

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

A statistical model to predict the performance of factors involved in reducing childhood stunting

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067961
Article Type:	Original research
Date Submitted by the Author:	01-Sep-2022
Complete List of Authors:	Haque, Md; ICDDRB Choudhury, Nuzhat; ICDDRB Wahid, Barbie Zaman; ICDDRB Ahmed, SM Tanvir ; Save the Children Bangladesh Farzana, Fahmida Dil; ICDDRB Ali, Mohammad; ICDDRB Naz, Farina; ICDDRB Siddiqua, Towfida Jahan ; Johns Hopkins University, Bangladesh Rahman, Shahed ; Save the Children Bangladesh Faruque, ASG; ICDDRB Ahmed, Tahmeed; ICDDRB
Keywords:	Nutrition < TROPICAL MEDICINE, STATISTICS & RESEARCH METHODS, EPIDEMIOLOGY, PUBLIC HEALTH
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

2		
3 4	1	A statistical model to predict the performance of factors involved in reducing childhood
5	2	stunting
6 7	3	
8	4	Md Ahshanul Haque ^{1*} , Nuzhat Choudhury ^{1,4} , Barbie Zaman Wahid ¹ , SM Tanvir Ahmed ² ,
9 10	4 5	Fahmida Dil Farzana ¹ , Mohammad Ali ¹ , Farina Naz ¹ , Towfida Jahan Siddiqua ³ , Sheikh Shahed
11	6	Rahman ² , ASG Faruque ¹ , Tahmeed Ahmed ¹
12	7	
13 14	8	¹ Nutrition and Clinical Services Division, icddr,b, Dhaka, 1212, Bangladesh
15	9	² Child Poverty Sector, Save the Children Bangladesh, Dhaka, Bangladesh
16	10	³ Johns Hopkins University, Bangladesh
17 10	11	⁴ Durham University, Durham, United Kingdom
18 19	12	
20	13	* Correspondence: Md Ahshanul Haque, Assistant Scientist, Nutrition and Clinical Services
21	14	Division, ICDDRB, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh,
22 23	15	Email: <u>ahshanul.haque@icddrb.org</u>
24	16	
25	47	
26 27	17	Word count: 3656
27	18	
29 30	19	Abstract
31	20	Objective The goal of this study was to construct a predictive modelling approach using logistic
32 33		
34	21	regression analysis. We propose that such a model may help to develop an intervention study to
35 36	22	significantly reduce the prevalence of stunting among children aged 12-23 months.
37	23	
38 39	24	Design A cluster randomized pre-post design was followed to measure the impacts on several
40	25	indicators of livelihood, health, and nutrition. The study comprised a large dataset that was
41 42	26	collected from two cross-sectional studies (baseline and endline).
43 44	27	
45	28	Setting This study was conducted in Sylhet, a population in the northeast of Bangladesh that is
46 47	29	vulnerable to both natural catastrophes and the consequences of poverty. It specifically targeted
48 49	30	children between the ages of 12 and 23 months.
50	31	
51 52	32	Main outcome measures The outcome variable in this study was childhood stunting, which was
53 54	33	defined as a length-for-age z-score (LAZ) <-2. A multiple logistic regression model was
55 56	34	established to predict the factors associated with childhood stunting. The predictive performance
57		
58 59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

<u>د</u>
0
ĕ
firs
ð
Ğ
sil.
he
Ó.
SB
10.1136/bmjopen-;
3
6
Ĕ
ğ
ĕ
3
ğ
Ņ
-2022-067961 on 26 Apri
ž
ő
0
ž
26
≥
с П
ril 2023.
2
ω
D
ĭ
<u> </u>
ğ
ğ
d fr
d fron
d from h
oen: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http:
d from http://
d from http://bn
d from http://bmjo
tp://bmjop
tp://bmjop
tp://bmjop
d from http://bmjopen.bmj.c
tp://bmjop

B

2		
3 4	35	of the model was assessed by computing classification status based on model sensitivity and
5	36	specificity, and area under the receiver operating characteristic (ROC) curve analysis.
6 7	37	
8 9	38	Results The prevalence of stunting at baseline survey was 52.7%, whereas 50.0% were stunted at
10	39	endline survey. We found that several factors were associated with childhood stunting. The
11 12	40	sensitivity and specificity of the model were 61% and 56%, respectively. The correctly classified
13 14	41	rate was 59%, and the area under ROC curve was 0.615.
15 16	42	
17	43	Conclusion We predict that childhood stunting can only be reduced once the associated factors
18 19	44	are improved by programmes or interventions. Importantly, based on the post-estimation
20 21	45	findings and area under the ROC curve analysis, the predictive performance of the model was
22 23	46	low. As a result, the other factors that significantly influence childhood stunting that are not
24	47	included in our model urgently need to be identified.
25 26	48	
27 28	49	Study registration: RIDIE-STUDY-ID-5d5678361809b
29 30	50	
31 32	51	
33	52	Keywords: Nutrition, Statistics, epidemiology, public health
34 35	53	
36 37 38	54	Strengths and limitations of this study
39	55	• More precise anthropometry tools were used to measure the child's length
40 41	56	• The predictive performance of the logistic regression model was calculated
41	57	• To avoid seasonality, we conducted the baseline and endline surveys at the same time of
43	58	year
44 45	59	• We did not collect food intake data, but only gathered recall data from the previous 24
45 46	60	hours
47	61	Biological data were not collected
48 49	62	
50 51	63	Introduction
52 53	64	Childhood stunting, which is defined as a height/length-for-age z-score (HAZ/LAZ) < -2, is a
54 55	65	major concern for public health and has been widely used as an indicator of chronic malnutrition
56 57	66	in children ¹ . Although childhood stunting scenarios have much improved globally, the prevalence
58		2

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

of child malnutrition is still very high in low-resource settings, including countries such as Bangladesh. According to the 2018 Global Nutrition Report, 150.8 million children (22.2%) under five years-of-age are stunted globally, compared to 198.4 million (32.6%) and 165 million children in 2000 and 2011, respectively ²³. Asian countries have observed a decline in the rate of stunting among children under five from 38.1% to 23.2% between 2000 and 2018; however, the prevalence of stunting in South Asia is 38.9%, which is reported to be the highest level across this region². In Bangladesh, about 5.5 million (36%) children under five were stunted in 2014⁴, and in 2018, childhood stunting reduced to about 31% of this population ⁵. As the World Health Organization (WHO) considers a childhood stunting rate of 15% to be an emergency situation, the current prevalence of childhood stunting in Bangladesh reflects an alarming situation of chronic undernutrition [28].

Undernutrition during childhood has several causes, including poor maternal health and nutrition, low maternal education, and inadequate infant and young child feeding (IYCF) practices [28]. Moreover, evidence suggests that a number of characteristics at the household level, which relate to both children and mothers, can influence childhood stunting. The characteristics of the household head, household food insecurity, the presence of unhygienic latrines, hand-washing status, household income and savings, household involvement in several earning activities, maternal healthcare service-seeking during pregnancy, household dietary diversity, number of children, maternal nutritional profile, as well as the age and sex of the child are most often reported to be associated with stunting in the literature ⁶⁻¹¹. However, these findings are mostly based on nationally representative cross-sectional and cohort studies, or studies conducted in urban settings ¹² ¹³. Therefore, a knowledge gap exists on whether similar results would be obtained when nationwide data are compared with data for study populations from poor or very poor rural households in specific vulnerable regions.

Sylhet is one such vulnerable region of north-east Bangladesh, and is comprised of diverse terrain
such as plain land, hilly land, *Haor* (wetland), and flash flood-prone areas. This region is reported
to perform poorly for all important maternal healthcare indicators ¹⁴, despite the fact that
Bangladesh has made substantial progress in improving the overall health of the population ¹⁵.
Moreover, the socio-economic profile of the inhabitants in Sylhet region includes both very rich

Page 5 of 27

BMJ Open

and extremely poor people. This scenario may worsen without implementation of appropriate strategies in the near future. Sylhet region is also performing poorly compared to the national averages for a number of health and nutritional indicators. Critical indicators such as the infant mortality rate and unemployment status of women are high ¹². In comparison to the overall situation of Bangladesh, where stunting among children under five has decreased, the Bangladesh Demographic and Health Survey (BDHS) 2014 indicates the prevalence of childhood stunting in Sylhet is astonishingly high, at 50%¹². This alarming figure provided the rationale for implementation of a comprehensive intervention programme in this region. A large-scale nutrition programme, Suchana: Ending the Cycle of Undernutrition in Bangladesh; a multi-sectoral *nutrition programme*, was undertaken with the aim to prevent chronic malnutrition in Sylhet. The primary objective of the Suchana programme was to reduce the prevalence of childhood stunting in the intervention areas. The secondary objectives were to assess the changes in Suchana beneficiaries' households, in terms of an increase and diversification of household income, food security status, optimal infant and young child feeding (IYCF) practices, haemoglobin status of children, the empowerment of women, and adolescents' nutritional knowledge and practices.

The Suchana programme substantially improved nutritional behaviour, maternal healthcare practices, women's empowerment, household income, and household food security in the intervention area compared to the control area ¹⁶. Contrary to predictions, however, Suchana did not result in any significant reduction in the prevalence of childhood stunting. Therefore, although most other factors related to childhood stunting improved, this raises the question of why the prevalence of stunting did not reduce after the intervention. An important observation from the Suchana survey was that the proportion of households in this study population using hygienic latrines was quite low. This factor was associated with stunting in children, and did not significantly improve by endline in the intervention areas compared to the control areas.

In this study, we aimed to construct a predictive model to attempt to explain whether any improvements in associated factors may promote a significant reduction in stunting among children aged 12-23 months from poor and extremely poor households in Sylhet region. Thus, we constructed a predictive model using logistic regression analysis. This model could help to inform the development and design of future intervention studies that aim to significantly reduce the

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

prevalence of stunting in children aged 12-23 months from poor and extremely poor householdsin vulnerable regions.

7 131 8 132

- 10 133 **Methods**

134 Study design and population

Source of data: The data for this study was extracted from the evaluation data of *Suchana*, a large-scale nutrition programme. This study was performed in the population resident in Sylhet (targeting children aged 12–23 months); this region in the north-east of Bangladesh is vulnerable to natural disasters as well as the consequences of poverty ^{17 18}. A pre-post design was followed to measure the impacts on several indicators of livelihood, health, and nutrition. The study comprised a large dataset that was collected from two cross-sectional studies (baseline and endline). The baseline survey was conducted between November 2016 and February 2017, while the endline survey was undertaken three years later, during the same months. The sample size for this analysis was 9600 mother-child pairs (baseline: 3200, and endline: 6400). This sample size was estimated to be required to effectively test the hypothesis that the Suchana intervention would lead to a significant reduction in stunting among children aged 12–23 months¹⁷.

33 146

Variables under study: The outcome variable in this study was childhood stunting, which was defined as a length-for-age z-score (LAZ) \leq -2. Initially, a list of several independent variables was finalized through results obtained from descriptive and bi-variate analyses, as well as a comprehensive literature review. These included characteristics pertaining to children (age, sex, whether they received colostrum), maternal characteristics (nutritional status, whether they received at least four ANC visits by a skilled service provider, if delivery was assisted by a skilled birth attendant in a facility, their involvement in earning activities, consumption of fleshy foods, number of children in the family) and household characteristics (household food insecurity access scale [HFIAS], household size, hygienic latrine availability, water and soap available at handwashing place, household income, savings at the household level, sex of the head of the household, and active participation in aquaculture). HFIAS was measured using the Food and Nutrition Technical Assistance's Guideline, which categorizes household food insecurity into four levels: a) food secure, b) mildly food insecure, c) moderately food insecure, and d) severely food

BMJ Open

insecure ¹⁹. In the analysis herein, this indicator was redefined as a binary indicator: severely food
insecure or not severely food insecure.

163 Statistical analysis

164 Descriptive statistics: Stata-14 software (StataCorp LP, College Station, TX, USA) was used to 165 analyse the data. Several statistical plots were used for data visualization. Descriptive statistics, 166 such as frequency and proportions for categorical variables and mean and standard deviations for 167 quantitative variables, were used to summarize the data at baseline and endline.

Regression model: Due to the dichotomous outcome variable, a binary logit model was used in regression analysis to investigate which factors were significantly associated with childhood stunting, and estimate their effect size, in order to predict whether changes in behavioural practices might potentially help to achieve targeted reductions in stunting. Then, *union* was adjusted for as a cluster variable to control intra-cluster correlation. First, simple logistic regression models were used to examine the bivariate associations between stunting and all possible explanatory variables. In the second step, variables with *p*-values < 0.25 in the simple model were included in the multiple regression models ²⁰. In the final step, any independent variables thought to be likely predictors were added to the multiple regression model using the stepwise forward selection method. Some indicators, e.g., age, sex, and maternal nutritional status, were added regardless of their *p*-value due to their scientific plausibility. Furthermore, for the explanation of the regression model, a p-value <0.05 was considered as significant, and the confidence interval (CI) of 95% was also reviewed. From the fitted model, the adjusted effect size or adjusted prevalence adjusted risk difference (aRD) against all predictors was estimated using the Stata "adjrr" package.

43 183

Model evaluation: The Hosmer-Lemeshow Chi-Square test was used to test the goodness-of-fit of the model. The predictive performance was assessed by computing the classification status using model sensitivity and specificity, area under the receiver operating curve (ROC) analysis. Data were randomly split into a training set (75% of the data) and a test set (25%) to calculate the accuracy of the algorithm. The same training and test datasets were used for all algorithms and performance predictions.

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Patient and public involvement

Patients and public were not actively involved in formulating the research question and or protocol
development, including the outcome measures. To expedite the field implementation, however,
local elites e.g. teachers, religious person, and local government council members were informed
about the study.

- **Results** General characteristics: With respect to the outcome indicator, stunting in children aged 12-23 months, 52.7% of children were stunted at the baseline survey (intervention group: 52.6%; control group: 52.8%), whereas the proportion of children exhibiting stunting at endline was 50.0% (intervention: 49.9%; control: 50.1%; Figure 1). Figure 2 describes some other output indicators related to maternal and child health. Status of consuming minimum acceptable diet (intervention: 35.2%; control: 14.9%), minimum dietary diversity (intervention: 42.8%; control: 20.4%), maternal decision making (intervention: 45.0%; control: 31.0%), at least four maternal ANC visits by a skilled service provider (intervention: 36.1%; control: 17.7%), minimum dietary diversity for women (intervention: 52.6%; control: 33.5%), a household dietary diversity score of at least seven (intervention: 88.9%; control: 78.3%), and household food security status (intervention: 26.6%; control: 20.2%) were significantly improved in the intervention group compared to the control group at endline survey. The availability of hygienic latrines (intervention: 44.0%; control: 44.0%) did not increase after the intervention. The households' socio-demographic characteristics, women's general characteristics, and children's characteristics at baseline and endline are shown in Table 1.
- **2**15

216 Table 1. General characteristics of the *Suchana* beneficiaries

	Baseline	Endline	Total
Indicators, n (%)	<i>N</i> =3200	<i>N</i> =6300	<i>N</i> =9500
At least four ANC visits by a skilled service pro	ovider		
Yes	408 (12.8)	1530 (24.3)	1938 (20.4)
No	2792 (87.3)	4771 (75.7)	7563 (79.6)
Delivery at skilled birth attendant/facility			
Yes	1000 (31.3)	2769 (44)	3769 (39.7)

Indicators, n (%)	Baseline N=3200	Endline <i>N</i> =6300	Total <i>N</i> =9500
No	2200 (68.8)	3532 (56.1)	5732 (60.
Had tetanus toxoid injection	2200 (00.0)	5552 (50.1)	0702 (00.
No	834 (26.1)	1131 (18)	1965 (20.
Yes	2366 (73.9)	5170 (82.1)	7536 (79.
Mother involved in income-generating activities	2300 (73.7)	5170 (62.1)	1550 (1).
No	3102 (96.9)	5665 (89.9)	8767 (92.
Yes	. ,	639 (10.1)	· · ·
	98 (3.1)	039 (10.1)	737 (7.8)
Maternal BMI	1050 (50.1)	1072 ((1 ()	5022 ((2
BMI ≥18.5	1859 (58.1)	4073 (64.6)	5932 (62.
BMI <18.5	1341 (41.9)	2231 (35.4)	3572 (37.
Mother completed primary education			
Yes	1721 (53.8)	3808 (60.4)	5529 (58
No	1479 (46.2)	2496 (39.6)	3975 (41.
Maternal age			
Age <30 years	2145 (67)	3559 (56.5)	5704 (60)
Age \geq 30 years	1055 (33)	2745 (43.5)	3800 (40)
Type of delivery			
Normal	2879 (90)	5529 (87.8)	8408 (88.
Caesarean	321 (10)	772 (12.3)	1093 (11
PNC			× ×
No	2152 (67.3)	4128 (65.5)	6280 (66.
Yes	1048 (32.8)	2173 (34.5)	3221 (33
Household severely food insecure	1010 (52.0)	21/0 (0 1.0)	5221 (55
Yes	912 (28.5)	1016 (16.12)	1928 (20
No	2288 (71.5)	5285 (83.9)	7573 (79)
Household monthly income \geq 15000 BDT	2200 (71.5)	5265 (65.7)	1313(1)
Yes	424 (13.3)	1015 (16.1)	1439 (15
No	2776 (86.8)	5289 (83.9)	8065 (84
	2770 (80.8)	5269 (65.9)	8003 (84
Household involved with aquaculture	1(1(7)	F(1, (0, 0))	
Yes	161 (5)	561 (8.9)	722 (7.6)
No	3039 (95)	5740 (91.1)	8779 (92
Hygienic latrine			
Yes	1121 (35)	2782 (44.2)	3903 (41.
No	2079 (65)	3519 (55.9)	5598 (58
Water and soap available in handwashing place			
Yes	862 (26.9)	3170 (50.3)	4032 (42.
No	2338 (73.1)	3131 (49.7)	5469 (57
Household savings			
No	1080 (33.8)	2876 (45.6)	3956 (41.
Yes	2120 (66.3)	3425 (54.4)	5545 (58
Sex of household head	~ /	× /	,
Female	110 (3.4)	501 (8)	611 (6.4)
Male	3090 (96.6)	5799 (92.1)	8889 (93
Source of drinking water			
Tube well	2748 (85.9)	5713 (90.7)	8461 (89
Others	452 (14.1)	588 (9.3)	1040 (11
	752 (14.1)	500 (7.5)	1040 (11
Household dietary diversity score $UDDS > 7$	2192(0,0)	5222 (04 5)	7501 (70
HDDS ≥7	2182 (68.2)	5322 (84.5)	7504 (79
HDDS <7	1018 (31.8)	979 (15.5)	1997 (21)

