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Prote
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protec
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protecte
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected t
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by c
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by cc
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by cop
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copy
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyri
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyrig
	nloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

1 2		
2 3 4	244	undetected mild or asymptomatic COVID-19 because they had not been tested. Such non-
5 6	245	differential misclassification of the exposure may underestimate the strength of the association of
7 8 9	246	COVID-19 with the onset of MHD.
10 11 12	247	Conclusions
13 14 15	248	Using a large real-world, nationwide, propensity score matched cohort, we found that long
15 16 17	249	COVID was associated with an increased risk of new onset of MHD. The increase was
18 19	250	independent of demographics, lifestyle factors, and major chronic medical conditions. These
20 21 22	251	findings reinforce the importance of integrating mental health screening and services in the
23 24	252	treatment and management of long COVID to prevent related chronic diseases, suicidal thoughts,
25 26 27	253	and attempts.
27 28 29 30	254	
31 32	255	
33 34 35 36	256	
37 38 39	257	
40 41 42	258	
42 43 44 45	259	
46 47	260	
48 49 50	261	
51 52 53	262	
54 55 56 57	263	
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

59

2		
3 4	264	Funding statement: There was no external or internal funding to support this study.
5 6 7	265	
/ 8 9	266	Competing interests statement: The authors have no conflicts of interest to disclose.
10 11	267	
12 13	268	Ethics approval statement: The protocol of this study was reviewed and received a
14 15 16	269	determination of non-human subjects' research by the Penn State Institutional Review Board.
17 18	270	The individual informed consent requirement was waived for this secondary analysis of de-
19 20	271	identified data
21 22 23	272	
23 24 25	273	Authors' contributions: Designed research (project conception, development of overall
26 27	274	research plan): YZ and DMB. Data extraction and study oversight: DMB. Analyzed data: YZ,
28 29 20	275	PS, and DMB. Performed statistical analysis: YZ and DMB. Wrote the first draft of the
30 31 32	276	manuscript: YZ, PS and DMB. Review and editing: All authors. All authors have read and
33 34 35	277	approved the final manuscript.
36 37	278	
38 39	279	Data sharing statement: Data is available from third-party partners "TriNetX"
40 41 42	280	
43 44 45	281	Acknowledgments: None
46 47		
48 49 50		
50 51 52		
53 54		
55 56		
57 58		

References

- Ssentongo P, Fronterre C, Chinchilli VM. Spatial Epidemiology of COVID-19 Pandemic: Disease Risk, Prognosis, and Complications. In: *Frontiers of COVID-19*. Springer International Publishing; 2022:241-257. doi:10.1007/978-3-031-08045-6_11
- Groff D, Sun A, Ssentongo AE, et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. *JAMA Netw Open*. 2021;4(10):e2128568. doi:10.1001/jamanetworkopen.2021.28568
- 3. Hassan NM, Salim HS, Amaran S, et al. Prevalence of mental health problems among children with long COVID: A systematic review and meta-analysis. *PLOS ONE*. 2023;18(5):e0282538. doi:10.1371/journal.pone.0282538
- 4. Parks, Joe, Svendsen, Dale, Singer, Patricia, Mary, Fotu. Morbidity and Mortality in People with Serious Mental Illness. *Natl Assoc State Ment Health Program Dir NASMHPD Med Dir Counc*. Published online October 2006.
- 5. KESSLER RC, ANGERMEYER M, ANTHONY JC, et al. Lifetime prevalence and age-ofonset distributions of mental disorders in the World Health Organization's World Mental Health Survey Initiative. *World Psychiatry*. 2007;6(3):168-176.
- 6. Major Depression. National Institute of Mental Health (NIMH). Accessed July 15, 2023. https://www.nimh.nih.gov/health/statistics/major-depression
- 7. Xie Y, Xu E, Al-Aly Z. Risks of mental health outcomes in people with covid-19: cohort study. *BMJ*. 2022;376:e068993. doi:10.1136/bmj-2021-068993
- 8. Publication Guidelines. TriNetX. Accessed July 1, 2023. https://trinetx.com/real-world-resources/publications/trinetx-publication-guidelines/
- 9. Healthcare Workers. Centers for Disease Control and Prevention. Published February 11, 2020. Accessed July 2, 2023. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covid-conditions.html
- 10. Elm E von, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. *BMJ*. 2007;335(7624):806-808. doi:10.1136/bmj.39335.541782.AD
- 11. Busch AB, Huskamp HA, Raja P, Rose S, Mehrotra A. Disruptions in Care for Medicare Beneficiaries With Severe Mental Illness During the COVID-19 Pandemic. *JAMA Netw Open*. 2022;5(1):e2145677. doi:10.1001/jamanetworkopen.2021.45677

12. Lee SW, Yang JM, Moon SY, et al. Association between mental illness and COVID-19 susceptibility and clinical outcomes in South Korea: a nationwide cohort study. *Lancet Psychiatry*. 2020;7(12):1025-1031. doi:10.1016/S2215-0366(20)30421-1

- 13. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. *J Chronic Dis.* 1987;40(5):373-383. doi:10.1016/0021-9681(87)90171-8
- 14. Quan H, Li B, Couris CM, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. *Am J Epidemiol*. 2011;173(6):676-682. doi:10.1093/aje/kwq433
- 15. Find your COVID-19 Vaccine CPT® Codes. American Medical Association. Accessed July 2, 2023. https://www.ama-assn.org/find-covid-19-vaccine-codes
- 16. Austin PC. Using the Standardized Difference to Compare the Prevalence of a Binary Variable Between Two Groups in Observational Research. *Commun Stat Simul Comput.* 2009;38(6):1228-1234. doi:10.1080/03610910902859574
- 17. Trautmann S, Rehm J, Wittchen H. The economic costs of mental disorders. *EMBO Rep.* 2016;17(9):1245-1249. doi:10.15252/embr.201642951
- Bauer L, Laksono BM, Vrij FMS de, Kushner SA, Harschnitz O, Riel D van. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. *Trends Neurosci*. 2022;45(5):358-368. doi:10.1016/j.tins.2022.02.006
- 19. Hotta H. [Neurotropic viruses--classification, structure and characteristics]. *Nihon Rinsho Jpn J Clin Med.* 1997;55(4):777-782.
- 20. Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. *The Lancet*. 2020;395(10227):912-920. doi:10.1016/S0140-6736(20)30460-8
- 21. Leslie E, Wilson R. Sheltering in place and domestic violence: Evidence from calls for service during COVID-19. *J Public Econ*. 2020;189:104241. doi:10.1016/j.jpubeco.2020.104241
- 22. Elmer T, Mepham K, Stadtfeld C. Students under lockdown: Comparisons of students' social networks and mental health before and during the COVID-19 crisis in Switzerland. *PLOS ONE*. 2020;15(7):e0236337. doi:10.1371/journal.pone.0236337

Page 17 of 24		BMJ	Open		136/bmjop		
1 2 3 4 5	Table 1, Base	line Characteristics Before	and After Matching 9	Stratified w	en ,2023-0792 3-0792 Status		
6		Befor	e matching		After 1	:10 matching	
/ 8 9	Variables	Non-Long COVID n=186,903	Long COVID n=4,306	SMD*	ພ Non-Long ∯OVID n=43,0월0	Long COVID n=4,306	SMD*
10	Age (mean (SD))	55.22 (18.39)	54.62 (15.34)	0.036	54.43 (1 호 .66)	54.62 (15.34)	0.012
11	Sex (Male) (n (%))	77,742 (41.6)	1,774 (41.2)	0.008	17,938 (4.7)	1,774 (41.2)	0.009
12	Race (n (%))			0.084	14. E		0.013
14	Black or African American	24,815 (13.3)	511 (11.9)		5,002 (별.6)	511 (11.9)	
15	Others	7,888 (4.2)	137 (3.2)		1,347 (ਡ ੍ਰੋ.1)	137 (3.2)	
16	Unknown	25,128 (13.4)	662 (15.4)		6,786 (🛱.8)	662 (15.4)	
17	White	129,072 (69.1)	2,996 (69.6)		29,925 (ဋ ິ9.5)	2,996 (69.6)	
18	Patient Regional Location (n (%))			0.265	om		0.017
20	Midwest	27,387 (14.7)	892 (20.7)		8,955 (2.8)	892 (20.7)	
21	Northeast	64,765 (34.7)	1,226 (28.5)		12,536 (20.1)	1,226 (28.5)	
22	South	69,226 (37.0)	1,362 (31.6)		13,409 (🚮1.1)	1,362 (31.6)	
23	Unknown	2,215 (1.2)	26 (0.6)		240 (26)	26 (0.6)	
24	West	23,310 (12.5)	800 (18.6)		7,920 (1.4)	800 (18.6)	
25 26	Baseline Comorbidities (Yes)				· · · · · · · · · · · · · · · · · · ·	· · · ·	
27	Myocardial Infarction (n (%))	2,045 (1.1)	102 (2.4)	0.098	837 (1,9)	102 (2.4)	0.029
28	Congestive Heart Failure (n (%))	5,247 (2.8)	233 (5.4)	0.131	2,033 (4.7)	233 (5.4)	0.031
29	Peripheral Vascular Disease (n (%))	4,850 (2.6)	139 (3.2)	0.038	1,157 (2,7)	139 (3.2)	0.032
30	Cerebrovascular Disease (n (%))	4,720 (2.5)	132 (3.1)	0.033	1,142 (27)	132 (3.1)	0.025
31	Chronic Pulmonary Disease (n (%))	8.965 (4.8)	727 (16.9)	0.396	7.360 (2.1)	727 (16.9)	0.006
33	Rheumatoid Disease (n (%))	2.337 (1.3)	110 (2.6)	0.096	902 (2-1)	110 (2.6)	0.031
34	Mild Liver Disease (n (%))	3.951 (2.1)	153 (3.6)	0.087	1.324 (3.1)	153 (3.6)	0.027
35	Diabetes (n (%))	13.064 (7.0)	483 (11.2)	0.147	4.635 (10.8)	483 (11.2)	0.014
36	Renal Disease (n (%))	6.538 (3.5)	235 (5.5)	0.095	2.024 (4.7)	235 (5.5)	0.034
3/	Cancer (any malignancy) (n (%))	9.749 (5.2)	169 (3.9)	0.062	1.523 (8.5)	169 (3.9)	0.020
30 39	*SMD, standardized mean difference: An SM	/D greater than 0.1 is a thr	eshold recommender	d for declar	ring imbalance	200 (0.07	0.010
40					р Б		
41							
42					pyri		
43 44					ght.		

Table 2. Incidence rates and stratified Cox proportional hazard models hazard ratio (95% CI) for the association between Long COVID and mental health disorders

Variable	Non-Long COVID	Long COVID			
Person-years, y	23,586	2,773			
Mental health disorders cases, n	2,347	695			
	99.5 (95.5 <i>,</i>				
Incidence rate, 95% CI per 1000 person-years*	103.6)	251.1 (232.3, 270.2)			
Model 1	(reference)	2.53 (2.32, 2.75)			
Model 2	(reference)	2.60 (2.37, 2.85)			

*Unadjusted incidence rate per 1000-person-years

Model 1: stratified by age categories (18-34, 35-44, 45-54, 55-64, 65+) and sex

(men/women)

Model 2: stratified by fully propensity score matching ID.

Table 3. Stratified Cox proportional hazard models hazard ratio (95% CI) for the association between Long COVID and four mental health disorders

	Non-Long COVID (n, %)	Long COVID (n, %)	HR (95% CI)*
Any Mental Health Condition	2,347 (100%)	695 (100%)	2.60 (2.37, 2.85)
Major Depression ¹	575 (24.5%)	213 (30.6%)	3.36 (2.82, 4.00)
Anxiety ²	892 (38.0%)	341 (49.1%)	3.44 (2.99, 3.96)
Other mental health condition ³	880 (34.5%)	141 (20.3%)	1.31 (1.08, 1.60)

1 Major depression (F32, F33)

2 Anxiety (F40 - F48)

3 Other mental health conditions (F10 - F31, F34 - F39, F49 - F99)

* stratified by full propensity score matching ID

** NA due to the small sample size of psychotic disorder cases

1	
2 3	
4	
5 6	
7	
9	
10 11	
12 13	
14	
15 16	
17	
19	
20 21	
22	
24	
25 26	
27 28	
29	
30 31	
32 33	
34	
36	
37 38	
39 40	
41	
42 43	
44 45	
46 47	
47 48	
49 50	
51 52	
53	
54 55	
56 57	
58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary Table 1: Diagnosis codes of the International Classification of Diseases 10th editions, Clinical Modification (ICD-10-CM), used to describe baseline/preexisting clinical medical conditions; and Current Procedural Terminology (CPT) code for COVID-19 vaccination status

Variables	ICD-10 codes
Long COVID diagnosis	U09.9
Mental health disorders	F10.x-F16.x, F17.x-F69.x, F80.x-F89.x, F90.x-F99.x
Myocardial Infarction	I21.x, I22.x, I25.x,
Congestive Heart Failure	I42.x, I43.x, I50.x,
Peripheral Vascular Disease	170.x, 171.x, 173.x, 179.x, K55.x, Z95.x
Cerebrovascular Disease	G45.x, G46.x, I60.x-I69.x
Chronic Pulmonary Disease	I27.x, J40.x-J47.x, J60.xJ68.x, J70.x
Mild Liver Disease	B18.x, K70.x K71.x, K73.x, K74.x, K76.x, Z94.x
Diabetes	E10.x-E14.x
Renal Disease	N03.x, N05.x, N18.x, N19.x, Z49.x
Cancer (any malignancy)	C00.x-C26.x, C30.x-C34.x, C37.x-C41.x, C43.x, C45.x-
	58.x, C60.x-C76.x, C81.x-C85.x, C88.x, C90.x-C97.x

Variables	CPT codes
	"91300", "91305", "91307", "91308", "91301", "91306",
COVID-19 vaccination	"91311", "91309", "91317", "91315","91312", "91314",
	"91316", "91313"

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any prespecified hypotheses
Mathada	5	State specific objectives, meruding any prespectifica hypotheses
Study design	4	Present key alaments of study design early in the paper
	4	Present key elements of study design early in the paper
Setting	2	Describe the setting, locations, and relevant dates, including periods of recruitment,
Destinants		exposure, follow-up, and data collection
Participants	0	(a) Cohort study—Give the eligibility criteria, and the sources and methods of
		selection of participants. Describe methods of follow-up
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of
		case ascertainment and control selection. Give the rationale for the choice of cases
		and controls
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of
		selection of participants
		(b) Cohort study—For matched studies, give matching criteria and number of
		exposed and unexposed
		Case-control study—For matched studies, give matching criteria and the number of
		controls per case
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there
		is more than one group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		(b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was
		addressed
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of
		sampling strategy
		(e) Describe any sensitivity analyses
Continued on next page		

3
4
5
6
7
, o
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
25
22
30
37
38
39
40
41
42
43
44
7 7 15
40 46
46
47
48
49
50
51
52
52
22
54
55
56
57
58
59
60
~~

Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and
		analysed
		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information
data		on exposures and potential confounders
		(b) Indicate number of participants with missing data for each variable of interest
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time
		<i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure
		Cross-sectional study-Report numbers of outcome events or summary measures
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and
		why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful
		time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.
		Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity
		of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Other informati	ion	
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,
-		for the original study on which the present article is based

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Association of Long COVID with Mental Health Disorders: A Retrospective Cohort Study Using Real-World Data from the United States