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

2					
3			Baseline	Endline	Total
4		Indicators, n (%)	<i>N</i> =3200	<i>N</i> =6300	<i>N</i> =9500
5		Household monthly income (Thousand BDT) ¹	6.7 (5, 10)	7.5 (5.1, 10.8)	7.1 (5, 10.4)
6		Per capita income (Thousand) ¹	2.6 (1.8, 3.7)	2.9 (2, 4.1)	2.8 (2, 4)
7 8		Household size ¹	6.2±2.4	5.9±2.1	6±2.2
8 9		Child's age in months ²	17.9±3.5	17.3±3.6	17.5±3.6
10		Length-for-age z-score ²	-2.1 ± 1.2	-2±1.1	-2 ± 1.1
11		Weight-for-age z-score ²	-1.7±1.1	-1.5 ± 1.0	-1.5 ± 1.0
12		Weight-for-length z-score ²	-0.9±1.0	-0.7 ± 0.9	-0.7±1.0
13		Child's age			
14		Age <18 months	1745 (54.5)	3710 (58.9)	5455 (57.4)
15		Age ≥ 18 months	1455 (45.5)	2594 (41.2)	4049 (42.6)
16		Child's sex			
17		Female	1567 (49)	3044 (48.3)	4611 (48.5)
18		Male	1633 (51)	3257 (51.7)	4890 (51.5)
19		Child experienced respiratory illness in last 15 days			
20		Yes	2867 (89.6)	5763 (91.5)	8630 (90.8)
21		No	333 (10.4)	538 (8.5)	871 (9.2)
22	217	¹ Median (IQR); ² Mean ± SD.			3 2
23	218				
24					

Associated factors: The factors associated with childhood stunting as determined by model fitting are shown in Table 2. Less than four ANC visits [aOR: 1.16 (95% CI: 1.05, 1.30); P=0.005], unskilled birth attendant/facility [aOR: 1.11 (95% CI: 1.02, 1.20); P=0.012], mother involved in income-generating activities [aOR: 1.18 (95% CI: 1.02, 1.37); P=0.030], maternal BMI <18.5 [aOR: 1.23 (95% CI: 1.12, 1.36); P<0.001], maternal education: no schooling [aOR: 1.31 (95% CI: 1.20, 1.42); P<0.001], household severely food insecure [aOR: 1.12 (95% CI: 1.00, 1.24); P=0.041], household monthly income <15000 BDT [aOR: 1.12 (95% CI: 1.01, 1.25); P=0.037], household not involved with aquaculture [aOR: 1.19 (95% CI: 1.03, 1.38); P=0.018], having an unhygienic latrine [aOR: 1.20 (95% CI: 1.10, 1.30); P<0.001], no soap available in handwashing place [aOR: 1.19 (95% CI: 1.08, 1.30); P<0.001], household size >7 [aOR: 1.20 (95% CI: 1.11, 1.31); P<0.001], household dietary diversity score <7 [aOR: 1.17 (95% CI: 1.07, 1.29); P=0.001], child's age >18 months [aOR: 1.52 (95% CI: 1.39, 1.67); P<0.001], child's sex: male [aOR: 1.22 (95% CI: 1.11, 1.34); P<0.001], childhood illness in the last 15 days [aOR: 1.20 (95% CI: 1.06, 1.36); P=0.003], and no access to mass media [aOR: 1.15 (95% CI: 1.02, 1.30); P=0.025] were associated with childhood stunting. Predictive ability of various indicators for the adjusted prevalence of stunting and adjusted prevalence difference (effect size) are given in Supplementary Table 1.

Indicators	Unadjusted OR (95% CI)	p-value	Adjusted OR (95% CI)	p-v
At least four ANC visi	ts by a skilled service provider	ſ		
Yes	Reference		Reference	
No	1.40 (1.26, 1.56)	< 0.001	1.16 (1.05, 1.30)	0.0
Birth attendant/facility				
Skilled	Reference		Reference	
Unskilled	1.29 (1.20, 1.39)	< 0.001	1.11 (1.02, 1.20)	0.0
Mother involved in inc	come-generating activities			
No	Reference		Reference	
Yes	1.12 (0.97, 1.29)	0.116	1.18 (1.02, 1.37)	0.0
Maternal BMI				
BMI≥18.5				
BMI <18.5	1.31 (1.19, 1.45)	< 0.001	1.23 (1.12, 1.36)	<0
Maternal education wa	as primary completed			
Yes	Reference		Reference	
No	1.51 (1.39, 1.64)	< 0.001	1.31 (1.20, 1.42)	<0
HH food insecurity				
Below severe				
Severe	1.34 (1.21, 1.48)	< 0.001	1.12 (1.00, 1.24)	0.0
HH monthly income \geq	15000 BDT			
Yes	Reference		Reference	
No	1.25 (1.13, 1.37)	< 0.001	1.12 (1.01, 1.25)	0.0
Involved with aquacul	ture			
Yes	Reference		Reference	
No	1.34 (1.16, 1.54)	< 0.001	1.19 (1.03, 1.38)	0.0
Hygienic latrine				
Yes	Reference		Reference	
No	1.38 (1.28, 1.50)	< 0.001	1.20 (1.10, 1.30)	<0
Water and soap availa	ble in handwashing place			
Yes	Reference		Reference	
No	1.38 (1.26, 1.52)	< 0.001	1.19 (1.08, 1.30)	<0
HH size				
Below seven	Reference		Reference	
Seven or above	1.19 (1.10, 1.29)	< 0.001	1.20 (1.11, 1.31)	<0
HH dietary diversity				
HDDS >7	Reference		Reference	
HDDS <7	1.32 (1.20, 1.44)	< 0.001	1.17 (1.07, 1.29)	<0
Child's age				
Age ≤ 18 months	Reference		Reference	
Age >18 months	1.49 (1.36, 1.63)	< 0.001	1.52 (1.39, 1.67)	<0
Child's sex	()			0
Female	Reference		Reference	
Male	1.23 (1.12, 1.34)	< 0.001	1.22 (1.11, 1.34)	<0
Childhood illness in th	· · · · · · · · · · · · · · · · · · ·	0.001	1.22 (1.11, 1.51)	
No	Reference		Reference	
Yes	1.16 (1.03, 1.31)	0.016	1.20 (1.06, 1.36)	0.0
Access of mass media		0.010	1.20 (1.00, 1.50)	0.0
Yes	Reference		Reference	
No	1.39 (1.22, 1.58)	< 0.001	1.15 (1.02, 1.30)	0.0

239 Unions were adjusted as clusters. Baseline and endline were adjusted as time variables.

Model diagnostics: The Chi-square value for the Hosmer-Lemeshow goodness-of-fit test was 9482 (P=0.430), which indicated that the model was a good fit. Figure 3A describes the model validation based on sensitivity, specificity, and whether the model was correctly classified for the overall dataset, as well as the training and test datasets. The sensitivity and specificity of the model were 61% and 56%, respectively. The correctly classified rate was 59%, and the area under ROC curve was 0.615 (Figure 3B). We found that these values were approximately equal among the three datasets (main, training, and test datasets); however, the predictive performance of the model was low.

- 22 250
- 24 251

252 Discussion

This study examined data collected during the baseline and endline surveys of the Suchana programme to identify factors significantly associated with childhood stunting, with the goal of understanding why this programme did not significantly reduce the prevalence of childhood stunting. After controlling for *union* as a cluster variable, we found numerous factors were significantly associated with stunting, including less than four maternal ANC visits by a skilled service provider, unskilled birth attendant in facility, mothers being involved in earning activities, maternal BMI <18.5, maternal education: no schooling, households being severely food insecure, household monthly income <15000 BDT, no household involvement with aquaculture, having an unhygienic latrine, unavailability of soap in handwashing place, male head of the household, household size >7, household dietary diversity score <7, child's age in months, if the child was male, or if the child experienced respiratory illness in the last 15 days.

46 264

Of these indicators, the status of ANC visits by a skilled service provider, household dietary diversity, household food security, and household monthly income improved after the intervention. Notably, household food security status did not reach its target value of 50%, and this is an important factor associated with childhood stunting ⁶²¹²². Other *Suchana* outcome indicators, such as the dietary diversity of children, maternal dietary diversity, and maternal empowerment, were Page 13 of 27

BMJ Open

not associated with stunting in this study. We found a negative association between stunting and
maternal involvement in income-generating activities, which means the risk of stunting was higher
among children whose mothers were involved in various types of earning activities. The proportion
of mothers involved in income-generating activities increased after the study, although the increase
was very small.

The current study indicates that although some programme indicators improved significantly after the intervention, the *Suchana* programme did not lead to a significant reduction in the prevalence of childhood stunting. The most important factors associated with childhood stunting, such as maternal nutrition and education, having a hygienic latrine, soap being available in handwashing places, and improved sources of drinking water, were not improved after the intervention. More so, both maternal education and nutrition are factors that can only be improved on the large-scale when appropriate measures are taken at the policy-level.

This study will help programme managers to prioritize attention when designing appropriate interventions to reduce childhood stunting. In our evaluation study, some important indicators such as maternal undernutrition, low levels of maternal education, household food insecurity, households not being involved with aquaculture, unsanitary latrines, lack of soap in the handwashing place, and child morbidity did not improve—as expected. Therefore, one would only expect childhood stunting to reduce to the target level once these factors are improved or addressed by future programmes/interventions. Implementing short-term initiatives could help to improve some of these factors. Per se, attending courtyard workshops and campaigns organized by healthcare practitioners can boost ANC visits, skilled birth attendance and handwashing practices. Greater access to the media can help people in these vulnerable communities to receive the full benefits of government welfare programs. Simply purchasing media and information gadgets can boost households' access to mass media. Food security, income, sanitation, aquaculture, and illness are all time-dependent factors. For instance, to reduce household food insecurity, the yields of produce need to be increased through self-production or purchases to fulfil the dietary demands of all household members. However, a family's ability to acquire appropriate food is also impacted by the family's wealth index, not to mention the number of accessible marketplaces nearby; however, amelioration of all these elements takes a considerable amount of time. Increasing

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

production yields through self-production is also time-consuming. Promotion of aquaculture during the Suchana programme increased the availability of fish and provided a viable source of protein, which resulted in better nutrition and food security; however, establishing such facilities also takes a significant amount of time. Furthermore, improved sanitation can only be facilitated by improving socioeconomic status, which is also a time-intensive process. National surveys, including the BDHS and The Food Security and National Surveillance Project (FSNSP) have indicated a substantial amount of time is required to improve stunting. To improve maternal nutrition, women should be provided with adequate food to improve their nutritional status during adolescence, as children born to malnourished mothers are at a higher risk of malnutrition. Moreover, according to a previous literature review, a mother's education is a strong predictor of her child's nutritional status. Childhood stunting is significantly associated with the level of maternal education, with the children of mothers with either no or less than secondary education at higher risk of stunting compared to the children of mothers that have completed secondary education or more. Moreover, emphasis on the education of female children may contribute to breaking the vicious cycle of poverty and childhood stunting in developing countries like Bangladesh. However, both maternal education and nutrition can only be improved on the largescale only when appropriate measures are taken at the policy level. In addition, comprehensive initiatives to encourage income-generating activities among women and address domestic violence against women should be implemented to help reduce childhood stunting in developing countries.

Another important finding based on the post-estimation findings as well as the value of the area under the ROC curve was that the predictive performance of the model was low. Thus, we need to identify other the indicators that influence childhood stunting that were not included in our model. From the literature, environmental enteropathy has been implicated in poor growth among children in rural Bangladesh²³. Environmental enteropathy may also represent an important hidden factor with respect to the Suchana study population. While it was not assessed in this study, some indicators of the enteropathogen burden—such as unsanitary latrines, low education, unimproved floors, and a lack of handwashing practice-were available in this study ^{13 24}. Poultry was one of the intervention components. Our qualitative findings revealed that the people in the majority of households were living in the same place as their poultry, ducks, or other animals, which may increase the risk of infections with *Campylobacter* species, a leading food-borne pathogen ^{13 25}.

Page 15 of 27

339

BMJ Open

1	
2	
_	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
51	
52	
53	

Studies have provided evidence of a strong association between stunting and enteropathy among children who fail to respond to nutritional interventions ²⁶. Findings from rural Bangladesh have also shown significant associations between environmental conditions and stunting in children ²⁷ ²⁸. However, assessment of environmental enteropathy was beyond the scope of the *Suchana* evaluation. For evaluation purposes, evaluation teams could collect data on indicators of enteropathy in the intervention and control areas, and then use the model to assess the impact of appropriate interventions.

The large sample size, randomization, and appropriate sampling techniques were among the major 340 strengths of this study. There was a dedicated quality control team who were involved in checking 341 data by re-visiting randomly selected households which had been used to previously collect data. 342 We used highly precise anthropometry instruments, and the anthropometry measurement team 343 received separate training from a qualified trainer. To avoid seasonality, we conducted the baseline 344 and endline surveys at the same time of year. Among the limitations of this study is the fact that 345 we did not collect food intake data, but only gathered recall data from the previous 24 hours. These 346 347 data may be subject to recall bias, thus caution is necessary when drawing conclusions, especially for indicators such as dietary diversity, household food insecurity, domestic violence, and maternal 348 349 healthcare.

, 5 351

57 58

59

60

350

352 Conclusion

353 By acknowledging that undernutrition is a complex problem caused by a variety of factors, the Suchana model offers a holistic and integrated approach to tackling food and nutrition security. 354 355 The endline survey showed many of the programme indicators improved considerably as a result 356 of the intervention. Our model revealed that ANC visits, being attended by an unskilled birth attendant, maternal income-generating activities, maternal undernutrition, maternal education, 357 food security, household income, participation in aquaculture, an unhygienic latrine, a lack of soap 358 availability, male household head, household size, dietary diversity score, child's age, a male child, 359 360 and childhood respiratory illness were all associated with stunting. However, the performance of our predictive model was low. Ultimately, the design of Suchana offers a meaningful solution to 361 54 55 tackle undernutrition through a multi-sector approach. However, 362 some additional 56

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

recommendations related to both nutrition-sensitive and specific activities can be made, which could be taken on board and put into action by policy makers. Food security status should be improved through sustainable mechanisms. Climate-resilient agricultural technologies should be constantly promoted and effectively monitored as a component of recommended improved agricultural strategies. Improved capacity for preparedness and response plans against flooding are also required, so that poor people are not continuously set back by shocks. Coverage for water, sanitation, and hygiene must be increased at the community level. However, the Suchana programme, one of the largest nutrition interventions ever implemented globally, successfully led to positive changes in most critical study indicators. Long-term positive changes in the health and livelihoods of the beneficiaries are expected in the years to follow.

Acknowledgments: The study analyzed baseline survey data of Suchana; this intervention has been implemented by a consortium led by Save the Children, with support from the Foreign, Commonwealth and Development Office (FCDO) and European Union (EU). icddr,b acknowledges with gratitude the commitment of Save the Children, FCDO and EU to its research efforts. We also acknowledge with gratitude the commitment of the Government of the People's Republic of Bangladesh to icddr,b's research activities. We also acknowledge the following donors for providing unrestricted support to icddr,b's efforts and advancement of its strategic plan: Canada, Sweden and the United Kingdom. We gratefully acknowledge our core donors for their support and commitment to icddr,b's research efforts. We would like to acknowledge the invaluable contributions of Save the Children as lead agency, our technical partners Helen Keller International, World Fish, and International Development Enterprises, and the implementing partners Friends In Village Development Bangladesh (FIVDB), Rangpur Dinajpur Rural Services (RDRS), and the Center for Natural Resource Studies (CNRS) who played critical roles in generating and refining the data-collection tools. We would also like to acknowledge Andrea Devlin of Science Editing Experts for editing and linguistic revision of the manuscript.

Funding: (i) This study was made possible by the committed contribution of Foreign,
Commonwealth and Development Office (Grant number: 204131-103), and (ii) icddr,b (N/A).

BMJ Open

Conflicts of Interest: The authors declare no conflict of interest. Author Contributions: TA and NC originated the idea for the study and led the protocol design. MAH conceptualized the manuscript. SMTA, SSR, MJR, MAH, NC, FDF, and TA contributed to the survey design. MAH performed statistical analysis and drafted the manuscript. NC and ASGF supervised the work, and critically reviewed and provided feedback for revising the manuscript. MAH, NC, MA, FDF, FN, AK, RA, BZW, TJS, ASGF, TA, and SSR contributed to the revision of the final draft for submission. All authors are responsible for the final content of the manuscript. Ethics approval: This study was approved by the Research Review Committee and Ethical Review Committee, the two obligatory components of the Institutional Review Board (IRB) of icddr,b (PR-16020). Informed written consent was obtained from study participants. Data availability statement: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy and Ωα.. ethical restrictions.

1 2		
2 3 4	412	Reference
5 6	413 414	1. Bari A, Nazar M, Iftikhar A, et al. Comparison of Weight-for-Height Z-score and Mid-Upper
7	415	Arm Circumference to Diagnose Moderate and Severe Acute Malnutrition in children aged 6-59
8 9	416	months. Pakistan journal of medical sciences 2019;35(2):337-41. doi: 10.12669/pjms.35.2.45
10 11 12	417	[published Online First: 2019/05/16]
13 14	418	2. Development Initiatives. 2018 Global Nutrition Report: Shining a light to spur action on
15 16 17	419	nutrition. Bristol, UK: Development Initiatives, 2018.
18 19	420	3. United Nations Children's Fund (UNICEF), World Health Organization, International Bank
20 21	421	for Reconstruction and Development/The World Bank. Levels and trends in child malnutrition:
22 23	422	Key Findings of the 2020 Edition of the Joint Child Malnutrition Estimates. Geneva: World
24 25	423	Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO., 2020.
26		
27 28	424	4. USAID. Bangladesh: Nutrition Profile, 2018.
29 30		
31	425	5. National Institute of Population Research and Training (NIPORT), ICF. Bangladesh
32 33	426	Demographic and Health Survey 2017-18: Key Indicators. NIPORT and ICF: Dhaka,
34 35 36	427	Bangladesh and Rockville, Maryland, USA, 2019.
37 38	428	6. Choudhury N, Raihan MJ, Sultana S, et al. Determinants of age-specific undernutrition in
39	429	children aged less than 2 years-the Bangladesh context. Maternal & child nutrition 2017;13(3)
40 41	430	[published Online First: 2016/10/19]
42 43		
44	431	7. Hasan M, Sutradhar I, Shahabuddin A, et al. Double Burden of Malnutrition among
45 46	432	Bangladeshi Women: A Literature Review. Cureus 2017;9(12)
47 48		
49 50	433	8. Balarajan Y, Villamor E. Nationally representative surveys show recent increases in the
51	434	prevalence of overweight and obesity among women of reproductive age in Bangladesh, Nepal,
52 53	435	and India. The Journal of nutrition 2009;139(11):2139-44. [published Online First: 2009/09/25]
54 55		
56		
57 58		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 27

BMJ Open

1 2		
3 4	436	9. Khan MM, Kraemer A. Factors associated with being underweight, overweight and obese
5	437	among ever-married non-pregnant urban women in Bangladesh. Singapore medical journal
6 7 8	438	2009;50(8):804-13. [published Online First: 2009/08/28]
9 10	439	10. Kamal SM, Hassan CH, Alam GM. Dual burden of underweight and overweight among
11 12	440	women in Bangladesh: patterns, prevalence, and sociodemographic correlates. Journal of Health,
13 14 15	441	Population and Nutrition 2015;33(1):92-105. [published Online First: 2015/05/23]
16 17	442	11. Corsi DJ, Kyu HH, Subramanian SV. Socioeconomic and geographic patterning of under-
18 19	443	and overnutrition among women in Bangladesh. The Journal of nutrition 2011;141(4):631-8.
20 21	444	[published Online First: 2011/02/25]
22 23	445	12. National Institute of Population Research and Training - NIPORT/Bangladesh, Mitra and
24 25	446	Associates, ICF International. Bangladesh Demographic and Health Survey 2014. NIPORT,
26 27	447	Mitra and Associates, and ICF International: Dhaka, Bangladesh and Rockville, Maryland, USA,
28 29 30	448	2016.
31 32	449	13. Haque MA, Platts-Mills JA, Mduma E, et al. Determinants of Campylobacter infection and
33 34	450	association with growth and enteric inflammation in children under 2 years of age in low-
35 36 37	451	resource settings. Scientific reports 2019;9(1):17124. [published Online First: 2019/11/22]
38	452	14. Helen Keller International (HKI) and James P. Grant School of Public Health (JPGSPH).
39 40 41 42	453	State of food security and nutrition in Bangladesh 2013. HKI and JPGSPH, 2014.
43	454	15. Yaya S, Bishwajit G, Ekholuenetale M, et al. Awareness and utilization of community clinic
44 45	455	services among women in rural areas in Bangladesh: A cross-sectional study. PLOS ONE
46 47 48	456	2017;12(10):e0187303. doi: 10.1371/journal.pone.0187303
49 50	457	16. Haque MA, Choudhury N, Ahmed SMT, et al. The large-scale community-based programme
51 52	458	'Suchana' improved maternal healthcare practices in north-eastern Bangladesh: Findings from a
53 54	459	cluster randomized pre-post study. Maternal & child nutrition 2022;18(1):e13258. doi:
55 56	460	https://doi.org/10.1111/mcn.13258
50 57 58		18
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

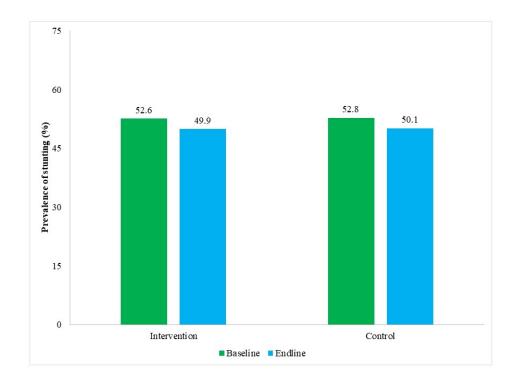
2		
3 4	461	17. Choudhury N, Raihan MJ, Ahmed SMT, et al. The evaluation of Suchana, a large-scale
5	462	development programme to prevent chronic undernutrition in north-eastern Bangladesh. BMC
6 7 8	463	public health 2020;20(1):744. [published Online First: 2020/05/24]
9 10	464	18. Haque MA, Choudhury N, Ahmed SMT, et al. Factors associated with domestic violence in
11 12 13	465	rural Bangladesh. Journal of Interpersonal Violence 2020;37(3-4):1248-69.
14 15	466	19. Coates J, Swindale A, Bilinsky P. Household Food Insecurity Access Scale (HFIAS) for
16 17	467	measurement of food access: indicator guide (v. 3). Washington, D.C.: Food and Nutrition
18 19 20	468	Technical Assistance Project, Academy for Educational Development 2007.
21 22	469	20. Bursac Z, Gauss CH, Williams DK, et al. Purposeful selection of variables in logistic
23 24 25	470	regression. <i>Source code for biology and medicine</i> 2008;3:17.
26 27	471	21. Weatherspoon DD, Miller S, Ngabitsinze JC, et al. Stunting, food security, markets and food
28 29	472	policy in Rwanda. BMC public health 2019;19(1):882. doi: 10.1186/s12889-019-7208-0
30 31 32	473	[published Online First: 2019/07/06]
33 34	474	22. Agho KE, Mukabutera C, Mukazi M, et al. Moderate and severe household food insecurity
35	475	predicts stunting and severe stunting among Rwanda children aged 6-59 months residing in
36 37	476	Gicumbi district. Maternal & child nutrition 2019;15(3):e12767. doi: 10.1111/mcn.12767
38 39 40	477	[published Online First: 2018/12/15]
41 42	478	23. Lin A, Arnold BF, Afreen S, et al. Household environmental conditions are associated with
43 44	479	enteropathy and impaired growth in rural Bangladesh. The American journal of tropical
45	480	medicine and hygiene 2013;89(1):130-37. doi: 10.4269/ajtmh.12-0629 [published Online First:
46 47 48 49	481	2013/05/01]
50	482	24. Amour C, Gratz J, Mduma E, et al. Epidemiology and Impact of Campylobacter Infection in
51 52	483	Children in 8 Low-Resource Settings: Results From the MAL-ED Study. Clin Infect Dis
53 54 55 56	484	2016;63(9):1171-79. doi: 10.1093/cid/ciw542 [published Online First: 08/07]
57 58 59		19
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 27

59

60

BMJ Open

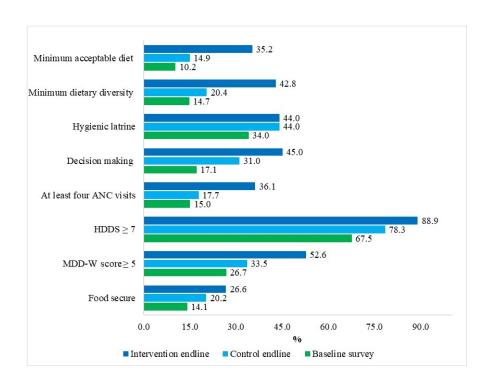

00	
Š	
0	
pe	
Ë.	
fir	
약 구	
ŭ	
Slice	
ĥ	
ď	
as	
1	
3	
6/	
Ĕ	
jö	
ĕ	
pen-2022-067961 on 26 April 2023. E	
Ő	
Ņ	
6	
79	
6	
₽	
6	
Ą	
ĩ.	
20	
23	
ğ	
ß	
⁰	
đ	
ŏ	
ed fro	
ed from	
ed from ht	
ed from http:	
ed from http://b	
ed from http://bmj	
ed from http://bmjop	
ed from http://bmjopen	
BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.br	
d from http://bmjopen.bmj.	
ed from http://bmjopen.bmj.co	
ed from http://bmjopen.bmj.com/	
d from http://bmjopen.bmj.com/ or	
d from http://bmjopen.bmj.com/ on A	
d from http://bmjopen.bmj.com/ on Apri	
d from http://bmjopen.bmj.com/ on April 1	
mj.com/ on April 19,	
d from http://bmjopen.bmj.com/ on April 19, 20	
mj.com/ on April 19,	
mj.com/ on April 19, 2024 by guest.	
mj.com/ on April 19, 2024 by guest.	
mj.com/ on April 19, 2024 by guest.	
mj.com/ on April 19, 2024 by guest.	
mj.com/ on April 19, 2024 by guest.	
mj.com/ on April 19, 2024 by guest.	
mj.com/ on April 19, 2024 by guest.	
mj.com/ on April 19, 2024 by guest.	

1 2		
3	485	25. Smith S, Meade J, Gibbons J, et al. The impact of environmental conditions on
4 5	486	Campylobacter jejuni survival in broiler faeces and litter. Infect Ecol Epidemiol 2016;6:31685-
6 7 8	487	85. doi: 10.3402/iee.v6.31685
9 10 11	488	26. Chen RY, Kung VL, Das S, et al. Duodenal Microbiota in Stunted Undernourished Children
12 13	489	with Enteropathy. 2020;383(4):321-33.
14 15 16	490	27. George CM, Oldja L, Biswas SK, et al. Fecal markers of environmental enteropathy are
17 18	491	associated with animal exposure and caregiver hygiene in Bangladesh. 2015;93(2):269-75.
19 20 21	492	28. Perin J, Burrowes V, Almeida M, et al. A Retrospective Case-Control Study of the
22	493	Relationship between the Gut Microbiota, Enteropathy, and Child Growth. 2020:tpmd190761.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 45 55 56	494 495	Relationship between the Gut Microbiota, Enteropathy, and Child Growth. 2020:tpmd190761.
57 58		20

Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline compared to endline.

Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS: household dietary diversity score, MDD-w: minimum dietary diversity for women.

Figure 3. (A) Predictive performance of the model for stunting based on classification, sensitivity, and specificity in the full, training and test datasets. (B) Area under the receiver operating characteristic (ROC) curve analysis of the predictive performance of the logistic unting. regression model for stunting.


Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline compared to endline.

254x190mm (96 x 96 DPI)

Page 24 of 27

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

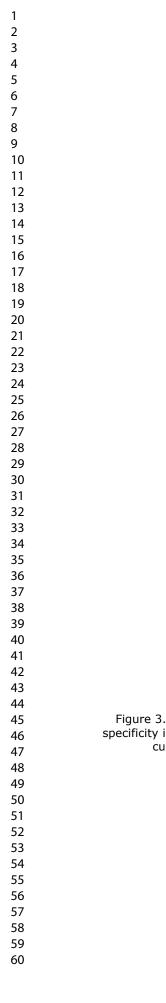

BMJ Open

Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS: household dietary diversity score, MDD-w: minimum dietary diversity for women.

254x190mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

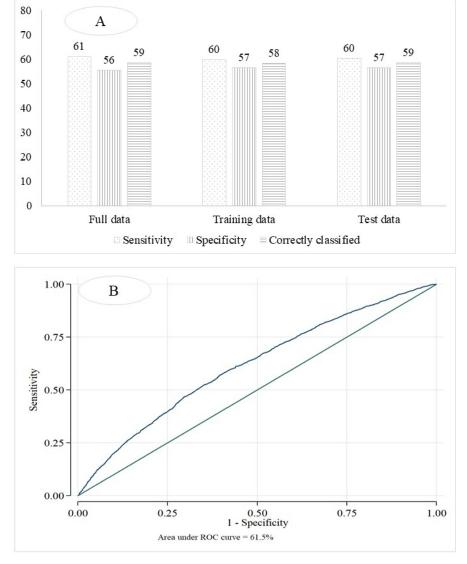


Figure 3. (A) Predictive performance of the model for stunting based on classification, sensitivity, and specificity in the full, training and test datasets. (B) Area under the receiver operating characteristic (ROC) curve analysis of the predictive performance of the logistic regression model for stunting.

203x254mm (96 x 96 DPI)

	Prediction of adjusted stunting [% (95% CI)]	Prediction of adjusted prevalence difference as effect size [*]	p-value
At least four ANC	visits by a skilled service provider		
Yes	51.64 (50.05, 53.23)	Reference	
No	47.99 (45.46, 50.53)	3.65 (1.07, 6.22)	0.006
Birth attendant/fac			
Skilled	51.87 (50.23, 53.51)	Reference	0.000
Unskilled	49.42 (47.48, 51.36)	2.45 (0.55, 4.35)	0.012
Mother involved in	income-generating activities		
No	54.55 (50.90, 58.19)	Reference	0.000
Yes	50.59 (49.08, 52.11)	3.95 (0.40, 7.51)	0.029
Maternal BMI			
BMI≥18.5	54.04 (52.01, 56.07)	Reference	0.000
BMI <18.5	49.01 (47.21, 50.81)	5.03 (2.66, 7.41)	0.000
Maternal education	was primary completed		
Yes	54.66 (52.58, 56.74)	Reference	0.000
No	48.21 (46.67, 49.75)	6.45 (4.49, 8.40)	0.000
HH food insecurity			
Below severe	53.03 (50.91, 55.15)	Reference	0.000
Severe	50.36 (48.63, 52.09)	2.66 (0.11, 5.22)	0.041
HH monthly incom			
Yes	51.31 (49.79, 52.84)	Reference	0.000
No	48.58 (45.86, 51.30)	2.73 (0.17, 5.30)	0.037
Involved with aqua			
Yes	51.22 (49.72, 52.72)	Reference	0.000
No	46.99 (43.30, 50.69)	4.23 (0.73, 7.73)	0.018
Hygienic latrine			
Yes	52.67 (50.94, 54.4)	Reference	0.000
No	48.36 (46.5, 50.23)	4.31 (2.34, 6.28)	0.000
Water and soap ava	ailable in handwashing place		
Yes	52.64 (50.71, 54.58)	Reference	0.000
No	48.54 (46.74, 50.33)	4.10 (1.83, 6.38)	0.000
HH size			
Below seven	53.86 (51.98, 55.74)	Reference	0.000
Seven or above	49.41 (47.70, 51.13)	4.44 (2.43, 6.46)	0.000
HH dietary diversit			
HDDS ≥ 7	53.92 (51.25, 56.60)	Reference	0.000
HDDS $\overline{<7}$	50.10 (48.70, 51.50)	3.83 (1.63, 6.02)	0.000
Child's age			
Age ≤ 18 months	56.72 (54.77, 58.67)	Reference	0.000
Age >18 months	46.59 (44.82, 48.35)	10.1 (7.94, 12.32)	0.000
Child's sex			
Female	53.25 (51.17, 55.34)	Reference	0.000
Male	48.40 (46.78, 50.03)	4.85 (2.59, 7.10)	0.000
Childhood illness in			
No	54.90 (52.04, 57.77)	Reference	0.000
Yes	50.49 (48.94, 52.05)	4.41 (1.48, 7.34)	0.003
Access of mass med			0.000
Yes	51.51 (49.88, 53.15)	Reference	0.000
No	48.13 (45.39, 50.88)	3.38 (0.42, 6.34)	0.028

*Differences in the predicted values of stunting between the two groups were calculated using the Stata "*adjrr*" package.