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-079267.R1
Article Type:	Original research
Date Submitted by the Author:	29-Dec-2023
Complete List of Authors:	Zhang, Yue; The Pennsylvania State University College of Medicine, Department of Public Health Sciences Chinchilli, Vernon; The Pennsylvania State University College of Medicine, Department of Public Health Sciences Ssentongo, Paddy; Penn State Health Milton S Hershey Medical Center, Ba, Djibril M.; The Pennsylvania State University College of Medicine, Department of Public Health Sciences
Primary Subject Heading :	Mental health
Secondary Subject Heading:	Epidemiology, Infectious diseases
Keywords:	MENTAL HEALTH, Post-Acute COVID-19 Syndrome, COVID-19, EPIDEMIOLOGIC STUDIES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

Association of Long COVID with Mental Health Disorders: A Retrospective Cohort Study

Yue Zhang, MPH¹, Vernon M. Chinchilli, PhD¹, Paddy Ssentongo, MD, PhD^{1,2*}, Djibril M. Ba,

¹Penn State College of Medicine, Department of Public Health Sciences, Hershey, PA

²Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA

Using Real-World Data from the United States

To whom correspondence should be addressed:

Running title: Long COVID and Mental Health Disorders

1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Department of Public Health Sciences

Penn State College of Medicine

90 Hope Drive, Hershey, PA 17033

Abstract Word Count: 281 (300 max)

PhD, MPH^{1*}

*Co-Senior Authors

Yue Zhang, MPH

E: ymz5503@psu.edu

Text word Count: 2923

Number of Tables: 3

Number of Figures: 2

Conflict of Interest: None

References: 37

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright.

2	
2 3 4	1
5 6 7	2
7 8 9	3
10 11 12	4
12 13 14 15	5
16 17	6
18 19 20	7
21 22	8
23 24	9
25	10
26 27	11
28 29	12
30 31	13
32	14
33 34	15
35 36	16
37 38	17
39 40	18
41 42 42	19
45 44 45	20
45 46 47	21
48 49	22
50 51 52	23
53 54	24
55 56 57	25
58 59	

Page 3 of 27

59

60

BMJ Open

	ω
	Ž
	5
	ğ
	θŊ
	<u> </u>
	รี
	÷
	Ē
	⊑
	ŝ
	ē
	<u>0</u>
	õ
	3
	2
	<u>ک</u>
	ğ
	₫
	글.
	8
	Φ
	ょ
	õ
	3
	6
	2
	ž
	5
	2
	<u>س</u>
	φ
	ğ
	a
,	2
	N
	ខ
	4
	σ
	ð
	≦
	ត្ថ
	ad
	g
	⇒
	đ
	Ц
	₽
1	đ
	ĭ
1	Ę.
1	ğ
	ň
	₫
	bmi
•	.bmi.cc
•	.bmi.com
•	.bmi.com/ c
•	.bmi.com/ on
	.bmi.com/ on A
-	.bmi.com/ on Apri
-	.bmi.com/ on April 2
-	.bmi.com/ on April 27.
-	.bmi.com/ on April 27, 2
-	.bmi.com/ on April 27, 202
-	.bmi.com/ on April 27, 2024
-	.bmi.com/ on April 27, 2024 by
-	.bmi.com/ on April 27, 2024 by g
-	.bmi.com/ on April 27, 2024 by gue
	.bmi.com/ on April 27, 2024 by guest
-	.bmi.com/ on April 27, 2024 by guest. I
	.bmi.com/ on April 27, 2024 by quest. Pru
-	.bmi.com/ on April 27, 2024 by quest. Prote
-	.bmi.com/ on April 27, 2024 by quest. Protec:
-	.bmi.com/ on April 27, 2024 by quest. Protected
-	.bmi.com/ on April 27, 2024 by guest. Protected t
-	.bmi.com/ on April 27, 2024 by quest. Protected by
-	.bmi.com/ on April 27, 2024 by guest. Protected by cc
	.bmi.com/ on April 27, 2024 by quest. Protected by copy
	.bmi.com/ on April 27, 2024 by quest. Protected by copyri
	.bmi.com/ on April 27, 2024 by guest. Protected by copyrigh

1		
2	26	Abstract
4	20	Abstract
5 6 7	27	Objectives: Mental health disorders (MHD) rank third for US adult hospitalizations. Given the
8 9	28	substantial prevalence of 'Long COVID' in SARS-CoV-2 survivors, this study aims to assess its
10 11 12	29	association with increased MHD risk using extensive real-world data.
13 14 15	30	Design: A retrospective cohort study with propensity score matching was conducted. We used
16 17	31	the international classification of 10th revision (ICD-10) codes to identify individuals with Long
18 19	32	COVID status and COVID histories. Multivariable stratified Cox proportional hazards regression
20 21 22	33	analysis was conducted to determine the association of Long COVID status with MHD.
23 24 25	34	Setting: Data was sourced from the TriNetX database, spanning records from 1 October 2021 to
26 27	35	16 April 2023.
28 29 30	36	Participants: Two distinct cohorts were established: one comprising individuals diagnosed with
31 32	37	Long COVID and another comprising individuals with no history of Long COVID or COVID-
33 34 25	38	19. At the start of the study, none of the participants had a recorded mental health disorder
36 37	39	(MHD).
38 39 40	40	Primary and secondary outcome measures: The main outcome of interest was a composite
40 41 42	41	diagnosis of MHD. Secondary outcomes were individual mental health conditions.
43 44 45	42	Results: The study included 43,060 control participants without Long COVID and 4,306 Long
46 47	43	COVID participants, demonstrating well-balanced distribution across all covariates. After
48 49 50	44	adjusting for 4 demographic factors and 10 comorbidities, Long COVID was associated with
51 52	45	MHD (aHR, 2.60; 95% CI, 2.37, 2.85). In subgroup analysis, Long COVID was associated with
53 54 55	46	major depression disorder (aHR, 3.36; 95% CI, 2.82, 4.00) and generalized anxiety disorder
56 57	47	(aHR, 3.44; 95% CI, 2.99, 3.96).
58		2

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright.

BMJ Open

Conclusions: In this retrospective large real-world cohort study, Long COVID was associated with an increased risk of incident MHD. The MHD impact is significant considering the vast number of patients with Long COVID. Enhanced MHD screening among COVID-19 survivors should be a priority. Strengths and limitations of this study Included a large sample size of 4,306 patients with Long COVID and 43,060 controls, with comprehensive measures to control for confounders and comorbidities. Utilized a comprehensive propensity score matching approach to analyze the association between Long COVID and MHD. Employed a retrospective cohort design using US TriNetX data, with methodologies implemented to mitigate potential confounders and address timing-related issues. Acknowledged potential misclassification in electronic health records due to misreporting or underreporting of MHD or Long COVID diagnosis codes. Considered the possibility of undiagnosed mild or asymptomatic COVID-19 in untested controls, which may underestimate the strength of the Long COVID and MHD association. Keywords: Mental Health Disorders; Long COVID; real-world data; US

59

60

BMJ Open

2		
3 4	69	Introduction
5 6	70	The coronavirus disease-2019 (COVID-19) pandemic, caused by severe acute respiratory
7 8	71	syndrome coronavirus-2 (SARS-CoV-2), has profoundly impacted individual health and well-
9 10 11	72	being globally[1]. While the effects of COVID-19 range from asymptomatic or mild disease to
12 13	73	multi-organ failure and death, a notable proportion of the survivors with the virus experience
14 15	74	persistent symptoms. These are commonly referred to in the literature as post-acute sequelae of
16 17	75	COVID-19 (PASC) or "Long COVID" [2]. This condition represents a significant and ongoing
18 19 20	76	public health crisis, as indicated by data suggesting that 10–30% of non-hospitalized cases and
21 22	77	50-70% of hospitalized cases report long-term effects[3], [4]. A recent meta-analysis found an
23 24 25	78	increased incidence of anxiety, depression, and appetite problems among post-COVID-19
25 26 27	79	infected children, compared to those without a previous infection[5].
28 29 30	80	Mental health disorders (MHD) such as depression and anxiety disorders are the third leading
31 32	81	common cause of hospitalization in the US[6], [7]. In 2020, nearly 21 million American adults
33 34 35	82	(8.4% of the adult population) suffer from a major depressive disorder[8].
36 37 28	83	Previous studies that have assessed the associations between individuals with COVID-19 and
38 39 40	84	MHD were limited to special populations such as children or US veterans[9]. Studies so far have
41 42	85	examined the impact of the pandemic on the incidence and prevalence of mental health
43 44	86	disorders. However, the direct effect of COVID-19 among survivors is scarce and has not been
45 46 47	87	delineated in diverse populations using large real-world data. Therefore, in this study, we aim to
48 49	88	use very large real-world data to estimate the effect of Long COVID using newly developed
50 51	89	diagnosis codes on incident MHD. We hypothesize that since Long COVID presents with an
52 53	90	array of symptoms that affect daily quality of life, including sleep disorders, chronic dyspnea,
54 55 56	91	and myalgia/arthralgia, it could have a negative impact on mental health outcomes.
57 58		4