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2
Introduction			1
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			1
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of	5-6
Setting	3	recruitment, exposure, follow-up, and data collection	3-0
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	5-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	5-6
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	5-6
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	10
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	5-6
Statistical methods	12	applicable, describe which groupings were chosen and why (<i>a</i>) Describe all statistical methods, including those used to control for	6-7
Statistical methods	12	confounding	0-/
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	6-7
		(e) Describe any sensitivity analyses	
Results			1
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	7
1 articipants	15	potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
Descriptions data	1.4*	(c) Consider use of a flow diagram	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	7
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
Quitagma data	15*	interest Report numbers of outcome quents or summary measures	7
Outcome data	15*	Report numbers of outcome events or summary measures	7
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	7-8
		estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
20 21
21
22
23
24
25
25
26
27
28
29
30
30
31
32
33
34
54
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
55
54
55
56
57
50
59
<u> </u>

1 2

		(b) Report category boundaries when continuous variables were	
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	7-8
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	
		and sensitivity analyses	
Discussion			_
Key results	18	Summarise key results with reference to study objectives	8-9
Limitations	19	Discuss limitations of the study, taking into account sources of potential	10
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	9-10
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	9-10
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	13
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

A predictive modelling approach to illustrate factors correlating with stunting

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067961.R1
Article Type:	Original research
Date Submitted by the Author:	03-Jan-2023
Complete List of Authors:	Haque, Md; ICDDRB Choudhury, Nuzhat; ICDDRB Wahid, Barbie Zaman; ICDDRB Ahmed, SM Tanvir ; Save the Children Bangladesh Farzana, Fahmida Dil; ICDDRB Ali, Mohammad; ICDDRB Naz, Farina; ICDDRB Siddiqua, Towfida Jahan ; Johns Hopkins University, Bangladesh Rahman, Shahed ; Save the Children Bangladesh Faruque, ASG; ICDDRB Ahmed, Tahmeed; ICDDRB
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Nutrition < TROPICAL MEDICINE, STATISTICS & RESEARCH METHODS, EPIDEMIOLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

2		
3 4	1	A predictive modelling approach to illustrate factors correlating with stunting
5 6	2	
7	3	Md Ahshanul Haque ^{1*} , Nuzhat Choudhury ^{1,4} , Barbie Zaman Wahid ¹ , SM Tanvir Ahmed ² ,
8 9	4	Fahmida Dil Farzana ¹ , Mohammad Ali ¹ , Farina Naz ¹ , Towfida Jahan Siddiqua ³ , Sheikh Shahed
10 11	5	Rahman ² , ASG Faruque ¹ , Tahmeed Ahmed ¹
12	6	
13 14	7	¹ Nutrition and Clinical Services Division, icddr,b, Dhaka, 1212, Bangladesh
15 16	8	² Child Poverty Sector, Save the Children Bangladesh, Dhaka, Bangladesh
17	9	³ Johns Hopkins University, Bangladesh
18 19	10	⁴ Durham University, Durham, United Kingdom
20 21	11	
22	12	* Correspondence: Md Ahshanul Haque, Assistant Scientist, Nutrition and Clinical Services
23 24	13	Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh,
25 26	14	Email: <u>ahshanul.haque@icddrb.org</u>
27	15	
28 29	16	Word count: 4165 Abstract
30 31	17	
32 33	18	Abstract
34 35	19	Objective The goal of this study was to construct a predictive modelling approach using logistic
36	20	regression analysis. We propose that such a model may help to develop an intervention study to
37 38	21	significantly reduce the prevalence of stunting among children aged 12-23 months.
39 40	22	
41	23	Design A cluster randomized pre-post design was followed to measure the impacts on several
42 43	24	indicators of livelihood, health, and nutrition. The study comprised a large dataset that was
44 45	25	collected from two cross-sectional studies (baseline and endline).
46 47	26	
48	27	Setting This study was conducted in the northeastern Bangladeshi city of Sylhet, which is
49 50 51 52	28	vulnerable to both natural catastrophes and the consequences of poverty. It specifically targeted
	29	children between the ages of 12 and 23 months.
53 54	30	
55		
56 57		
58 59		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3 of 36

BMJ Open

1 2							
3	31	Main outcome measures The outcome variable in this study was childhood stunting, which was					
4 5 6 7	32	defined as a length-for-age z-score (LAZ) <-2. A multiple logistic regression model was					
	33	established to predict the factors associated with childhood stunting. The predictive performance					
8 9	34	of the model was assessed by computing classification status based on model sensitivity and					
10	35	specificity, and area under the receiver operating characteristic (ROC) curve analysis.					
11 12	36						
13 14	37	Results The prevalence of stunting at baseline survey was 52.7%, whereas 50.0% were stunted at					
15 16	38	endline survey. We found that several factors were associated with childhood stunting. The					
17	39	sensitivity and specificity of the model were 61% and 56%, respectively. The correctly classified					
18 19	40	rate was 59%, and the area under the ROC curve was 0.615.					
20 21	41						
22 23	42	Conclusion Based on the post-estimation findings and area under the ROC curve analysis, the					
24	43	predictive performance of the model was low. As a result, it is urgently necessary to identify the					
25 26	44	other factors that significantly influence on childhood stunting but are not included in our model					
27 28	45	and were unavailable in the database.					
29 30	46						
31	47	Study registration: RIDIE-STUDY-ID-5d5678361809b					
32 33	48						
34 35	49	Keywords: Nutrition, Statistics, Epidemiology, Public health					
36 37	50						
38	51	Strengths and limitations of this study					
39 40	52	 More precise anthropometry tools were used to measure the child's length 					
41 42	53	• Both parametric and non-parametric models were used and the predictive performance of					
43 44	54	the analytical models was calculated					
45	55	• To avoid seasonality, we conducted the baseline and endline surveys at the same time of					
46 47	56	year					
48 49	57	• We did not collect food intake data, but only gathered recall data from the previous 24					
50 51	58	hours					
52	59	Biological data were not collected					
53 54	60						
55 56	61						
57 58		2					
59 60		Z For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

62 Introduction

Childhood stunting, which is defined as length-for-age z-score (LAZ) ≤ -2 , is a major concern for public health and has been widely used as an indicator of chronic malnutrition in children ¹. Although childhood stunting scenarios have much improved globally, the prevalence of child malnutrition is still very high in low-resource settings, including countries such as Bangladesh. According to the 2018 Global Nutrition Report, 150.8 million children (22.2%) under five years-of-age are stunted globally, compared to 198.4 million (32.6%) and 165 million children in 2000 and 2011, respectively ²³. Asian countries have observed a decrease in the rate of stunting among children under five from 38.1% to 23.2% between 2000 and 2018; nevertheless, South Asia still has the highest prevalence of stunting across the region, at 38.9%.². In Bangladesh, about 5.5 million (36%) children under five were stunted in 2014⁴, however by 2018, childhood stunting has reduced to about 31%⁵. As the World Health Organization (WHO) considers a childhood stunting rate of 15% to be an emergency situation, the current prevalence of childhood stunting in Bangladesh reflects an alarming situation of chronic undernutrition [28].

Undernutrition during childhood has several causes, including poor maternal health and nutrition, low maternal education, and inadequate infant and young child feeding (IYCF) practices [28]. Moreover, evidence suggests that a number of characteristics at the household level, which relate to both children and mothers, can influence childhood stunting. The characteristics of the household head, household food insecurity, the presence of unhygienic latrines, hand-washing status, household income and savings, household involvement in several earning activities, maternal healthcare service-seeking during pregnancy, household dietary diversity, number of children, maternal nutritional profile, as well as the age and sex of the child are most often reported to be associated with stunting in the literature ⁶⁻¹¹. However, these findings are mostly based on nationally representative cross-sectional and cohort studies, or studies conducted in urban settings ¹² ¹³. Therefore, a knowledge gap exists on whether similar results would be obtained when nationwide data are compared with data for study populations from poor or very poor rural households in specific vulnerable regions.

Sylhet is one such vulnerable region of north-east Bangladesh, comprising diverse terrains such as
plain land, hilly land, *Haor* (wetland), and flash flood-prone areas. This region is reported to

Page 5 of 36

BMJ Open

perform poorly for all important maternal healthcare indicators ¹⁴, despite the fact that Bangladesh has made substantial progress in improving the overall health of the population ¹⁵. Moreover, the socio-economic profile of the inhabitants in Sylhet region includes both very rich and extremely poor people. This scenario may worsen without the implementation of appropriate strategies in the near future. Sylhet region is also performing poorly compared to the national averages for a number of health and nutritional indicators. Critical indicators such as the infant mortality rate and unemployment status of women are high ¹². In comparison to the overall situation of Bangladesh, where stunting among children under five has decreased, the Bangladesh Demographic and Health Survey (BDHS) 2014 indicates the prevalence of childhood stunting in Sylhet is astonishingly high, at 50%¹². This alarming figure provided the rationale for implementation of a comprehensive intervention programme in this region. A large-scale nutrition programme, Suchana: Ending the Cycle of Undernutrition in Bangladesh; a multi-sectoral nutrition programme, was undertaken with the aim to prevent chronic malnutrition in Sylhet.

In general, Suchana nutrition interventions can be divided into two types: nutrition-sensitive and nutrition-specific. The concept of nutrition-sensitive intervention refers to an intervention that benefits the beneficiaries in terms of food and nutrition security, and also influences the underlying determinants of nutrition. This type of intervention is largely delivered through the agricultural sector (homestead vegetable and fruit production, pro-poor nutrition-sensitive aquaculture), improved technology (mono-sex tilapia and carp-tilapia polyculture, subsistence fishing, fish dying), demonstrations (village model farms and demo ponds, livestock, food security, promotion of climate-smart technologies), and supported income-generating activities (skill development in business management, engagement with the private sector and other sectors). As nutrition-specific interventions were delivered through nutrition-sensitive interventions, their coverage, effectiveness, and scale can be increased. It can meet the targets by lowering them and implementing nutrition-specific interventions. A nutrition-specific intervention addresses the immediate cause of malnutrition. Direct determinants of nutrition are the focus of this intervention. There is a strong focus on nutrition-specific interventions in the health sector. Whether implemented alone or jointly, nutrition-specific interventions improve health outcomes. Some examples of nutrition-specific interventions are: counselling for mothers at the household level, community-based nutrition education for spouses and in-laws, growth monitoring and promotion

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

124 (GMP) sessions integrated with EPI in communities, GoB health facilities equipped with severe
125 acute malnutrition (SAM) service delivery, and support for NNS service delivery through
126 community clinics, FWCs, and UHCs.

The primary objective of the *Suchana* programme was to reduce the prevalence of childhood stunting in the intervention areas. The secondary objectives were to assess the changes in *Suchana* beneficiaries' households, in terms of an increase and diversification of household income, food security status, optimal infant and young child feeding (IYCF) practices, haemoglobin status of children, the empowerment of women, and adolescents' nutritional knowledge and practices.

The Suchana programme substantially improved nutritional behaviour, maternal healthcare practices, women's empowerment, household income, and household food security in the intervention area compared to the control area ¹⁶. Contrary to predictions, however, Suchana did not result in any significant reduction in the prevalence of childhood stunting. Therefore, although most other factors related to childhood stunting improved, this raises the question of why the prevalence of stunting did not reduce after the intervention. An important observation from the Suchana survey was that the proportion of households in this study population using hygienic latrines was quite low. This factor was associated with stunting in children ⁶, and did not significantly improve by endline in the intervention areas compared to the control areas.

In this study, we aimed to construct a predictive model to attempt to explain whether any improvements in associated factors may promote a significant reduction in stunting among children aged 12-23 months from poor and extremely poor households in the Sylhet region.

43 147

45 148 **Methods**

47 149 Implementation design

Suchana was implemented in 157 unions over 20 sub-districts in the Sylhet region in the north-east of Bangladesh The Suchana program's protocol has been previously thoroughly explained ¹⁷. Union, the smallest local government and administrative entity in rural Bangladesh, was classified as a cluster. Unions were sorted into one of four phases at random. For this study, Phase-1 was the study's intervention group, while Phase-4 was the control group ¹⁷ and other Phases were treated

Page 7 of 36

BMJ Open

as learning Phases. For implementation purposes, vulnerable villages were selected within. The staff of the programme chose vulnerable villages in each union based on their vulnerability (e.g., frequent floods or submerging, little or no intervention from other development programmes, poverty or household living circumstances, remoteness and accessibility issues, a high prevalence of superstitions and social taboos). After consultation with local government representatives, elected officials, and local elites as well as field visits, this selection method was decided upon.

Evaluation design

Setting: The impacts of the intervention on livelihood, health, and nutrition were measured using a pre-post design. A large dataset was collected from two cross-sectional studies (baseline and endline) for the study. The baseline survey was conducted in November 2016 and February 2017, followed by the endline survey in the same months three years later.

Sample size: The sample size was calculated with STATA "clustersampsi" command module and considered the number of clusters in the surveys (Supplementary file). It was assumed that the expected prevalence of childhood stunting in the control group was 47%. Hypothesis was that the prevalence would be reduced to 41% after three years of intervention. The estimated sample size per arm was 1520 when considering 5% level of significance, 80% power, 40 clusters per arm, and an intra cluster correlation coefficient (ICC) of 0.01. After considering the rounding figure, the estimated sample size per arm was 1620. The 2nd arm has an equal sample size since it was assumed that the sampling ratio between control and intervention groups is 1:1. Then total sample size is 3200 at the baseline survey. However, for evaluation purposes, the sample size at endline was doubled due to stratification of the intervention component. Finally, 9600 mother-child pairs were included in this analysis (baseline: 3200, and endline: 6400)¹⁷.

Sampling: Eight villages at baseline survey and twelve villages at endline survey were randomly selected from each union using a list of vulnerable villages provided by Save the Children. Once the villages were identified, the most vulnerable households were identified, listed and verified following the *Suchana* programme inclusion criteria (Supplementary Table 1) and, if eligible for the study, given an identification number to prepare the sampling frame. Then, required households were systematically selected for the surveys from the frame.

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Data collection: The Suchana data collection software contained built-in validation rules. As the data were entered at the interviewer level and the records were uploaded to a server at the icddr,b using the built-in internet connectivity of the devices, maximum validation rules were set in the data system to prevent errors during data entry, which reduced the data entry burden. This allowed the data analysis team to review the consistency of the data every day. Data were synchronized to the central server "Web Service" developed in Asp.Net based on the C# (C Sharp) code. Activities such as editing (after receiving any feedback from field staff members), updating, range checks, duplication checks, consistency checks, frequency checks and cross tabulation were regularly performed during the data entry period. In case of any unusual observations, the issues were discussed and resolved.

Variables under study: The outcome variable in this study was childhood stunting, which was defined as a length-for-age z-score (LAZ) <-2. Initially, a list of several independent variables was finalized through results obtained from descriptive and bi-variate analyses, as well as a comprehensive literature review (Table 1). These included at least four ANC visits by a skilled service provider, additional resting during pregnancy, additional food consumption during pregnancy, consumption of at least 100 IFA tablets during pregnancy, receiving vitamin A capsule after last delivery, birth attendant/facility, mother involved in income-generating activities, maternal BMI, maternal education, HH food insecurity, HH monthly income >15000 BDT, involved with aquaculture, hygienic latrine, water and soap available in handwashing place, HH size, HH dietary diversity, sex of household head, religion, received any grant/allowance/stipend from the government, access of mass media, child's age, child's sex, childhood illness in the last 15 days, minimum dietary diversity, early initiation of breastfeeding, and received colostrum. HFIAS was measured using the Food and Nutrition Technical Assistance's Guideline, which categorizes household food insecurity into four levels: a) food secure, b) mildly food insecure, c) moderately food insecure, and d) severely food insecure ¹⁸. In the analysis herein, this indicator was redefined as a binary indicator: severely food insecure or not severely food insecure.

215 Statistical analysis

Page 9 of 36

BMJ Open

Descriptive statistics: Stata-14 software (StataCorp LP, College Station, TX, USA) and R 4.2.2
(*rpart*) were used to analyse the data. Several statistical plots were used for data visualization.
Descriptive statistics, such as frequency and proportions for categorical variables and mean and
standard deviations for quantitative variables, were used to summarize the data at baseline and
endline.

Predictive model: Three statistical models were used as predictive models. Two parametric models, such as Logistic and Probit regression models, and Decision Tree as a non-parametric model. Logistic and Probit regression models were used as predictive models as well as classifier models. The models were also used to investigate which factors were significantly associated with childhood stunting, and estimate their effect size, in order to predict whether changes in behavioural practices might potentially help to achieve targeted reductions in stunting. Using those variables, a decision tree was applied, and the predictive performance was compared to other models.

For the parametric models, first, Chi-Square test was used to examine the bivariate associations between stunting and all possible explanatory variables. In the second step, variables with *p*-values <0.25 in the simple model were included in the multiple regression models ¹⁹. In the final step, any independent variables thought to be likely predictors were added to the multiple regression model using the stepwise forward selection method. Some indicators, e.g., age, sex, and maternal nutritional status, were added regardless of their *p*-value due to their scientific plausibility. The mathematical equation of logistic and probit regression models were given in the supplementary file. As a cluster variable, union was used to adjust the standard errors. Furthermore, for the explanation of the regression model, a p-value <0.05 was considered as significant, and the confidence interval (CI) of 95% was also reviewed. From the fitted model, the adjusted effect size (adjusted prevalence difference) against all predictors was estimated using the Stata "adjrr" package. The list of independent variables with the values used in the model is given in Table 1.

244 Table 1. List of all independent variables

Indicators	Label	Value/Code	Selection in the model
At least fou	r ANC visits by a skilled service provider		Selected
	At least four ANC visits by a skilled service provider	0	

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1 2 3 4 5 6 7	
8 9 1 1 1 1	0 1 2 3
1 1 2 2	6 7 8 9 0
2 2 2 2 2 2	2 3 4 5 7 8
3 3 3 3 3 3 3	4 5
3 3	8 9 0 1
4 4 4 4 4	3 4 5 6 7 8
4 5 5 5 5 5 5	0 1 2 3 4 5
5 5 5 6	7 8 9

Less than four ANC visits by a skilled service provider	1	
Additional resting during pregnancy		Not selected
Took more rest	0	
Did not take more rest	1	
Additional food consumption during pregnancy		Not selected
Consumed more food	0	
Did not consumed more food	1	
Consumption of at least 100 IFA tablets during pregnancy		Not selected
Consumed at least 100 IFA tablets	0	
Did not consumed at least 100 IFA tablets	1	
Received vitamin A capsule after last delivery		Not selected
Received	0	
Did not receive	1	
Birth attendant/facility		Selected
Skilled	0	
Unskilled	1	
Mother involved in income-generating activities		Selected
No	0	
Yes	1	
Maternal BMI		Selected
BMI≥18.5	0	
BMI <18.5	1	
Maternal education		Selected
At least one-year formal education	0	
No schooling	1	
HH food insecurity		Selected
Below severe	0	
Severe	1	
HH monthly income >15000 BDT	1	Selected
>=15000 BDT	0	
<15000 BDT	1	
Involved with aquaculture	1	Selected
Involved	0	Sciected
Did not involved	1	
Hygienic latrine	1	Selected
Hygienic latrine	0	
Unhygienic latrine	1	
Water and soap available in handwashing place		Selected
Available	0	
Unavailable	1	
HH size	1	Selected
Below seven	0	
Seven or above	1	
HH dietary diversity	1	Selected
HDDS >7	0	
$\frac{\text{HDDS} \leq 7}{\text{HDDS} < 7}$	1	
Sex of household head	1	Not selected
Female	0	
Male	1	
Maternal education	1	Not selected
	0	Not selected
At least one-year formal education	0	
Religion No schooling	1	Not coloria d
Religion		Not selected

Muslim	0	
Non-Muslim	1	
Received any grant/allowance/stipend from the government		
Received	0	
Did not receive	1	
Access of mass media		Selected
Access	0	
No access	1	
Child's age		Selected
Age ≤ 18 months	0	
Age >18 months	1	
Child's sex		Selected
Female	0	
Male	1	
Childhood illness in the last 15 days		Selected
No	0	
Yes	1	
Minimum dietary diversity		Not selected
Received	0	
Did not receive	1	
Early initiation of breastfeeding		Not selected
Received	0	
Did not receive	1	
Received colostrum		Not selected
Received	0	
Did not receive	1	

Model evaluation: The predictive performance was assessed by computing the classification status
using model sensitivity and specificity, area under the receiver operating curve (ROC) analysis.
Data were randomly split into a training set (75% of the data) and a test set (25%) with randomnumber seed 113843 to calculate the accuracy of the algorithm. The same training and test datasets
were used for all algorithms and performance predictions.

253 Patient and public involvement

Patients and public were not actively involved in formulating the research question and or protocol
development, including the outcome measures. To expedite the field implementation, however,
local elites e.g. teachers, religious persons, and local government council members were informed
about the study.

Results

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

General characteristics: With respect to the outcome indicator, stunting in children aged 12-23 months, 52.7% of children were stunted at the baseline survey (intervention group: 52.6%; control group: 52.8%), whereas the proportion of children exhibiting stunting at endline was 50.0% (intervention: 49.9%; control: 50.1%; Figure 1). Figure 2 describes some other output indicators related to maternal and child health. Status of consuming minimum acceptable diet (intervention: 35.2%; control: 14.9%), minimum dietary diversity (intervention: 42.8%; control: 20.4%), maternal decision making (intervention: 45.0%; control: 31.0%), at least four maternal ANC visits by a skilled service provider (intervention: 36.1%; control: 17.7%), minimum dietary diversity for women (intervention: 52.6%; control: 33.5%), a household dietary diversity score of at least seven (intervention: 88.9%; control: 78.3%), and household food security status (intervention: 26.6%; control: 20.2%) were significantly improved in the intervention group compared to the control group at endline survey. The availability of hygienic latrines (intervention: 44.0%; control: 44.0%) did not increase after the intervention. The households' socio-demographic characteristics, women's general characteristics, and children's characteristics at baseline and endline are shown in Table 2.

277	Table 2. General characteristics of the Suchana	beneficiaries
211	Table 2. General characteristics of the Suchana	Denementaries

Indicators, <i>n</i> (%)	Baseline N=3200	Endline <i>N</i> =6300	Total <i>N</i> =9500
At least four ANC visits by a skilled service		11-0300	11-9300
5	•	1 500 (0 1 0)	
Yes	408 (12.8)	1530 (24.3)	1938 (20.4)
No	2792 (87.3)	4771 (75.7)	7563 (79.6)
Delivery at skilled birth attendant/facility			
Yes	1000 (31.3)	2769 (44)	3769 (39.7)
No	2200 (68.8)	3532 (56.1)	5732 (60.3)
Had tetanus toxoid injection			
No	834 (26.1)	1131 (18)	1965 (20.7)
Yes	2366 (73.9)	5170 (82.1)	7536 (79.3)
Mother involved in income-generating activ	. ,		~ /
No	3102 (96.9)	5665 (89.9)	8767 (92.3)
Yes	98 (3.1)	639 (10.1)	737 (7.8)
Maternal BMI			~ /
BMI >18.5	1859 (58.1)	4073 (64.6)	5932 (62.4)
BMI <18.5	1341 (41.9)	2231 (35.4)	3572 (37.6)
Mother completed primary education		· · · · · ·	· · · · ·
Yes	1721 (53.8)	3808 (60.4)	5529 (58.2)
No	1479 (46.2)	2496 (39.6)	3975 (41.8)
Maternal age			
Age <30 years	2145 (67)	3559 (56.5)	5704 (60)

Indicators, <i>n</i> (%)	Baseline N=3200	Endline <i>N</i> =6300	Total <i>N</i> =9500
Age ≥30 years	1055 (33)	2745 (43.5)	3800 (40
Type of delivery			
Normal	2879 (90)	5529 (87.8)	8408 (88
Caesarean	321 (10)	772 (12.3)	1093 (11
PNC	521 (10)	112 (12.3)	1075 (11
No	2152 (67.3)	4128 (65.5)	6280 (66
			· ·
Yes	1048 (32.8)	2173 (34.5)	3221 (33
Household severely food insecure			1000 (0)
Yes	912 (28.5)	1016 (16.12)	1928 (20
No	2288 (71.5)	5285 (83.9)	7573 (79
Household monthly income $\geq 15000 \text{ BDT}$			
Yes	424 (13.3)	1015 (16.1)	1439 (13
No	2776 (86.8)	5289 (83.9)	8065 (84
Household involved with aquaculture			
Yes	161 (5)	561 (8.9)	722 (7.6
No	3039 (95)	5740 (91.1)	8779 (92
Hygienic latrine		e, io () iii)	0112 (2
Yes	1121 (35)	2782 (44.2)	3903 (41
No	. ,		
	2079 (65)	3519 (55.9)	5598 (58
Water and soap available in handwashing place		2170 (50.2)	1000 (11
Yes	862 (26.9)	3170 (50.3)	4032 (42
No	2338 (73.1)	3131 (49.7)	5469 (5'
Household savings			
No	1080 (33.8)	2876 (45.6)	3956 (4
Yes	2120 (66.3)	3425 (54.4)	5545 (58
Sex of household head			
Female	110 (3.4)	501 (8)	611 (6.4
Male	3090 (96.6)	5799 (92.1)	8889 (93
Source of drinking water			(
Tube well	2748 (85.9)	5713 (90.7)	8461 (8
Others	452 (14.1)	588 (9.3)	1040 (1
	432 (14.1)	388 (9.3)	1040 (1
Household dietary diversity score	2102((0, 2))	5222 (04.5)	7504 (7)
HDDS ≥7	2182 (68.2)	5322 (84.5)	7504 (7
HDDS <7	1018 (31.8)	979 (15.5)	1997 (2
Household monthly income (Thousand BDT) ¹	6.7 (5, 10)	7.5 (5.1, 10.8)	7.1 (5, 1
Per capita income (Thousand) ¹	2.6 (1.8, 3.7)	2.9 (2, 4.1)	2.8 (2, 4
Household size ¹	6.2±2.4	5.9±2.1	6±2.2
Child's age in months ²	17.9±3.5	17.3±3.6	17.5±3.
Length-for-age z-score ²	-2.1±1.2	-2±1.1	-2±1.1
Weight-for-age z-score ²	-1.7±1.1	-1.5 ± 1.0	-1.5±1.0
Weight-for-length z-score ²	-0.9 ± 1.0	-0.7±0.9	-0.7±1.0
Child's age	0.0-1.0	0.7-0.7	0.7-1.0
Age <18 months	1745 (54.5)	3710 (58.9)	5455 (5
-			· ·
Age ≥ 18 months	1455 (45.5)	2594 (41.2)	4049 (42
Child's sex		2044 (40.2)	1611 (4)
Female	1567 (49)	3044 (48.3)	4611 (4
Male	1633 (51)	3257 (51.7)	4890 (51
Child averagion and require to we illust in last 15 d	lavs		
Child experienced respiratory illness in last 15 d Yes	2867 (89.6)	5763 (91.5)	8630 (90

	Baseline	Endline	Total
Indicators, <i>n</i> (%)	<i>N</i> =3200	<i>N</i> =6300	<i>N</i> =9500
No	333 (10.4)	538 (8.5)	871 (9.2)

280	Associated factors: The correlates of childhood stunting as determined using two parametric
281	predictive models are shown in Table 3 and Figure 3. Less than four ANC visits by a skilled service
282	provider, unskilled birth attendant/facility, mother involved in income-generating activities,
283	maternal BMI <18.5, maternal education: no schooling, household severely food insecure,
284	household monthly income <15000 BDT, household not involved with aquaculture, having an
285	unhygienic latrine, no soap available in handwashing place, household size >7, household dietary
286	diversity score <7, child's age >18 months, child's sex: male, childhood illness in the last 15 days,
287	and no access to mass media were significantly correlated with childhood stunting. Predictive
288	ability of various indicators for the adjusted prevalence of stunting and adjusted prevalence
289	difference (effect size) are given in Supplementary Table 2a and 2b.