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

92 Methods

93 Data source

This analysis was conducted using a TriNetX database with data extracted from October 1st, 2020 to April 16th, 2023. TriNetX serves as a federated, multi-institutional health research network that compiles de-identified data derived from Electronic Health Records (EHRs) across a broad spectrum of healthcare organizations. These include academic medical centers, specialized physician practices, and community hospitals, collectively encompassing over 250 million patients from more than 120 healthcare organizations (HCOs). This vast network enables longitudinal patient-level healthcare claims tracking, and delivers a wealth of data including, but not limited to, demographic attributes (age, race, gender, geographic location), medical histories, and prescription details. TriNetX is compliant with the Health Insurance Portability and Accountability Act (HIPAA), the US federal law which protects the privacy and security of healthcare data, and any additional data privacy regulations applicable to the contributing HCO[10].

['] 106 Cohort derivation and assessment of exposure

Patients with Long COVID, aged greater than 18, were identified from October 1, 2021, to April
16, 2023, utilizing the International Classification of Diseases, Tenth Revision, Clinical
Modification (ICD-10-CM) codes (Supplemental Table 1). The Centers for Disease Control and
Prevention (CDC) officially characterizes Long COVID as a post-COVID condition manifesting
in patients with a confirmed or probable history of SARS-CoV-2 infection. The corresponding
ICD-10-CM code for this condition became effective on October 1, 2021[11].

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 27

BMJ Open

113	We identified 9,034 participants with Long COVID and 500,002 random participants without
114	Long COVID, each with at least one month of follow-up after Oct 1st, 2021. The index dates of
115	Long COVID group were the diagnosis dates of Long COVID, and random pseudo index dates
116	were assigned to the non-Long COVID group between Oct 1st, 2021, and the maximum recorded
117	dates for each participant, using data drawn from diagnosis records, lab test results, and
118	medication records. None of the participants had a history of MHD prior to the index dates, and
119	those in the non-Long COVID group had no record of Long COVID or COVID-19 diagnoses or
120	testing positive for SARS-CoV-2. After all the exclusions (Figure 1), we identified a total of
121	4,306 eligible participants with Long COVID and 186,903 eligible participants without COVID
122	and without Long COVID. The nearest-neighbor propensity score matching methods were
123	further utilized at a 1:10 matching ratio, with the "without replacement" sampling method. This
124	led to the final selection of 4,306 participants with Long COVID and a corresponding control
125	group of 43,060 participants for in-depth analysis. (Figure 1). This study followed the
126	Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
127	guideline for cohort studies[12].

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright.

^o 128 **Patient and public involvement**

Patients and the public were not involved in the design or planning of this secondary dataanalysis.

- 6 131 Assessment of outcomes
- The primary outcome was the composite of any MHD, defined using ICD-10 codes for mental
 health diagnosis or substance use disorders as done in previous studies (Supplemental Table 1)
 that occurred after index dates during the follow-up period[13], [14]. As the secondary outcomes

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

(major depression, anxiety, and other mental health conditions), the association of Long COVIDwith these individual MHD groups also was examined.

137 Assessment of potential covariates

To ensure a similar distribution of covariates at baseline and mitigate potential confounding effects, propensity score matching was conducted considering 4 demographic variables and 10 comorbidities. Demographic data on age (years), sex (male/female), race (white/ black or African American/ unknown/ others), and US regional location (South/ West/ Midwest/ Northeast/ Unknown) were extracted directly from TriNetX patients' databases. For the identification of comorbidity covariates, we employed the Charlson Comorbidity Index, and selected the ten most prevalent comorbidities as matching variables[15]. These included myocardial infarction, congestive heart failure, peripheral vascular disease, cerebrovascular disease, chronic pulmonary disease, rheumatoid disease, mild liver disease, diabetes, renal disease, and cancer (any malignancy)[16]. All these comorbidities were identified at baseline, defined as the 12 months preceding the index date, utilizing their corresponding ICD-10-CM codes (Supplemental Table 1). Vaccination status was also taken into consideration, defined as any history of COVID-19 vaccination prior to the index date, determined by Current Procedural Terminology (CPT) codes (Supplemental Table 1)[17].

152 Statistical Analysis

We summarized baseline participants characteristics across Long COVID and non-Long COVID
groups, with mean (SD) values for continuous variables, and number and percentage for
categorical variables, which was presented as before matching and after 1:10 matching.

Page 9 of 27

1

58

59

60

BMJ Open

2		
3 4	156	Standardized mean difference (SMD) was regarded as a measure to evaluate the matching
5 6 7	157	results, and an SMD greater than 0.1 is a threshold recommended for declaring imbalance[18].
8 9 10	158	We calculated the person-time of follow-up for each participant following the index date to the
10 11 12	159	first occurrence of an outcome of interest (MHD), death date (if applicable), or the maximum
13 14	160	follow-up date (the latest date recorded in diagnosis records, lab test results, and medication
15 16 17	161	records), whichever took place first. Long COVID status was deemed as the primary exposure.
18 19	162	We conducted subgroup analyses by calculating the unadjusted incidence rates and
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	163	corresponding 95% CI per 1000 person-years of follow-up for the two cohorts within each
	164	subgroup. Having confirmed no violations of the proportional hazards assumption (Supplemental
	165	Figure 1), we initially applied a stratified Cox proportional hazards regression model adjusting
	166	for age and sex to calculate the hazard ratio (HR) and 95% confidence interval (95% CI).
	167	Subsequently, we implemented another stratified Cox proportional hazards regression model
	168	using a matching ID constructed from the propensity scores with the 4 demographic factors and
34 35	169	10 comorbidities, which provided an adjusted HR and 95% CI. Secondary analyses were
36 37	170	additionally performed using stratified Cox proportional hazards regression models, focusing
38 39 40	171	specifically on different dimensions of MHD, including major depression, anxiety, and other
40 41 42	172	mental health conditions. In addition, we assessed effect modification effects of baseline
43 44	173	vaccination status, which was accomplished by examining the significance of the interaction
45 46	174	term between Long COVID status and vaccination within the confines of the stratified Cox
47 48 49	175	proportional hazards regression model. Data were analyzed in R software version 3.6.2 (R
50 51	176	Foundation for Statistical Computing, Vienna, Austria) and SAS Software version 9.4 (SAS
52 53	177	Institute Inc; Cary, NC) using a two-tailed alpha level of 0.05.
54 55 56 57	178	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

Results

> The present analysis incorporated 43,060 non-Long COVID participants (mean [SD] age 54.43 [16.66] years; 58.3% female; 69.5% white) and 4,306 Long COVID participants (mean [SD] age 54.62 [15.34] years; 58.2% female; 69.6% white). Prior to matching, imbalances in distribution were noted for patient regional location (SMD = 0.265), baseline congestive heart failure status (SMD = 0.131), baseline chronic pulmonary disease status (SMD = 0.396), and baseline diabetes status (SMD = 0.147). After the matching process, we observed balanced distributions across all covariates, with all SMDs falling below 0.1 (Table 1).