No 333 (10.4) 538 (8.5) 871 (9.2) an (UQR); "Mean + SD. 333 (10.4) 538 (8.5) 871 (9.2) ociated factors: The correlates of childhood stunting as determined using two parametric lictive models are shown in Table 3 and Figure 3. Less than four ANC visits by a skilled service rider, unskilled birth attendant/facility, mother involved in income-generating activities, ernal BMI <18.5, maternal education: no schooling, household severely food insecure, sechold monthly income <15000 BDT, household not involved with aquaculture, having an ygienic latrine, no scoap available in handwashing place, household size >7, household dietary rrsity score <7, child's age >18 months, child's sex: male, childhood illness in the last 15 days, no access to mass media were significantly correlated with childhood stunting. Predictive ity of various indicators for the adjusted prevalence of stunting and adjusted prevalence erence (effect size) are given in Supplementary Table 2a and 2b. le 3. Factors influencing stunting in children aged 12-23 months, computed using logistic and bit regression analyses Reference Reference No Reference No Reference No No Reference NO	Indicators, n (%)	Baseline N=3200	Endline <i>N</i> =6300	Total <i>N</i> =9500
an (10R): ³ Mean + SD. ociated factors: The correlates of childhood stunting as determined using two parametric lictive models are shown in Table 3 and Figure 3. Less than four ANC visits by a skilled service vider, unskilled birth attendant/facility, mother involved in income-generating activities, ernal BMI <18.5, maternal education: no schooling, household severely food insecure, sehold monthly income <15000 BDT, household not involved with aquaculture, having an ygienic latrine, no soap available in handwashing place, household size >7, household dietary rsity score <7, child's age >18 months, child's sex: male, childhood illness in the last 15 days, no access to mass media were significantly correlated with childhood stunting. Predictive ity of various indicators for the adjusted prevalence of stunting and adjusted prevalence erence (effect size) are given in Supplementary Table 2a and 2b. le 3. Factors influencing stunting in children aged 12-23 months, computed using logistic and bit regression analyses The tattendant/facility Skilled Line Reference No Life (1.05, 1.30) 0.005 0.09 (0.03, 0.16) th attendant/facility Skilled Life (1.05, 1.30) 0.012 0.06 (0.01, 0.10, 0.01, 0.19) ternal BMI ≥18.5 BMI <18.5 L23 (1.12, 1.36) 0.000 0.13 (0.07, 0.19) ternal BMI H =18.5 L23 (1.12, 1.36) 0.000 0.13 (0.07, 0.19) ternal BMI BMI <18.5 L23 (1.12, 1.36) 0.000 0.13 (0.07, 0.19) ternal BMI H =18.5 L23 (1.12, 0.124) 0.041 0.07 (0.00, 0.13) I monthy income ≥15000 BDT Yes Reference Reference No L12 (1.00, 1.24) 0.041 0.07 (0.00, 0.13) I monthy income ≥15000 BDT Yes Reference Reference Reference Severe L1.12 (1.00, 1.24) 0.041 0.07 (0.00, 0.13) I monthy income ≥15000 BDT Yes Reference	No		538 (8.5)	
tictive models are shown in Table 3 and Figure 3. Less than four ANC visits by a skilled service vider, unskilled birth attendant/facility, mother involved in income-generating activities, ernal BMI <18.5, maternal education: no schooling, household severely food insecure, sehold monthly income <15000 BDT, household not involved with aquaculture, having an ygienic latrine, no soap available in handwashing place, household size >7, household dietary resity score <7, child's age >18 months, child's sex: male, childhood illness in the last 15 days, no access to mass media were significantly correlated with childhood stunting. Predictive ity of various indicators for the adjusted prevalence of stunting and adjusted prevalence erence (effect size) are given in Supplementary Table 2a and 2b. le 3. Factors influencing stunting in children aged 12-23 months, computed using logistic and bit regression analyses le 3. Factors influencing stunting in children aged 12-23 months, computed using logistic and bit regression analyses least four ANC visits by a skilled service provider Yes No Logistic Probit Adjusted OR (95% CI) P-value Reference No Logistic Probit BMI ≥18.5 BMI	Median (IQR); ² Mean ± SD.			
rider, unskilled birth attendant/facility, mother involved in income-generating activities, ernal BMI <18.5, maternal education: no schooling, household severely food insecure, schold monthly income <15000 BDT, household not involved with aquaculture, having an ygienic latrine, no soap available in handwashing place, household size >7, household dietary rrsity score <7, child's age >18 months, child's sex: male, childhood illness in the last 15 days, no access to mass media were significantly correlated with childhood stunting. Predictive ity of various indicators for the adjusted prevalence of stunting and adjusted prevalence erence (effect size) are given in Supplementary Table 2a and 2b. le 3. Factors influencing stunting in children aged 12-23 months, computed using logistic and bit regression analyses Logistic Adjusted OR P-value Adjusted Coff. (95% CI) P-value Adjusted Coff.(95% CI) P-value Adjusted Coff. (95% CI)least four ANC visits by a skilled service providerYes Reference Reference ReferenceNo 1.16 (1.05, 1.30) 0.005 0.09 (0.03, 0.16)th attendant/facilitySkilled Reference Reference ReferenceYes 1.18 (1.02, 1.27) 0.030 0.10 (0.01, 0.19)tternal BMIBMI≥18.5BMI ≥18.5BMI ≥18.0BMI ≥18.	Associated factors: The correlates of chi	ldhood stunting as det	ermined usi	ng two parametric
Logistic Probit Adjusted OR No skilled Serverely food insecure, setverely food insecure, setvere setvere Settification settification Settification<	predictive models are shown in Table 3 and 2	Figure 3. Less than four	ANC visits	by a skilled service
schold monthly income <15000 BDT, household not involved with aquaculture, having an ygienic latrine, no soap available in handwashing place, household size >7, household dietary prsity score <7, child's age >18 months, child's sex: male, childhood illness in the last 15 days, no access to mass media were significantly correlated with childhood stunting. Predictive ity of various indicators for the adjusted prevalence of stunting and adjusted prevalence erence (effect size) are given in Supplementary Table 2a and 2b. le 3. Factors influencing stunting in children aged 12-23 months, computed using logistic and bit regression analyses	provider, unskilled birth attendant/facility	y, mother involved in	income-ge	nerating activities,
ygienic latrine, no soap available in handwashing place, household size >7, household dietary prsity score <7, child's age >18 months, child's sex: male, childhood illness in the last 15 days, no access to mass media were significantly correlated with childhood stunting. Predictive ity of various indicators for the adjusted prevalence of stunting and adjusted prevalence erence (effect size) are given in Supplementary Table 2a and 2b. le 3. Factors influencing stunting in children aged 12-23 months, computed using logistic and bit regression analyses $\hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	naternal BMI <18.5, maternal education	i: no schooling, house	ehold severe	ely food insecure,
Logistic regression analyses Logistic Probit Adjusted or various indicators for the adjusted prevalence of stunting and adjusted prevalence erence (effect size) are given in Supplementary Table 2a and 2b. Logistic Probit Adjusted OR Probit Adjusted OR Probit Adjusted Coef. (95% CI) Logistic Probit Adjusted Coef.	nousehold monthly income <15000 BDT,	household not involve	ed with aqua	culture, having an
Logistic regression analyses Logistic Probit Adjusted or various indicators for the adjusted prevalence of stunting and adjusted prevalence erence (effect size) are given in Supplementary Table 2a and 2b. Logistic Probit Adjusted OR Probit Adjusted OR Probit Adjusted Coef. (95% CI) Logistic Probit Adjusted Coef.	inhygienic latrine, no soap available in han	dwashing place, house	hold size >7.	household dietary
no access to mass media were significantly correlated with childhood stunting. Predictive ity of various indicators for the adjusted prevalence of stunting and adjusted prevalence erence (effect size) are given in Supplementary Table 2a and 2b. le 3. Factors influencing stunting in children aged 12-23 months, computed using logistic and bit regression analyses		UT /		2
ity of various indicators for the adjusted prevalence of stunting and adjusted prevalence erence (effect size) are given in Supplementary Table 2a and 2b. le 3. Factors influencing stunting in children aged 12-23 months, computed using logistic and bit regression analyses $\frac{Logistic Probit}{Adjusted OR P-value OS OC (95% CI)}$ least four ANC visits by a skilled service provider Yes Reference Reference Reference Unskilled Influence Internet Intern				2
erence (effect size) are given in Supplementary Table 2a and 2b. le 3. Factors influencing stunting in children aged 12-23 months, computed using logistic and bit regression analyses $\frac{1 \text{Logistic} \text{Probit}}{\text{Adjusted OR} \text{P-value}} \frac{\text{Adjusted Coef.}}{(95\% \text{ CI})}$ least four ANC visits by a skilled service provider Yes Reference Reference No 1.16 (1.05, 1.30) 0.005 0.09 (0.03, 0.16) th attendant/facility Skilled Reference Reference Reference Unskilled 1.11 (1.02, 1.20) 0.012 0.06 (0.01, 0.11) outper involved in income-generating activities No Reference Reference Reference Yes 1.18 (1.02, 1.37) 0.030 0.10 (0.01, 0.19) ternal BMI BMI ≥18.5 BMI <18.5 1.23 (1.12, 1.36) 0.000 0.13 (0.07, 0.19) ternal education was primary completed Yes Reference Reference Reference No 1.31 (1.20, 1.42) 0.000 0.17 (0.12, 0.22) I food insecurity Below severe Severe 1.12 (1.00, 1.24) 0.041 0.07 (0.00, 0.13) I monthly income ≥15000 BDT Yes Reference Reference		2		e
le 3. Factors influencing stunting in children aged 12-23 months, computed using logistic and bit regression analyses $\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	e	ijusted prevalence
bit regression analyses $\begin{array}{c c c c c c c c c } \hline Logistic & Probit \\ \hline Adjusted OR & p-value & Adjusted Coef. \\ (95\% CI) & p-value & Coef. \\ (95\% CI) & coef. \\ (95\% CI) & p-value & Coef. \\ (95\% CI) & p-value & Coef. \\ (95\% CI) & p-value & Coef. \\ (95\% CI) &$	lifference (effect size) are given in Supplem	nentary Table 2a and 2	b.	
bit regression analyses $\begin{array}{c c c c c c c c c } \hline Logistic & Probit \\ \hline Adjusted OR & p-value & Adjusted Coef. \\ (95\% CI) & p-value & Coef. \\ (95\% CI) & coef. \\ (95\% CI) & p-value & Coef. \\ (95\% CI) & p-value & Coef. \\ (95\% CI) & p-value & Coef. \\ (95\% CI) &$				
LogisticProbitIndicatorsLogisticProbitAdjusted OR (95% CI)p-valueAdjusted Coef. (95% CI)least four ANC visits by a skilled service provider YesReferenceReferenceNo1.16 (1.05, 1.30)0.0050.09 (0.03, 0.16)th attendant/facility SkilledReferenceReferenceUnskilledReferenceReferenceUnskilled1.11 (1.02, 1.20)0.0120.06 (0.01, 0.11)other involved in income-generating activities NoReferenceReferenceYes1.18 (1.02, 1.37)0.0300.10 (0.01, 0.19)itternal BMI BMI ≥18.5 BMI <18.5	Table 3. Factors influencing stunting in chil	ldren aged 12-23 month	ns, computed	l using logistic and
IndicatorsAdjusted OR (95% CI)p-valueAdjusted Coef. (95% CI)least four ANC visits by a skilled service provider Yes NoReferenceReferenceReferenceNo1.16 (1.05, 1.30)0.0050.09 (0.03, 0.16)th attendant/facility SkilledReferenceReferenceReferenceUnskilled1.11 (1.02, 1.20)0.0120.06 (0.01, 0.11)other involved in income-generating activities YesReferenceReferenceReferenceYes1.18 (1.02, 1.37)0.0300.10 (0.01, 0.19)atternal BMI BMI ≥18.5 BMI <18.5	probit regression analyses			
Indicators $(95\% \text{ CI})$ $p-value$ $(95\% \text{ CI})$ least four ANC visits by a skilled service provider Yes ReferenceReferenceYesReferenceReference0.0050.09 (0.03, 0.16)th attendant/facilitySkilledReferenceReferenceUnskilled1.11 (1.02, 1.20)0.0120.06 (0.01, 0.11)other involved in income-generating activitiesNoReferenceReferenceYes1.18 (1.02, 1.37)0.0300.10 (0.01, 0.19)iternal BMIBMI ≥18.5BMI <18.5		Logistic		Probit
least four ANC visits by a skilled service provider Yes NoReference ReferenceReference 0.09 (0.03, 0.16)Th attendant/facility Skilled UnskilledReference 1.16 (1.05, 1.30)0.0050.09 (0.03, 0.16)Th attendant/facility Skilled UnskilledReference 1.11 (1.02, 1.20)Reference 0.012Reference 0.06 (0.01, 0.11)There involved in income-generating activities No YesReference 1.18 (1.02, 1.37)Reference 0.030Reference 0.010 (0.01, 0.19)Internal BMI BMI ≥18.5 BMI <18.5	Indicators		p-value	U
No1.16 (1.05, 1.30)0.0050.09 (0.03, 0.16)th attendant/facilityReferenceReferenceSkilledReferenceReferenceUnskilled1.11 (1.02, 1.20)0.0120.06 (0.01, 0.11)other involved in income-generating activitiesReferenceReferenceNoReferenceReferenceYes1.18 (1.02, 1.37)0.0300.10 (0.01, 0.19)Iternal BMIImage: State of the	At least four ANC visits by a skilled service			()0/001)
ReferenceReferenceSkilled1.11 (1.02, 1.20)0.0120.06 (0.01, 0.11)Outer involved in income-generating activitiesNoReferenceReferenceYes1.18 (1.02, 1.37)0.0300.10 (0.01, 0.19)Internal BMIBMI ≥18.51.23 (1.12, 1.36)0.0000.13 (0.07, 0.19)Internal education was primary completedReferenceReferenceYesReferenceReferenceNo1.31 (1.20, 1.42)0.0000.17 (0.12, 0.22)I food insecurityBelow severe1.12 (1.00, 1.24)0.0410.07 (0.00, 0.13)I monthly income ≥15000 BDTYesReferenceReference	Yes	Reference		Reference
Skilled UnskilledReference 1.11 (1.02, 1.20)Reference 0.012Reference 0.06 (0.01, 0.11)other involved in income-generating activitiesReference ReferenceReference ReferenceReference ReferenceYes1.18 (1.02, 1.37)0.0300.10 (0.01, 0.19)iternal BMI BMI ≥18.5 BMI <18.5	No	1.16 (1.05, 1.30)	0.005	0.09 (0.03, 0.16)
Skilled UnskilledReference 1.11 (1.02, 1.20)Reference 0.012Reference 0.06 (0.01, 0.11)other involved in income-generating activitiesReference ReferenceReference ReferenceReference ReferenceYes1.18 (1.02, 1.37)0.0300.10 (0.01, 0.19)iternal BMI BMI ≥18.5 BMI <18.5	Birth attendant/facility			
Unskilled1.11 (1.02, 1.20)0.0120.06 (0.01, 0.11)other involved in income-generating activitiesReferenceReferenceNoReferenceReferenceYes1.18 (1.02, 1.37)0.0300.10 (0.01, 0.19)Internal BMIBMI ≥18.51.23 (1.12, 1.36)0.0000.13 (0.07, 0.19)Internal education was primary completedReferenceReferenceYesReferenceReferenceNo1.31 (1.20, 1.42)0.0000.17 (0.12, 0.22)I food insecurityBelow severe Severe1.12 (1.00, 1.24)0.0410.07 (0.00, 0.13)I monthly income ≥15000 BDT YesReferenceReferenceReference		Reference		Reference
NoReferenceReferenceYes $1.18 (1.02, 1.37)$ 0.030 $0.10 (0.01, 0.19)$ Iternal BMIBMI ≥ 18.5 0.000 $0.13 (0.07, 0.19)$ BMI ≤ 18.5 $1.23 (1.12, 1.36)$ 0.000 $0.13 (0.07, 0.19)$ Iternal education was primary completedReferenceReferenceYesReferenceReferenceNo $1.31 (1.20, 1.42)$ 0.000 $0.17 (0.12, 0.22)$ I food insecurityBelow severe $1.12 (1.00, 1.24)$ 0.041 $0.07 (0.00, 0.13)$ I monthly income ≥ 15000 BDTReferenceReferenceReference			0.012	
No Reference Reference Yes $1.18 (1.02, 1.37)$ 0.030 $0.10 (0.01, 0.19)$ Internal BMI BMI ≥ 18.5 BMI < 18.5			0.012	0.00 (0.01, 0.11)
Yes $1.18 (1.02, 1.37)$ 0.030 $0.10 (0.01, 0.19)$ Internal BMI BMI ≥18.5 BMI <18.5 $1.23 (1.12, 1.36)$ 0.000 $0.13 (0.07, 0.19)$ Internal education was primary completed YesReferenceReferenceNo $1.31 (1.20, 1.42)$ 0.000 $0.17 (0.12, 0.22)$ I food insecurity Below severe Severe $1.12 (1.00, 1.24)$ 0.041 $0.07 (0.00, 0.13)$ I monthly income ≥15000 BDT YesReferenceReference	8 8			Reference
Iternal BMI BMI ≥ 18.5 BMI ≤ 18.5 1.23 (1.12, 1.36) 0.000 0.13 (0.07, 0.19) Iternal education was primary completed Yes Reference Reference No 1.31 (1.20, 1.42) 0.000 0.17 (0.12, 0.22) I food insecurity Below severe 1.12 (1.00, 1.24) 0.041 0.07 (0.00, 0.13) I monthly income ≥ 15000 BDT Yes Reference Reference			0.020	
BMI ≥18.5 1.23 (1.12, 1.36) 0.000 0.13 (0.07, 0.19) Internal education was primary completed Yes Reference Reference No 1.31 (1.20, 1.42) 0.000 0.17 (0.12, 0.22) I food insecurity Below severe 1.12 (1.00, 1.24) 0.041 0.07 (0.00, 0.13) I monthly income ≥15000 BDT Yes Reference Reference	Vec	1 10 (1 00 1 27)		
BMI <18.5		1.18 (1.02, 1.37)	0.030	0.10 (0.01, 0.19)
aternal education was primary completedYesReferenceReferenceNo $1.31 (1.20, 1.42)$ 0.000 $0.17 (0.12, 0.22)$ I food insecurityBelow severeSevere $1.12 (1.00, 1.24)$ 0.041 $0.07 (0.00, 0.13)$ I monthly income ≥ 15000 BDTYesReferenceReference	Maternal BMI	1.18 (1.02, 1.37)	0.030	0.10 (0.01, 0.19)
Yes Reference Reference No $1.31 (1.20, 1.42)$ 0.000 $0.17 (0.12, 0.22)$ I food insecurity Below severe $1.12 (1.00, 1.24)$ 0.041 $0.07 (0.00, 0.13)$ I monthly income ≥ 15000 BDT Yes Reference Reference	Maternal BMI BMI≥18.5			
No $1.31 (1.20, 1.42)$ 0.000 $0.17 (0.12, 0.22)$ I food insecurity Below severe Severe $1.12 (1.00, 1.24)$ 0.041 $0.07 (0.00, 0.13)$ I monthly income ≥ 15000 BDT YesReferenceReference	Maternal BMI BMI ≥18.5 BMI <18.5	1.23 (1.12, 1.36)		
I food insecurity Below severe Severe $1.12 (1.00, 1.24)$ 0.041 $0.07 (0.00, 0.13)$ I monthly income ≥ 15000 BDT YesReferenceReference	Maternal BMI BMI ≥18.5 BMI <18.5 Maternal education was primary completed	1.23 (1.12, 1.36)		0.13 (0.07, 0.19)
Below severe Severe $1.12 (1.00, 1.24)$ 0.041 $0.07 (0.00, 0.13)$ I monthly income ≥ 15000 BDT YesReferenceReference	Maternal BMI BMI ≥18.5 BMI <18.5 Maternal education was primary completed Yes	1.23 (1.12, 1.36) Reference	0.000	0.13 (0.07, 0.19) Reference
Severe $1.12 (1.00, 1.24)$ 0.041 $0.07 (0.00, 0.13)$ I monthly income ≥ 15000 BDT Reference Reference	Maternal BMI BMI ≥18.5 BMI <18.5 Maternal education was primary completed Yes No	1.23 (1.12, 1.36) Reference	0.000	0.13 (0.07, 0.19) Reference
I monthly income ≥15000 BDT Yes Reference Reference	Maternal BMI BMI ≥18.5 BMI <18.5 Maternal education was primary completed Yes	1.23 (1.12, 1.36) Reference	0.000	0.13 (0.07, 0.19) Reference
I monthly income ≥15000 BDT Yes Reference Reference	Maternal BMI BMI ≥18.5 BMI <18.5 Maternal education was primary completed Yes No HH food insecurity	1.23 (1.12, 1.36) Reference	0.000	0.13 (0.07, 0.19) Reference
Yes Reference Reference	Maternal BMI BMI ≥18.5 BMI <18.5 Maternal education was primary completed Yes No HH food insecurity Below severe	1.23 (1.12, 1.36) Reference 1.31 (1.20, 1.42)	0.000 0.000	0.13 (0.07, 0.19) Reference 0.17 (0.12, 0.22)
	Maternal BMI BMI≥18.5 BMI <18.5 Maternal education was primary completed Yes No HH food insecurity Below severe Severe	1.23 (1.12, 1.36) Reference 1.31 (1.20, 1.42)	0.000 0.000	0.13 (0.07, 0.19) Reference 0.17 (0.12, 0.22)
No 1.12 (1.01, 1.25) 0.037 0.07 (0.00, 0.14)	Maternal BMI BMI ≥18.5 BMI <18.5 Maternal education was primary completed Yes No HH food insecurity Below severe Severe HH monthly income ≥15000 BDT	1.23 (1.12, 1.36) Reference 1.31 (1.20, 1.42) 1.12 (1.00, 1.24)	0.000 0.000	0.13 (0.07, 0.19) Reference 0.17 (0.12, 0.22) 0.07 (0.00, 0.13)

Page 15 of 36

2						
3		Involved with aquaculture				
4		Yes	Reference		Reference	
5		No	1.19 (1.03, 1.38)	0.018	0.11 (0.02, 0.20)	0.018
6		Hygienic latrine				
7		Yes	Reference		Reference	
8		No	1.20 (1.10, 1.30)	0.000	0.11 (0.06, 0.16)	0.000
9 10		Water and soap available in handwashi				
10		Yes	Reference		Reference	
12		No	1.19 (1.08, 1.30)	0.000	0.11 (0.05, 0.16)	0.000
13		HH size			()	
14		Below seven	Reference		Reference	
15		Seven or above	1.20 (1.11, 1.31)	0.000	0.12 (0.06, 0.17)	0.000
16		HH dietary diversity		0.000	(0.000, 0.17)	0.000
17		HDDS >7	Reference		Reference	
18		HDDS < 7	1.17 (1.07, 1.29)	0.001	0.10 (0.04, 0.16)	0.001
19		Child's age	, (,))	01001	0.10 (0.0.1, 0.10)	0.001
20		Age ≤ 18 months	Reference		Reference	
21		Age >18 months	1.52 (1.39, 1.67)	0.000	0.26 (0.2, 0.32)	0.000
22		Child's sex	1.02 (1.07, 1.07)	0.000	0.20 (0.2, 0.52)	0.000
23		Female	Reference		Reference	
24		Male	1.22 (1.11, 1.34)	0.000	0.13 (0.07, 0.18)	0.000
25		Childhood illness in the last 15 days	1.22 (1.11, 1.51)	0.000	0.15 (0.07, 0.10)	0.000
26		No	Reference		Reference	
27		Yes	1.20 (1.06, 1.36)	0.003	0.11 (0.04, 0.19)	0.003
28		Access of mass media	1.20 (1.00, 1.30)	0.003	0.11(0.04, 0.19)	0.005
29		Yes	Reference		Reference	
30		No	1.15 (1.02, 1.30)	0.025	0.09 (0.01, 0.16)	0.025
31	293	Unions were adjusted as clusters. Baseline and endline were		0.023	0.09 (0.01, 0.10)	0.023
32		Sinono were aujusted as erasters. Dasenne and ename wer	e acquister as time variables.			
33	294					

Predictive performance: Table 4 describes the model validation based on sensitivity, specificity, and whether the model was correctly classified for the overall dataset, as well as the training and test datasets. The sensitivity and specificity of the model were around 60% and 55%, respectively for all models. The correctly classified rate was 59%, and the area under the ROC curve was around 61%. We found that these values were approximately equal among the three datasets (main, training, and test datasets); however, the predictive performance of the model was low.

Table 4. Predictive performance of the model for stunting based on classification, sensitivity, and specificity in the full, training and test datasets with area under the receiver operating characteristic curve analysis

	Full dataset		Training Dataset		Test Dataset		et		
	LR	PR	DT	LR	PR	DT	LR	PR	DT
Overall accuracy	58.46	58.38	56.51	58.83	58.62	57.66	58.11	58.19	56.67

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

	Sensitivity	61.21	61.25	61.15	61.59	61.70	63.93	60.23	60.23	61.58
	Specificity	55.61	55.41	51.70	55.36	55.42	51.61	55.90	56.07	51.94
205	Area under the curve	61.54	61.54	56.72	61.37	61.37	58.44	61.76	61.77	58.01
305	LR: Logistic regression, PR: Probit	regression, I	DI: Decisior	i tree						
306										
307										
308	Discussion									
309	In order to demonstrate	why the	Suchand	<i>i</i> prograi	nme did	not sign	ificantly	v lower th	ie preval	lence of
310	childhood stunting afte	er interve	ention, t	his stud	y examir	ned data	from t	he baseli	ne and	endline

surveys of the programme to identify factors that significantly correlate with childhood stunting and compute the predictive performance. After controlling for union as a cluster variable, we found numerous factors that were significantly correlated with stunting. Of these indicators, the status of ANC visits by a skilled service provider, household dietary diversity, household food security, and household monthly income improved as outcome indicators after the intervention. Notably, household food security status did not reach its target value of 50%, though this is an important factor associated with childhood stunting ^{6 20 21}. Other Suchana outcome indicators, such as dietary diversity of children, maternal dietary diversity, and maternal empowerment were not associated with stunting in this study.

33 320

The current study indicates that although some programme indicators improved significantly after the intervention, the *Suchana* programme did not lead to a significant reduction in the prevalence of childhood stunting. The most important factors associated with childhood stunting, such as maternal nutrition and education, household food security, involvement with aquaculture, having a hygienic latrine, soap being available in handwashing places, and improved sources of drinking water did not improve after the intervention. We found a negative association between stunting and maternal involvement in income-generating activities, which means the risk of stunting was higher among children whose mothers were involved in various types of earning activities. The proportion of mothers involved in income-generating activities increased after the study, although the increase was very small. The essential necessities of the child should not be impeded by the mother's working status.

- 53 332

Page 17 of 36

BMJ Open

This study will help programme managers in prioritizing attention while designing appropriate interventions to reduce childhood stunting. Sustainable interventions should be implemented as per the beneficiary's need. Implementing short-term initiatives could help to improve some of these factors. Per se, attending courtyard workshops and campaigns organized by healthcare practitioners can boost ANC visits, skilled birth attendance, and handwashing practices. The establishment of women's health care services with a focus on women's health before and during pregnancy as well as child nutrition and health would also aid in lowering the extent of growth retardation in both the mother and children. Greater access to the media can help people in these vulnerable communities receive the full benefits of government welfare programs. Food security, income, sanitation, aquaculture, and illness are all time-dependent factors. To satisfy the nutritional needs of every household member, for instance, it is necessary to increase production yields through self-production or purchasing in order to lower household food insecurity. However, a family's wealth index and the quantity of easily accessible marketplaces nearby have an impact on their ability to buy nutritious food as well. In agriculture, climate change adaptation is essential to minimise current risks, and prepare for future climatic uncertainties. In addition, in today's climate, using organic fertilizer inputs in agricultural areas has significant environmental benefits over using chemical fertilizers. It can reduce the demand for pesticides, minimize threats to human health and biodiversity, and reduce the risk of water contamination. Because of the reductions, this may lead to cost savings or cost neutrality. Promotion of aquaculture during the Suchana programme increased the availability of fish, and provided a viable source of protein, which resulted in better nutrition and food security; however, establishing such facilities requires a significant amount of time. Furthermore, improved sanitation can only be facilitated by improving socioeconomic status, which is also a time-intensive process. National surveys, including the BDHS and the Food Security and National Surveillance Project (FSNSP) have indicated that a substantial amount of time is required to improve stunting. To improve maternal nutrition, women should be provided with adequate food to improve their nutritional status during adolescence, as children born to malnourished mothers are at a higher risk of malnutrition. Moreover, according to a previous literature review, a mother's education is a strong predictor of her child's nutritional status. The level of maternal education has a significant impact on the risk of childhood stunting, with children of mothers with no or only a secondary education being more at risk than those whose mothers have completed secondary education or more. Moreover, placing

emphasis on the education of female children may contribute to breaking the vicious cycle of poverty and childhood stunting in developing countries like Bangladesh. Therefore, an intricate intervention along with nutritional support and food security as well as maternal education might be worthwhile for short and long-term prevention of childhood stunting. In addition, comprehensive initiatives to encourage income-generating activities among women and address domestic violence against women should be implemented to help reduce childhood stunting in developing countries.

Another important finding based on the post-estimation findings as well as the value of the area under the ROC curve was that the predictive performance of the model was low. Thus, we need to identify other indicators influencing childhood stunting that were not included in our model. From the literature, environmental enteropathy has been implicated in poor growth among children in rural Bangladesh²². Environmental enteropathy may also represent an important hidden factor with respect to the Suchana study population. While it was not assessed in this study, some indicators of the enteropathogen burden—such as unsanitary latrines, unimproved floors, lack of handwashing practice, and low education were available in this study ¹³ ²³. It is possible to reduce the burden of stunting in young children if improvements are made in WASH variables, particularly the latrine facilities and handwashing practices. Poultry was one of the intervention components. Our qualitative findings revealed that people in majority of the households were sharing their living place with poultry, ducks, or other animals, which may increase the risk of infections with *Campylobacter* species, a leading food-borne pathogen ^{13 24}. Studies have provided evidence of a strong association between stunting and enteropathy among children who fail to respond to nutritional interventions²⁵. Findings from rural Bangladesh have also shown significant association between environmental conditions and stunting in children ^{26 27}. However, assessment of environmental enteropathy was beyond the scope of the Suchana evaluation. For evaluation purposes, evaluation team could collect data on indicators of enteropathy in the intervention and control areas, and then use the model to assess the impact of appropriate interventions.

0 391

392 Recommendation: The *Suchana* model offers a holistic and integrated approach in tackling food 393 and nutrition security by acknowledging undernutrition as a complex problem caused by a variety 394 of factors. The endline survey of *Suchana* showed that many of the programme indicators have

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Page 19 of 36

BMJ Open

considerably improved as a result of the intervention. Ultimately, the design of Suchana offers a meaningful solution to confront undernutrition through multi-sector approach. However, some additional recommendations related to both nutrition-sensitive and specific activities can be made which could be undertaken by the policy makers. Climate-resilient agricultural technologies should be promoted and effectively monitored as a component of improved agricultural strategies. Improved capacity on preparedness and response plan against flooding is compulsory, so that poor people are not continuously set back by the shocks. Food security situation should be improved through a sustainable mechanism. Coverage for water, sanitation and hygiene must be increased at the community level. Innovative approaches need to be tailored to maintain a safe distance and proper management of livestock and human habitations to prevent pathogens exposed through poultry droppings from entering the human body. Also, the awareness of seasonal diseases/infections associated with livestock and poultry should be emphasized through veterinary treatment and should complete the worming dose or follow-up. Additionally, some indicators such as child sex, maternal education and nutrition could be adjusted during randomization at the design level. The Suchana programme, one of the largest nutrition interventions ever implemented globally, successfully led to positive changes in most critical study indicators. Long-term positive changes in the health and livelihood of the beneficiaries are expected in the years to follow, even after the programme ends.

³⁴ 413

Strength and limitation: The large sample size, randomization, and appropriate sampling techniques were among the major strengths of this study. A dedicated quality control team was involved in checking the data by re-visiting randomly selected households. We used highly precise anthropometry instruments, and the anthropometry measurement team received separate training from a qualified trainer. To avoid seasonality, we conducted the baseline and endline surveys at the same time of the year. Among the limitations of this study is the fact that, we did not collect food intake data, but only gathered recall data of previous 24 hours. These data may be subject to recall bias; thus, caution is necessary while concluding, especially for indicators such as dietary diversity, household food insecurity, domestic violence, and maternal healthcare.

425 Conclusion

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Childhood stunting is heavily influenced by a number of factors that were not included in this model due to being unavailable in the questionnaire and urgently need to be identified. Policy makers and programme planners should consider, and enhance the collaboration and coordination between nutrition-sensitive and specific activities designed to alleviate nutritional deficiencies and family health programmes. to beet eview only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 21 of 36

BMJ Open

Acknowledgments: The study analyzed baseline survey data of Suchana; this intervention has been implemented by a consortium led by Save the Children, with support from the Foreign, Commonwealth and Development Office (FCDO) and European Union (EU). icddr,b acknowledges with gratitude the commitment of Save the Children, FCDO and EU to its research efforts. We also acknowledge with gratitude the commitment of the Government of the People's Republic of Bangladesh to icddr,b's research activities. We also acknowledge the following donors for providing unrestricted support to icddr,b's efforts and advancement of its strategic plan: Canada, Sweden and the United Kingdom. We gratefully acknowledge our core donors for their support and commitment to icddr,b's research efforts. We would like to acknowledge the invaluable contributions of Save the Children as lead agency, our technical partners Helen Keller International, World Fish, and International Development Enterprises, and the implementing partners Friends In Village Development Bangladesh (FIVDB), Rangpur Dinajpur Rural Services (RDRS), and the Center for Natural Resource Studies (CNRS) who played critical roles in generating and refining the data-collection tools. We would also like to acknowledge Tasnia Alam, Research Assistant and Md Maniruzzaman, Assistant Professor, Khulna University, Khulna-9208, Bangladesh as the internal reviewers, and Andrea Devlin of Science Editing Experts for editing and linguistic revision of the manuscript. We would also like to acknowledge Andrea Devlin of Science Editing Experts for editing and linguistic revision of the manuscript. Funding: (i) This study was made possible by the committed contribution of Foreign, Commonwealth and Development Office (Grant number: 204131-103), and (ii) icddr,b (N/A). Conflicts of Interest: The authors declare no conflict of interest. Author Contributions: TA and NC originated the idea for the study and led the protocol design. MAH conceptualized the manuscript. SMTA, SSR, MAH, NC, FDF, and TA contributed to the survey design. MAH performed statistical analysis and drafted the manuscript. NC and ASGF

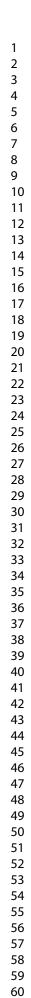
supervised the work, and critically reviewed and provided feedback for revising the manuscript. MAH, NC, MA, FDF, FN, BZW, TJS, ASGF, TA, and SSR contributed to the revision of the final draft for submission. All authors are responsible for the final content of the manuscript. Ethics approval: This study was approved by the Research Review Committee and Ethical Review Committee, the two obligatory components of the Institutional Review Board (IRB) of icddr,b (PR-16020). Informed written consent was obtained from study participants. ια. The data that s., ng author. The data a. Data availability statement: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy and ethical restrictions.

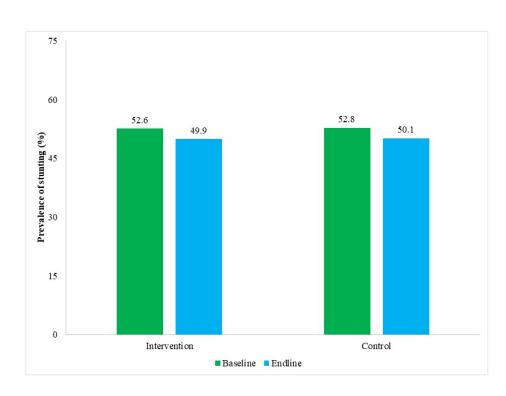
1 2		
2 3 4	477	Reference
5 6	478 479	1. Bari A, Nazar M, Iftikhar A, et al. Comparison of Weight-for-Height Z-score and Mid-Upper
7	480	Arm Circumference to Diagnose Moderate and Severe Acute Malnutrition in children aged 6-59
8 9	481	months. Pakistan journal of medical sciences 2019;35(2):337-41. doi: 10.12669/pjms.35.2.45
10 11	482	[published Online First: 2019/05/16]
12 13		
14	483	2. Development Initiatives. 2018 Global Nutrition Report: Shining a light to spur action on
15 16	484	nutrition. Bristol, UK: Development Initiatives, 2018.
17 18		
19 20	485	3. United Nations Children's Fund (UNICEF), World Health Organization, International Bank
21	486	for Reconstruction and Development/The World Bank. Levels and trends in child malnutrition:
22 23	487	Key Findings of the 2020 Edition of the Joint Child Malnutrition Estimates. Geneva: World
24 25	488	Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO., 2020.
26 27		
28	489	4. USAID. Bangladesh: Nutrition Profile, 2018.
29 30		
31 32	490	5. National Institute of Population Research and Training (NIPORT), ICF. Bangladesh
33	491	Demographic and Health Survey 2017-18: Key Indicators. NIPORT and ICF: Dhaka,
34 35	492	Bangladesh and Rockville, Maryland, USA, 2019.
36 37		
38	493	6. Choudhury N, Raihan MJ, Sultana S, et al. Determinants of age-specific undernutrition in
39 40	494	children aged less than 2 years-the Bangladesh context. <i>Maternal & child nutrition</i> 2017;13(3)
41 42	495	[published Online First: 2016/10/19]
43 44	496	7. Hasan M, Sutradhar I, Shahabuddin A, et al. Double Burden of Malnutrition among
45	490	Bangladeshi Women: A Literature Review. <i>Cureus</i> 2017;9(12)
46 47	497	Bangladesin women. A Enerature Review. Cureus 2017,9(12)
48 49	498	8. Balarajan Y, Villamor E. Nationally representative surveys show recent increases in the
50 51	499	prevalence of overweight and obesity among women of reproductive age in Bangladesh, Nepal,
52	500	and India. <i>The Journal of nutrition</i> 2009;139(11):2139-44. [published Online First: 2009/09/25]
53 54		
55 56		
57 58		
59		22
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
18	
18 19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
59 60	
111	

9. Khan MM, Kraemer A. Factors associated with being underweight, overweight and obese 501 502 among ever-married non-pregnant urban women in Bangladesh. Singapore medical journal 503 2009;50(8):804-13. [published Online First: 2009/08/28] 10. Kamal SM, Hassan CH, Alam GM. Dual burden of underweight and overweight among 504 505 women in Bangladesh: patterns, prevalence, and sociodemographic correlates. Journal of Health, Population and Nutrition 2015;33(1):92-105. [published Online First: 2015/05/23] 506 11. Corsi DJ, Kyu HH, Subramanian SV. Socioeconomic and geographic patterning of under-507 and overnutrition among women in Bangladesh. The Journal of nutrition 2011;141(4):631-8. 508 509 [published Online First: 2011/02/25] 12. National Institute of Population Research and Training - NIPORT/Bangladesh, Mitra and 510 Associates, ICF International. Bangladesh Demographic and Health Survey 2014. NIPORT, 511 Mitra and Associates, and ICF International: Dhaka, Bangladesh and Rockville, Maryland, USA, 512 2016. 513 514 13. Haque MA, Platts-Mills JA, Mduma E, et al. Determinants of Campylobacter infection and association with growth and enteric inflammation in children under 2 years of age in low-515 516 resource settings. *Scientific reports* 2019;9(1):17124. [published Online First: 2019/11/22] 517 14. Helen Keller International (HKI) and James P. Grant School of Public Health (JPGSPH). 518 State of food security and nutrition in Bangladesh 2013. HKI and JPGSPH, 2014. 519 15. Yaya S, Bishwajit G, Ekholuenetale M, et al. Awareness and utilization of community clinic 520 services among women in rural areas in Bangladesh: A cross-sectional study. PLOS ONE 2017;12(10):e0187303. doi: 10.1371/journal.pone.0187303 521 16. Haque MA, Choudhury N, Ahmed SMT, et al. The large-scale community-based programme 522 'Suchana' improved maternal healthcare practices in north-eastern Bangladesh: Findings from a 523 cluster randomized pre-post study. Maternal & child nutrition 2022;18(1):e13258. doi: 524 https://doi.org/10.1111/mcn.13258 525