The overall cumulative incidence rate of MHD was higher among those with Long COVID than those without Long COVID (Figure 2). Similar results were observed when individual MHD diagnosis was examined as outcomes (Figure 2). The overall unadjusted incidence rate of MHD was higher among Long COVID (251.1 per 1000 persons-years [PY])) compared to those without Long COVID (99.5 per 1000-PY) (Table 2). In the age and sex-adjusted stratified Cox model, Long COVID was associated with higher risk of incident MHD (adjusted Hazard Ratio (aHR), 2.53; 95% CI, 2.32 - 2.75). Additional adjustment of the model with 4 demographic factors and 10 comorbidities did not dilute the association (aHR, 2.60; 95% CI, 2.37, 2.85) (Table 2).

In subgroup analyses, we observed a significant effect of Long COVID on major depression
(aHR, 3.36; 95% CI, 2.82, 4.00), generalized anxiety disorder (aHR, 3.44; 95% CI, 2.99, 3.96),
in the full adjusted stratified Cox regression models. Conversely, while the influence of Long
COVID on other mental health conditions was statistically significant, the magnitude of the
effect was smaller than the overall effects (aHR, 1.31; 95% CI, 1.08, 1.60) (Table 3). Baseline

1 2	
2 3 4	201
5 6	202
7 8 9 10	203
11 12	204
13 14 15	205
16 17	206
18 19	207
20 21 22	208
23 24	209
25 26 27	210
27 28 29	211
30 31	212
32 33	213
35 36	214
37 38	215
39 40 41	216
41 42 43	217
44 45	218
46 47 48	219
49 50	220
51 52	221
55 55	222
56 57	
58 59	

60

201	vaccination status did not modify the association between Long COVID and MHD (p-value for
202	interaction $= 0.96$).
203	Discussion
204	In the present analysis of real-world data using propensity score matching, survivors of COVID-
205	19 with Long COVID were more than twice as likely to develop MHD. The impact was largest
206	for major depressive disorders and generalized anxiety disorders. Our results are specifically
207	applicable to the new incidence of MHD following a Long COVID diagnosis.
208	Compared with a previous retrospective cohort study conducted in the U.S., our study
209	demonstrated stronger effect estimates. Xie et al. reported a moderately increased risk of
210	depression (aHR, 1.39; 95% CI, 1.34, 1.43) and anxiety disorders (aHR, 1.35; 95% CI, 1.30,
211	1.39)[9]. The weakness of the prior study is the lack of generalizability due to the demographic
212	composition of the cohort that were mostly older white men and the limited study time frame of
213	nearly 30 days following acute COVID-19 illness, and yet there is a temporal dynamic nature of
214	the epidemiology of mental health outcomes in the post-acute phase of COVID-19. Moreover,
215	our study extends these findings by concentrating not merely on COVID-19 infection, but
216	specifically on the incidence of mental health disorders following a diagnosis of Long COVID.
217	Our results are consistent with findings from studies conducted outside the United States. For
218	instance, Murata et al. observed an increased likelihood of mood, anxiety, and psychotic
219	disorders (odds ratio [OR], 1.39; 95% CI, 1.05, 1.85) among 662 COVID-19 patients in Japan,
220	observed from March 2020 to July 2021[19]. Similarly, in Thailand, Phu et al. reported that
221	individuals experiencing Long COVID symptoms were at a substantially higher risk of
222	depression (OR, 4.00) and anxiety (OR, 6.93) in a study involving 939 hospitalized patients

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

between January 2021 and May 2022[20]. The variation in increased risk may be attributable to differences in participant characteristics; for example, their cohorts were hospital-based, whereas our study utilized general EHR data. Additionally, our approach involved survival analysis to account for time-to-event data and censoring, in contrast to these studies that employed logistic regression models for binary outcomes. In Europe, similar findings have been observed. A descriptive study in France reported a high incidence of cognitive impairment (61 out of 159 patients) among hospitalized COVID-19 patients, as well as a notable prevalence of depression (17 out of 94 patients) and anxiety (22 out of 94 patients) in individuals admitted to the ICU, with these observations made four months post COVID-19[21]. Additionally, a qualitative study conducted in Spain corroborates our findings. Samper-Pardo et al. noted that patients with Long COVID reported diminished self-perceived well-being attributable to persistent symptoms. These patients expressed concerns such as anguish and anxiety about the future, fear of reinfection or relapse, and apprehension regarding return to work. Notably, suicidal thoughts were also reported by several individuals in this cohort[22]. We believe that our study represents a valuable contribution to the field and possesses the potential for global generalizability. The pathophysiological of MHD among patients with Long COVID is not fully understood. However, there is emerging evidence of both direct and indirect effects of the virus on the brain and psychological outcomes respectively. Starting with the direct effect, the SARS-CoV-2 virus is neurotropic, indicating a direct invasion of the nervous system causing inflammation and gliosis[23]. These changes in the neuronal vascular coupling could lead to further breakdown in the blood-brain barrier, worsening the inflammatory cascade and the influx of inflammatory cells that cause injury to the neurons. Such a direct and neurotropic effect of the virus has been seen in HIV, EBV, and CMV[24]. Indirectly, the pandemic has been associated with psychological

Page 13 of 27

1

60

BMJ Open

2		
3 4	246	distress[25] due to increased isolation, increased rates of domestic violence[26], disruption of
5 6	247	social networks, and unemployment[27], all risk factors of MHD. However, much more research
/ 8 9	248	is needed to get a clear picture of how all of these variables may have contributed to MHD.
10 11 12	249	Moreover, patients with Long COVID often experience unique psychological distress. Fatigue is
12 13 14	250	the leading symptom for Long COVID[28]. The persistent fatigue experienced in Long COVID
15 16 17	251	can limit an individual's ability to engage in daily activities, leading to feelings of frustration,
17 18 19	252	helplessness, and even depression[29]. Additionally, cognitive impairments, commonly referred
20 21	253	to as 'Brain Fog', are frequently observed. These impairments, which can include memory,
22 23	254	concentration, and decision-making difficulties, may significantly affect an individual's self-
24 25 26	255	esteem and their capacity to work or study, potentially leading to anxiety and depressive
20 27 28	256	symptoms[30]. Sleep disturbances were also commonly observed, with a reported prevalence of
29 30	257	34% to 50% among patients with Long COVID[31]. Issues with sleeping can further aggravate
31 32	258	mental health problems, leading to a cycle of insomnia and increased psychological distress[32].
33 34 35	259	Beyond physical symptoms, there is also a societal aspect to consider. Stigma and
36 37	260	misunderstanding about Long COVID are prevalent, as evidenced by a qualitative study showing
38 39	261	many participants encountering discrimination in healthcare settings[22]. This lack of
40 41 42	262	understanding and the resultant stigma or dismissive attitudes can be particularly distressing for
42 43 44	263	those suffering from Long COVID[33]. Finally, the unpredictable nature of Long COVID,
45 46	264	including uncertainty about recovery, potential long-term impacts and possible effective
47 48 49	265	treatments, can lead to significant anxiety and stress[34].
50 51	266	The findings of the current study have great public health and clinical implications. First, the
52 53 54	267	stigma attached to MHD could hinder health care utilization and thereby worsen the prognosing
55 56	268	of the outcomes with a shift towards suicidality and homicidally. Next, given the
57 58 59		12

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

disproportionality in lack of access to care in the marginalized communities including people of color and the poor communities, and yet these are the same communities that were mostly affected by severe COVID, the burden of untreated mental health is likely to yield negative outcomes in such communities. For the health care providers, particularly primary health care providers, they should have a lower threshold to screen and treat mental health disorders in this survivor of COVID-19. Furthermore, we anticipate an increase in the economic costs associated with Mental Health Disorders (MHD). In 2010, the global economic burden of mental disorders was estimated at US\$2.5 trillion[35]. Considering the extensive impact of the COVID-19 pandemic and the millions of survivors worldwide, it is reasonable to project a dramatic escalation in the costs attributed to MHD.

279 Study strengths and limitations

Strengths of our study include an analysis based on longitudinal data of a large sample of Long COVID individuals using most recently approved ICD-10 code and clean controls without any diagnosis of Long COVID or COVID-19 diagnoses or testing positive for SARS-CoV-2. To the best of our knowledge, it also is the first large national-real-world analysis to examine the association between Long COVID and MHD using comprehensive propensity score matching approach. Nevertheless, our study has several limitations that should be addressed when interpreting the results. This is an observational study that used US TriNetX data and therefore causality cannot be inferred. We acknowledge that electronic health record databases can misclassify patients based on misreporting or underreporting of diagnoses codes or medications. Moreover, although we excluded any patients with Long COVID or COVID-19 diagnoses or testing positive for SARS-CoV-2, some individuals in the control group might still have undetected mild or asymptomatic COVID-19 because they had not been tested. Such non-

differential misclassification of the exposure may underestimate the strength of the association of COVID-19 with the onset of MHD. Lastly, we acknowledge the potential for information bias in the diagnosis of MHD for two key reasons: (1) There may be an underestimation of MHD prevalence due to limited access to healthcare services. This concern applies to both participants with Long COVID and those without, as constraints in healthcare access could lead to undiagnosed cases[36]. (2) Participants diagnosed with Long COVID are more likely to be identified with MHD. This is because they typically undergo more frequent follow-ups and screenings with healthcare professionals post-diagnosis, increasing the likelihood of MHD detection[37]. Conclusions Using a large real-world, nationwide, propensity score matched cohort, we found that Long COVID was associated with an increased risk of new onset of MHD. The increase was independent of demographics, lifestyle factors, and major chronic medical conditions. These findings reinforce the importance of integrating mental health screening and services in the treatment and management of Long COVID to prevent related chronic diseases, suicidal thoughts, and attempts. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3 4	313	Funding statement: There was no external or internal funding to support this study.
5 6	314	
/ 8 9	315	Competing interests statement: The authors have no conflicts of interest to disclose.
10 11	316	
12 13	317	Ethics approval statement: The protocol of this study was reviewed and received a
14 15 16	318	determination of non-human subjects' research by the Penn State Institutional Review Board.
17 18	319	The individual informed consent requirement was waived for this secondary analysis of de-
19 20	320	identified data
21 22 23	321	
24 25	322	Authors' contributions: Designed research (project conception, development of overall
26 27	323	research plan): YZ and DMB. Data extraction and study oversight: DMB. Analyzed data: YZ,
28 29 30	324	PS, and DMB. Performed statistical analysis: YZ and DMB. Wrote the first draft of the
31 32	325	manuscript: YZ, PS and DMB. Review and editing: YZ, VMC, PS and DMB. All authors have
33 34 35	326	read and approved the final manuscript.
36 37	327	
38 39 40	328	Data sharing statement: Data is available from third-party partners "TriNetX"
41 42	329	
44 45 46 47 48 49 50 51	330	
52 53 54 55 56 57		
58		15

59

8

9

10

11

12

13

14

15 16

17

18

19

20

21 22

23

24

25

26

27

28

29 30

31

32

33

34

35

36 37

38

39

40

41

42

43

44 45

46

47

48

49

50

51 52

53

54

59

60

BMJ Open

References

- P. Ssentongo, C. Fronterre, and V. M. Chinchilli, "Spatial Epidemiology of COVID-19 Pandemic: Disease Risk, Prognosis, and Complications," in *Frontiers of COVID-19*, Springer International Publishing, 2022, pp. 241–257. doi: 10.1007/978-3-031-08045-6_11.
- [2] D. Groff *et al.*, "Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review," *JAMA Netw. Open*, vol. 4, no. 10, p. e2128568, Oct. 2021, doi: 10.1001/jamanetworkopen.2021.28568.
- [3] H. E. Davis, L. McCorkell, J. M. Vogel, and E. J. Topol, "Long COVID: major findings, mechanisms and recommendations," *Nat. Rev. Microbiol.*, Jan. 2023, doi: 10.1038/s41579-022-00846-2.
- [4] L. Bull-Otterson *et al.*, "Post–COVID Conditions Among Adult COVID-19 Survivors Aged 18–64 and ≥65 Years — United States, March 2020–November 2021," *MMWR Morb. Mortal. Wkly. Rep.*, vol. 71, no. 21, pp. 713–717, May 2022, doi: 10.15585/mmwr.mm7121e1.
- [5] N. M. Hassan *et al.*, "Prevalence of mental health problems among children with long COVID: A systematic review and meta-analysis," *PLOS ONE*, vol. 18, no. 5, p. e0282538, May 2023, doi: 10.1371/journal.pone.0282538.
- [6] Parks, Joe, Svendsen, Dale, Singer, Patricia, and Mary, Fotu, "Morbidity and Mortality in People with Serious Mental Illness," *Natl. Assoc. State Ment. Health Program Dir. NASMHPD Med. Dir. Counc.*, Oct. 2006.
- [7] R. C. KESSLER *et al.*, "Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization's World Mental Health Survey Initiative," *World Psychiatry*, vol. 6, no. 3, pp. 168–176, Oct. 2007.
- [8] "Major Depression," National Institute of Mental Health (NIMH). Accessed: Jul. 15, 2023. [Online]. Available: https://www.nimh.nih.gov/health/statistics/major-depression
- [9] Y. Xie, E. Xu, and Z. Al-Aly, "Risks of mental health outcomes in people with covid-19: cohort study," *BMJ*, vol. 376, p. e068993, Feb. 2022, doi: 10.1136/bmj-2021-068993.
- [10] "Publication Guidelines," TriNetX. Accessed: Jul. 01, 2023. [Online]. Available: https://trinetx.com/real-world-resources/publications/trinetx-publication-guidelines/
- [11] "Healthcare Workers," Centers for Disease Control and Prevention. Accessed: Jul. 02, 2023. [Online]. Available: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinicalcare/post-covid-conditions.html
- [12] E. von Elm, D. G. Altman, M. Egger, S. J. Pocock, P. C. Gøtzsche, and J. P. Vandenbroucke, "Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies," *BMJ*, vol. 335, no. 7624, pp. 806–808, Oct. 2007, doi: 10.1136/bmj.39335.541782.AD.
- [13] A. B. Busch, H. A. Huskamp, P. Raja, S. Rose, and A. Mehrotra, "Disruptions in Care for Medicare Beneficiaries With Severe Mental Illness During the COVID-19 Pandemic," *JAMA Netw. Open*, vol. 5, no. 1, p. e2145677, Jan. 2022, doi: 10.1001/jamanetworkopen.2021.45677.
- [14] S. W. Lee *et al.*, "Association between mental illness and COVID-19 susceptibility and clinical outcomes in South Korea: a nationwide cohort study," *Lancet Psychiatry*, vol. 7, no. 12, pp. 1025–1031, Dec. 2020, doi: 10.1016/S2215-0366(20)30421-1.

[15] M. E. Charlson, P. Pompei, K. L. Ales, and C. R. MacKenzie, "A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation," J. Chronic Dis., vol. 40, no. 5, pp. 373–383, Jan. 1987, doi: 10.1016/0021-9681(87)90171-8.

1 2 3

4

5

6

7

8 9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24 25

26

27

28

29

30

31 32

33

34

35

36

37

38

39 40

41

42

43

44

45

46 47

48

49

50

51

52

53

54 55

56 57 58

59

- [16] H. Quan *et al.*, "Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries," *Am. J. Epidemiol.*, vol. 173, no. 6, pp. 676–682, Mar. 2011, doi: 10.1093/aje/kwq433.
- [17] "Find your COVID-19 Vaccine CPT® Codes," American Medical Association. Accessed: Jul. 02, 2023. [Online]. Available: https://www.ama-assn.org/find-covid-19-vaccine-codes
- [18] P. C. Austin, "Using the Standardized Difference to Compare the Prevalence of a Binary Variable Between Two Groups in Observational Research," *Commun. Stat. - Simul. Comput.*, vol. 38, no. 6, pp. 1228–1234, May 2009, doi: 10.1080/03610910902859574.
- [19] F. Murata, M. Maeda, C. Ishiguro, and H. Fukuda, "Acute and delayed psychiatric sequelae among patients hospitalised with COVID-19: a cohort study using LIFE study data," *Gen. Psychiatry*, vol. 35, no. 3, p. e100802, Jun. 2022, doi: 10.1136/gpsych-2022-100802.
- [20] D. H. Phu *et al.*, "Prevalence and factors associated with long COVID and mental health status among recovered COVID-19 patients in southern Thailand," *PLOS ONE*, vol. 18, no. 7, p. e0289382, Jul. 2023, doi: 10.1371/journal.pone.0289382.
- [21] Writing Committee for the COMEBAC Study Group *et al.*, "Four-Month Clinical Status of a Cohort of Patients After Hospitalization for COVID-19," *JAMA*, vol. 325, no. 15, pp. 1525–1534, Apr. 2021, doi: 10.1001/jama.2021.3331.
- [22] M. Samper-Pardo, B. Oliván-Blázquez, R. Magallón-Botaya, F. Méndez-López, C. Bartolomé-Moreno, and S. León-Herrera, "The emotional well-being of Long COVID patients in relation to their symptoms, social support and stigmatization in social and health services: a qualitative study," *BMC Psychiatry*, vol. 23, p. 68, Jan. 2023, doi: 10.1186/s12888-022-04497-8.
- [23] L. Bauer, B. M. Laksono, F. M. S. de Vrij, S. A. Kushner, O. Harschnitz, and D. van Riel, "The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2," *Trends Neurosci.*, vol. 45, no. 5, pp. 358–368, May 2022, doi: 10.1016/j.tins.2022.02.006.
- [24] H. Hotta, "[Neurotropic viruses--classification, structure and characteristics]," *Nihon Rinsho Jpn. J. Clin. Med.*, vol. 55, no. 4, pp. 777–782, Apr. 1997.
- [25] S. K. Brooks *et al.*, "The psychological impact of quarantine and how to reduce it: rapid review of the evidence," *The Lancet*, vol. 395, no. 10227, pp. 912–920, Mar. 2020, doi: 10.1016/S0140-6736(20)30460-8.
- [26] E. Leslie and R. Wilson, "Sheltering in place and domestic violence: Evidence from calls for service during COVID-19," *J. Public Econ.*, vol. 189, p. 104241, Sep. 2020, doi: 10.1016/j.jpubeco.2020.104241.
- [27] T. Elmer, K. Mepham, and C. Stadtfeld, "Students under lockdown: Comparisons of students' social networks and mental health before and during the COVID-19 crisis in Switzerland," *PLOS ONE*, vol. 15, no. 7, p. e0236337, Jul. 2020, doi: 10.1371/journal.pone.0236337.
- [28] S. Lopez-Leon *et al.*, "More than 50 long-term effects of COVID-19: a systematic review and meta-analysis," *Sci. Rep.*, vol. 11, no. 1, Art. no. 1, Aug. 2021, doi: 10.1038/s41598-021-95565-8.
- [29] W. K. Hou, F. T. Lai, M. Ben-Ezra, and R. Goodwin, "Regularizing daily routines for mental health during and after the COVID-19 pandemic," *J. Glob. Health*, vol. 10, no. 2, p. 020315, Dec. 2020, doi: 10.7189/jogh.10.020315.

- [30] A. A. Asadi-Pooya *et al.*, "Long COVID syndrome-associated brain fog," J. Med. Virol., vol. 94, no. 3, pp. 979–984, 2022, doi: 10.1002/jmv.27404.
- [31] C. Pena-Orbea et al., "Sleep Disturbance Severity and Correlates in Post-acute Sequelae of COVID-19 (PASC)," J. Gen. Intern. Med., vol. 38, no. 8, pp. 2015–2017, Jun. 2023, doi: 10.1007/s11606-023-08187-3.
- [32] D. Freeman, B. Sheaves, F. Waite, A. G. Harvey, and P. J. Harrison, "Sleep disturbance and psychiatric disorders," *Lancet Psychiatry*, vol. 7, no. 7, pp. 628–637, Jul. 2020, doi: 10.1016/S2215-0366(20)30136-X.
- [33] X. Zhou, C. Chen, Y. Yao, J. Xia, L. Cao, and X. Qin, "The scar that takes time to heal: A systematic review of COVID-19-related stigma targets, antecedents, and outcomes," *Front. Psychol.*, vol. 13, 2022, Accessed: Dec. 14, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fpsyg.2022.1026712
- [34] D. Russell, N. J. Spence, J.-A. D. Chase, T. Schwartz, C. M. Tumminello, and E. Bouldin, "Support amid uncertainty: Long COVID illness experiences and the role of online communities," SSM - Qual. Res. Health, vol. 2, p. 100177, Dec. 2022, doi: 10.1016/j.ssmqr.2022.100177.
- [35] S. Trautmann, J. Rehm, and H. Wittchen, "The economic costs of mental disorders," *EMBO Rep.*, vol. 17, no. 9, pp. 1245–1249, Sep. 2016, doi: 10.15252/embr.201642951.
- [36] G. Pujolar, A. Oliver-Anglès, I. Vargas, and M.-L. Vázquez, "Changes in Access to Health Services during the COVID-19 Pandemic: A Scoping Review," *Int. J. Environ. Res. Public. Health*, vol. 19, no. 3, p. 1749, Feb. 2022, doi: 10.3390/ijerph19031749.
- [37] CDC, "Post-COVID Conditions: Information for Healthcare Providers," Centers for Disease Control and Prevention. Accessed: Dec. 13, 2023. [Online]. Available: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covid-conditions.html

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright

	BMJ	Open		136/bmjopen-2023-07		Page 20 of
Table 1. Base	eline Characteristics Before	and After Matching S	Stratified w	ith Long COVID Status		
	Befor	e matching		S After 1	:10 matching	
Variables	Non-Long COVID n=186,903	Long COVID n=4,306	SMD*	Non-Long ⊕OVID n=43,0≝0	Long COVID n=4,306	SMD*
Age (mean (SD))	55.22 (18.39)	54.62 (15.34)	0.036	54.43 (18.66)	54.62 (15.34)	0.012
Sex (Male) (n (%))	77,742 (41.6)	1,774 (41.2)	0.008	17,938 (約.7)	1,774 (41.2)	0.009
Race (n (%))			0.084			0.013
Black or African American	24,815 (13.3)	511 (11.9)		5,002 (घ्र्यॅ.6)	511 (11.9)	
Others	7,888 (4.2)	137 (3.2)		1,347 (ਡ ੋ.1)	137 (3.2)	
Unknown	25,128 (13.4)	662 (15.4)		6,786 (15.8)	662 (15.4)	
White	129,072 (69.1)	2,996 (69.6)		29,925 (英9.5)	2,996 (69.6)	
Patient Regional Location (n (%))			0.265	Ĕ		0.017
Midwest	27,387 (14.7)	892 (20.7)		8,955 (2.8)	892 (20.7)	
Northeast	64,765 (34.7)	1,226 (28.5)		12,536 (<mark>2</mark> 9.1)	1,226 (28.5)	
South	69,226 (37.0)	1,362 (31.6)		13,409 (<mark>ਡ</mark> ੋ1.1)	1,362 (31.6)	
Unknown	2,215 (1.2)	26 (0.6)		240 (🔥6)	26 (0.6)	
West	23,310 (12.5)	800 (18.6)		7,920 (🛓.4)	800 (18.6)	
Baseline Comorbidities (Yes)				.co		
Myocardial Infarction (n (%))	2,045 (1.1)	102 (2.4)	0.098	837 (1 <mark>ද</mark> 9)	102 (2.4)	0.029
Congestive Heart Failure (n (%))	5,247 (2.8)	233 (5.4)	0.131	2,033 (4,7)	233 (5.4)	0.031
Peripheral Vascular Disease (n (%))	4,850 (2.6)	139 (3.2)	0.038	1,157 (2.7)	139 (3.2)	0.032
Cerebrovascular Disease (n (%))	4,720 (2.5)	132 (3.1)	0.033	1,142 (월7)	132 (3.1)	0.025
Chronic Pulmonary Disease (n (%))	8,965 (4.8)	727 (16.9)	0.396	7,360 (1.1)	727 (16.9)	0.006
Rheumatoid Disease (n (%))	2,337 (1.3)	110 (2.6)	0.096	902 (2 5 1)	110 (2.6)	0.031
Mild Liver Disease (n (%))	3,951 (2.1)	153 (3.6)	0.087	1,324 (؏.1)	153 (3.6)	0.027
Diabetes (n (%))	13,064 (7.0)	483 (11.2)	0.147	4 <i>,</i> 635 (ช <u>ั</u> ้น.8)	483 (11.2)	0.014
Renal Disease (n (%))	6,538 (3.5)	235 (5.5)	0.095	2 <i>,</i> 024 (<u></u> 27)	235 (5.5)	0.034
Cancer (any malignancy) (n (%))	9,749 (5.2)	169 (3.9)	0.062	1,523 (<mark>ខ</mark> ្លី.5)	169 (3.9)	0.020
*SMD, standardized mean difference; An Sl	MD greater than 0.1 is a thr	eshold recommended	d for declar	ing imbalanc。 망 양 양		
		17		Jht.		

Variable	Non-Long COVI	D Long COVID	
Person-years, y	23,586	2,773	
Mental health disorders cases, n	2,347	695	
	99.5 (95.5,		
Incidence rate, 95% CI per 1000 perso	n-years* 103.6)	251.1 (232.3, 27	0.2)
Model 1	(reference)	2.53 (2.32, 2.7	(5)
Model 2	(reference)	2.60 (2.37, 2.8	5)
*Unadjusted incidence rate per 1000-	person-years		
Model 1: stratified by age categories (18-34, 35-44, 45-54, 55-64, 65	+) and sex	
(men/women)			
Model 2: stratified by fully propensity	score matching ID.		
Table 3. Stratified Cox proportional h	azard models hazard ratio (95	% CI) for the associat	tion between
COV	ID and four mental health disc	orders	
	Non-Long COVID (n. %)	Long COVID (n. %)	HR (95%
Any Mental Health Condition	2 347 (100%)	695 (100%)	2.60 (2.37.
Major Doprossion1	$= - \frac{1}{2} (24 - \frac{1}{2})$	212(20.6%)	2.00 (2.57,
	575 (24.5%)	213 (30.0%)	3.30 (2.82,
Anxiety ²	892 (38.0%)	341 (49.1%)	3.44 (2.99,
Other mental health condition ³	880 (34.5%)	141 (20.3%)	1.31 (1.08,
1 Major depression (F32, F33)			
2 Anxiety (F40 - F48)			
3 Other mental health conditions (F10	- F31, F34 - F39, F49 - F99)		
* stratified by full propensity score ma	atching ID		
** NA due to the small sample size of	psychotic disorder cases		
	20		
	20		

Figure 1. Long COVID and Non-Long COVID participants inclusion from TriNetX datasets

Figure 2. Cumulative Incidence Rates of Total and Categorized Major Health Disorders in Patients with Long COVID vs. Those Without Long COVID

to peet terien only

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright.

Supplementary Table 1: Diagnosis codes of the International Classification of Diseases 10th editions, Clinical Modification (ICD-10-CM), used to describe baseline/preexisting clinical medical conditions; and Current Procedural Terminology (CPT) code for COVID-19 vaccination status

Variables	ICD-10 codes
Long COVID diagnosis	U09.9
Mental health disorders	F10.x-F16.x, F17.x-F69.x, F80.x-F89.x, F90.x-F99.x
Myocardial Infarction	I21.x, I22.x, I25.x,
Congestive Heart Failure	I42.x, I43.x, I50.x,
Peripheral Vascular Disease	I70.x, I71.x, I73.x, I79.x, K55.x, Z95.x
Cerebrovascular Disease	G45.x, G46.x, I60.x-I69.x
Chronic Pulmonary Disease	I27.x, J40.x-J47.x, J60.xJ68.x, J70.x
Mild Liver Disease	B18.x, K70.x K71.x, K73.x, K74.x, K76.x, Z94.x
Diabetes	E10.x-E14.x
Renal Disease	N03.x, N05.x, N18.x, N19.x, Z49.x
Cancer (any malignancy)	C00.x-C26.x, C30.x-C34.x, C37.x-C41.x, C43.x, C45.x-
Cancer (any manghaney)	58.x, C60.x-C76.x, C81.x-C85.x, C88.x, C90.x-C97.x

Variables	CPT codes
	"91300", "91305", "91307", "91308", "91301", "91306",
COVID-19 vaccination	"91311", "91309", "91317", "91315","91312", "91314",
	"91316", "91313"

BMJ Open: first published as 10.1136/bmjopen-2023-079267 on 3 February 2024. Downloaded from http://bmjopen.bmj.com/ on April 27, 2024 by guest. Protected by copyright.

STROBE Statement-	-Checklist of items that should be included in reports of <i>cohort studies</i>			
	Item No	Recommendation		
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract Page 1 Title		
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found Page 2 Abstract		
[
Introduction Background/rationale	2	Explain the scientific background and rationale for the investigation being reported		
Dackground/rationale	2	Page 4 Introduction		
Objectives	3	State specific objectives, including any prespecified hypotheses		
objectives	5	Page 4 Line 86-90		
Mathada				
Methous Study design	1	Present key elements of study design early in the paper		
Study design		Page 5-6 Line 105 - 126		
Setting	5	Describe the setting locations and relevant dates including periods of recruitment		
overing	5	exposure follow-up, and data collection		
		Page 5-6 Line 92 - 126		
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of		
F	Ū.	participants. Describe methods of follow-up		
		Page 5 Line 105-108		
		(b) For matched studies, give matching criteria and number of exposed and		
		unexposed		
		Page 6 Line 119 to 124 and Page 7 Line 124 to 144		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effec		
		modifiers. Give diagnostic criteria, if applicable		
		Page 6 and 7		
Data sources/	8*	For each variable of interest, give sources of data and details of methods of		
measurement		assessment (measurement). Describe comparability of assessment methods if there		
		more than one group		
		Page 5		
Bias	9	Describe any efforts to address potential sources of bias		
		Page 7 and Page 8 statistics		
Study size	10	Explain how the study size was arrived at		
		Page 6 Line 112 to 126		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,		
		describe which groupings were chosen and why		
		Page 6 and Page 7 Assessment of outcomes and covariates		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding		
Page 7 and 8		(b) Describe any methods used to examine subgroups and interactions		
		(c) Explain how missing data were addressed		
		(d) If applicable, explain how loss to follow-up was addressed		
		(<i><u>e</u></i>) Describe any sensitivity analyses		
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially		
D 0.1 177 100				
Page 9 Line 176 -182		eligible, examined for eligibility, confirmed eligible, included in the study,		

		(b) Give reasons for non-participation at each stage
		(c) Consider use of a flow diagram
		Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
Page 9 Line 176 -182		information on exposures and potential confounders
Table 1		(b) Indicate number of participants with missing data for each variable of interest
		(c) Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Report numbers of outcome events or summary measures over time
Line 183-187		
Table 2		
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
Line 187-190		their precision (eg, 95% confidence interval). Make clear which confounders were
Table 2		adjusted for and why they were included
		(b) Report category boundaries when continuous variables were categorized
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and
Line 191 – 197		sensitivity analyses
Table 3		
Discussion		
Key results	18	Summarise key results with reference to study objectives
Line 199 - 202		
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
Line 282 - 297		imprecision. Discuss both direction and magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
Line 203 - 262		multiplicity of analyses, results from similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study results
Line 201 – 202; 232-		
233		4
Other information		
Other information Funding	22	Give the source of funding and the role of the funders for the present study and, if

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.