1 2		
3 4	526	17. Choudhury N, Raihan MJ, Ahmed SMT, et al. The evaluation of Suchana, a large-scale
5	527	development programme to prevent chronic undernutrition in north-eastern Bangladesh. BMC
6 7 8	528	public health 2020;20(1):744. [published Online First: 2020/05/24]
9 10	529	18. Coates J, Swindale A, Bilinsky P. Household Food Insecurity Access Scale (HFIAS) for
11 12	530	measurement of food access: indicator guide (v. 3). Washington, D.C.: Food and Nutrition
13 14 15	531	Technical Assistance Project, Academy for Educational Development 2007.
16 17	532	19. Bursac Z, Gauss CH, Williams DK, et al. Purposeful selection of variables in logistic
18 19 20	533	regression. Source code for biology and medicine 2008;3:17.
21 22	534	20. Weatherspoon DD, Miller S, Ngabitsinze JC, et al. Stunting, food security, markets and food
23	535	policy in Rwanda. BMC public health 2019;19(1):882. doi: 10.1186/s12889-019-7208-0
24 25 26	536	[published Online First: 2019/07/06]
27 28	537	21. Agho KE, Mukabutera C, Mukazi M, et al. Moderate and severe household food insecurity
29 30	538	predicts stunting and severe stunting among Rwanda children aged 6-59 months residing in
31 32	539	Gicumbi district. Maternal & child nutrition 2019;15(3):e12767. doi: 10.1111/mcn.12767
33 34 35	540	[published Online First: 2018/12/15]
36 37	541	22. Lin A, Arnold BF, Afreen S, et al. Household environmental conditions are associated with
38	542	enteropathy and impaired growth in rural Bangladesh. The American journal of tropical
39 40	543	medicine and hygiene 2013;89(1):130-37. doi: 10.4269/ajtmh.12-0629 [published Online First:
41 42 43	544	2013/05/01]
44 45	545	23. Amour C, Gratz J, Mduma E, et al. Epidemiology and Impact of Campylobacter Infection in
46 47	546	Children in 8 Low-Resource Settings: Results From the MAL-ED Study. Clin Infect Dis
48 49 50	547	2016;63(9):1171-79. doi: 10.1093/cid/ciw542 [published Online First: 08/07]
51 52	548	24. Smith S, Meade J, Gibbons J, et al. The impact of environmental conditions on
53 54	549	Campylobacter jejuni survival in broiler faeces and litter. <i>Infect Ecol Epidemiol</i> 2016;6:31685-
55	550	85. doi: 10.3402/iee.v6.31685
56 57 58		24
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


25. Chen RY, Kung VL, Das S, et al. Duodenal Microbiota in Stunted Undernourished Children

with Enteropathy. 2020;383(4):321-33. 26. George CM, Oldja L, Biswas SK, et al. Fecal markers of environmental enteropathy are associated with animal exposure and caregiver hygiene in Bangladesh. 2015;93(2):269-75. Almeida M, e. ne Gut Microbiota, E. 27. Perin J, Burrowes V, Almeida M, et al. A Retrospective Case-Control Study of the Relationship between the Gut Microbiota, Enteropathy, and Child Growth. 2020:tpmd190761. 558 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

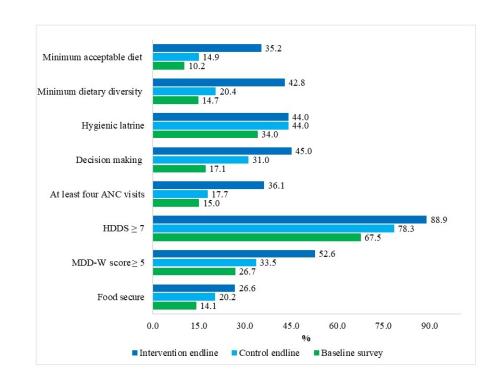

1 2		
3	559	Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline
4 5	560	compared to endline.
6 7	561	
8 9	562	Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS:
10	563	household dietary diversity score, MDD-w: minimum dietary diversity for women.
11 12	564	
13 14	565	Figure 3. Factors influencing stunting in children aged 12-23 months, computed using decision
15	566	tree analysis
$\begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ \end{array}$	567	tree analysis
56 57		
58 59		26

Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline compared to endline

254x190mm (96 x 96 DPI)

Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS: household dietary diversity score, MDD-w: minimum dietary diversity for women

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

254x190mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

S= Stunting

X13

S

X6

X3

NS

NS= Non-Stunting

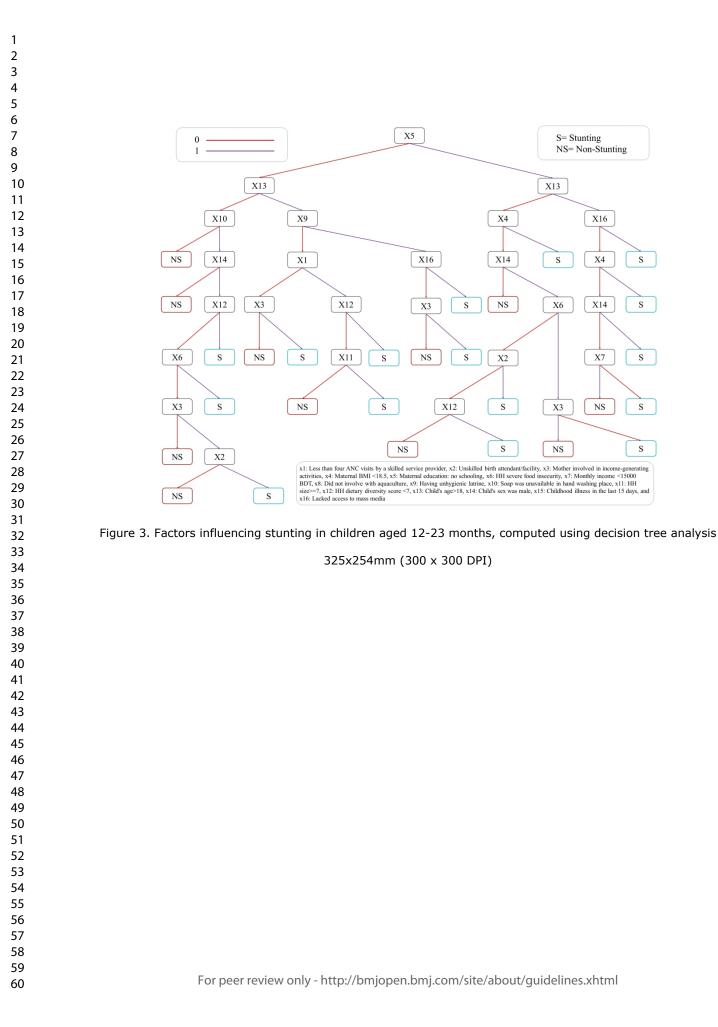
X16

X4

X14

X7

NS


S

S

S

S

S

1	
2	
3	Sample size calculation
4 5	clustersampsi, binomial samplesize p1(0.47) p2(0.41) k40) rho0.01)alpha(0.05) beta(0.8)
6	
7	Output of the STATA command for sample size calculation Sample size calculation to determine number of observations required per cluster, for a two-
8	sample comparison of proportions (using normal approximations) without continuity correction.
9 10	For the user specified parameters:
10	p1: 0.4700 p2: 0.4100
12	significance level: 0.05
13	power: 0.80 number of clusters available: 40
14	intra cluster correlation (ICC): 0.0100
15	<i>clustersampsi</i> estimated parameters: Firstly, assuming individual randomisation: sample size per arm: 1071
16 17	Then, allowing for cluster randomisation: average cluster size required: 38
17	sample size per arm: 1520
19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29	
30 31	Firstly, assuming individual randomisation: sample size per arm: 1071 Then, allowing for cluster randomisation: average cluster size required: 38 sample size per arm: 1520
32	
33	
34	
35 36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48 49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 35	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

Supplementary Table 1. *Suchana* inclusion criteria for registration of enrolling as vulnerable households

	Vulnerable household verification questions	Inclusion criteria	
Step •	<i>I</i> Households currently participating/member of any livelihood, food security or asset transfer program	If "NO" go ahead for next questions	
Step	2		
•	Ability to afford three (3) full meals per day for all family members round the year		
•	Households monthly income BDT 7,500 or more	10	
•	Household productive asset value worth BDT 15,000 or more	If anyone is "NO" go	
	(excluding land, pond and homestead)	ahead for next question	
•	Ownership of homestead land 10 decimals or more		
•	Ownership of cultivable land 50 decimals or more (excluding		
	homestead or pond)		
Ste	p 3		
•	Households have married women with in child bearing age (15 to 45 years)	If anyone is 'Yes' go	
•	Households have pregnant women (including abandoned or widowed woman)	ahead for registration of enrolling as vulnerable	
•	Households have 0-23 months old children	Household	
•	Households have adolescent girls (15-19 years)		
Sam	pling frame was prepared for collecting data from mother-child pair if	the households had 0-23	
mon	ths old children		

Supplementary Equation of logistic and probit regression

 $logit(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{12} X_{12} + \beta_{13} X_{13} + \beta_{14} X_{14} + \beta_{15} X_{15} + \beta_{16} X_{16}$

 $probit(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{12} X_{12} + \beta_{13} X_{13} + \beta_{14} X_{14} + \beta_{15} X_{15} + \beta_{16} X_{16}$

Where,

,	x1: Less than four ANC visits by a skilled service provider x2: Unskilled birth attendant/facility
	•
	x3: Mother involved in income-generating activities
	x4: Maternal BMI <18.5
	x5: Maternal education: no schooling
	x6: HH severe food insecurity
	x7: Monthly income <15000 BDT
	x8: Did not involve with aquaculture
	x9: Having unhygienic latrine
	x10: Soap was unavailable in hand washing place
	x11: HH size \geq 7
	x12: HH dietary diversity score <7
	x13: Child's age>18
	x14: Child's sex was male
	x15: Childhood illness in the last 15 days
	x16: Lacked access to mass media
	and
	logit(y) = log[y/(1-y)]
	$\log(y) = \log(y)(1-y)$

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	Prediction of adjusted stunting [% (95% CI)]	Prediction of adjusted prevalence difference as effect size [*]	p-value
At least four ANC	visits by a skilled service provider		
Yes	51.64 (50.05, 53.23)	Reference	
No	47.99 (45.46, 50.53)	3.65 (1.07, 6.22)	0.006
Birth attendant/fac	ility		
Skilled	51.87 (50.23, 53.51)	Reference	
Unskilled	49.42 (47.48, 51.36)	2.45 (0.55, 4.35)	0.012
Mother involved in	income-generating activities		
No	54.55 (50.90, 58.19)	Reference	
Yes	50.59 (49.08, 52.11)	3.95 (0.40, 7.51)	0.029
Maternal BMI			
BMI ≥18.5	54.04 (52.01, 56.07)	Reference	
BMI <18.5	49.01 (47.21, 50.81)	5.03 (2.66, 7.41)	< 0.001
Maternal education	n was primary completed		
Yes	54.66 (52.58, 56.74)	Reference	
No	48.21 (46.67, 49.75)	6.45 (4.49, 8.40)	< 0.001
HH food insecurity			
Below severe	53.03 (50.91, 55.15)	Reference	
Severe	50.36 (48.63, 52.09)	2.66 (0.11, 5.22)	0.041
HH monthly incom	e ≥15000 BDT		
Yes	51.31 (49.79, 52.84)	Reference	
No	48.58 (45.86, 51.30)	2.73 (0.17, 5.30)	0.037
Involved with aqua	culture		
Yes	51.22 (49.72, 52.72)	Reference	
No	46.99 (43.30, 50.69)	4.23 (0.73, 7.73)	0.018
Hygienic latrine			
Yes	52.67 (50.94, 54.4)	Reference	
No	48.36 (46.5, 50.23)	4.31 (2.34, 6.28)	< 0.001
Water and soap ava	ailable in handwashing place		
Yes	52.64 (50.71, 54.58)	Reference	
No	48.54 (46.74, 50.33)	4.10 (1.83, 6.38)	< 0.001
HH size			
Below seven	53.86 (51.98, 55.74)	Reference	
Seven or above	49.41 (47.70, 51.13)	4.44 (2.43, 6.46)	< 0.001
HH dietary diversit	ty		
HDDS ≥ 7	53.92 (51.25, 56.60)	Reference	
HDDS <7	50.10 (48.70, 51.50)	3.83 (1.63, 6.02)	< 0.001
Child's age			
Age ≤ 18 months	56.72 (54.77, 58.67)	Reference	
Age >18 months	46.59 (44.82, 48.35)	10.1 (7.94, 12.32)	< 0.001
Child's sex			
Female	53.25 (51.17, 55.34)	Reference	
Male	48.40 (46.78, 50.03)	4.85 (2.59, 7.10)	< 0.001
Childhood illness ir		,	
No	54.90 (52.04, 57.77)	Reference	
Yes	50.49 (48.94, 52.05)	4.41 (1.48, 7.34)	0.003
Access of mass med			
Yes	51.51 (49.88, 53.15)	Reference	
No	48.13 (45.39, 50.88)	3.38 (0.42, 6.34)	0.028

*Differences in the predicted values of stunting between the two groups were calculated using the Stata "adjrr" package

	Prediction of adjusted stunting	Prediction of adjusted prevalence	p-v
	[% (95% CI)]	difference as effect size*	•
	visits by a skilled service provider		
Yes	51.64 (50.05, 53.23)	Reference	
No	47.99 (45.46, 50.53)	3.65 (1.08, 6.22)	0.
Birth attendant/fac			
Skilled	51.87 (50.23, 53.51)	Reference	
Unskilled	49.42 (47.48, 51.36)	2.45 (0.54, 4.35)	0.
	income-generating activities		
No	54.55 (50.90, 58.16)	Reference	
Yes	50.59 (49.08, 52.11)	3.93 (0.39, 7.48)	0.
Maternal BMI			
BMI ≥18.5	54.04 (52.01, 56.07)	Reference	
BMI <18.5	49.01 (47.21, 50.81)	5.03 (2.66, 7.40)	<0
Maternal education	was primary completed		
Yes	54.66 (52.58, 56.74)	Reference	
No	48.21 (46.67, 49.75)	6.45 (4.49, 8.41)	<0
HH food insecurity			
Below severe	53.01 (50.89, 55.12)	Reference	
Severe	50.37 (48.64, 52.10)	2.64 (0.09, 5.19)	0
HH monthly incom		, (, ())	
Yes	51.32 (49.79, 52.84)	Reference	
No	48.56 (45.84, 51.28)	2.75 (0.19, 5.32)	0
Involved with aqua		2.75 (0.17, 5.52)	0
Yes	51.22 (49.73, 52.71)	Reference	
No	46.99 (43.28, 50.69)	4.24 (0.73, 7.74)	0
Hygienic latrine	+0.57 (+5.20, 50.07)	2- (0.75, 7.7-)	0
Yes	52.67 (50.94, 54.4)	Reference	
No	48.36 (46.5, 50.23)	4.31 (2.34, 6.28)	<0
	ailable in handwashing place	4.51 (2.54, 0.28)	<0
	• •	Deference	
Yes	52.64 (50.71, 54.58)	Reference	.0
No	48.53 (46.74, 50.33)	4.11 (1.83, 6.39)	<0
HH size	52.04 (51.00, 55.52)		
Below seven	53.86 (51.98, 55.73)	Reference	
Seven or above	49.41 (47.70, 51.13)	4.44 (2.43, 6.46)	<0
HH dietary diversit	-		
HDDS ≥ 7	53.90 (51.23, 56.57)	Reference	
HDDS <7	50.10 (48.71, 51.50)	3.79 (1.60, 5.98)	<0
Child's age			
Age <18 months	56.72 (54.76, 58.67)	Reference	
Age >18 months	46.59 (44.83, 48.35)	10.1 (7.93, 12.3)	<0
Child's sex			
Female	53.25 (51.17, 55.33)	Reference	
Male	48.41 (46.78, 50.03)	4.85 (2.60, 7.10)	<0
Childhood illness in			
No	54.90 (52.04, 57.75)	Reference	
Yes	50.50 (48.94, 52.05)	4.40 (1.47, 7.33)	0.
Access of mass med			
Yes	51.51 (49.88, 53.15)	Reference	
No	48.13 (45.40, 50.86)	3.38 (0.42, 6.34)	0.

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

*Differences in the predicted values of stunting between the two groups were calculated using the Stata "adjrr" package

1	
1	
2	
3	
4	
-	
5	
6	
7	
'	
8	
9	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
52	
33	
34	
35	
36	
37	
57	
38	
39	
40	
41	
42	
43	
44	
•••	
45	
46	
47	
48	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

STROBE Statement-	-Checklist of items that s	should be included in repo	rts of <i>cross-sectional studies</i>
		moura ee meraaea mirepe	

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what	1-2
		was done and what was found	1-2
Introduction		was done and what was found	1
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5-6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	5-6
n i Fri i	-	of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	
measurement	0	of assessment (measurement). Describe comparability of assessment	5-6
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	10
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7
		applicable, describe which groupings were chosen and why	,
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	7-8
Statistical methods	12	confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	-
		(d) If applicable, describe analytical methods taking account of sampling	8
		strategy	
		(e) Describe any sensitivity analyses	
Results		(e) Describe any sensitivity analyses	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	11
T articipants	15	potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	11
Descriptive data	14	social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	11
Main results	15.	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted	11-
111111150118	10	estimates and their precision (eg, 95% confidence interval). Make clear	11-
		which confounders were adjusted for and why they were included	14

		(b) Report category boundaries when continuous variables were	
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	
		risk for a meaningful time period	1
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential]
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	1
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	1
			1
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	2
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

A predictive modelling approach to illustrate factors correlating with stunting

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067961.R2
Article Type:	Original research
Date Submitted by the Author:	11-Feb-2023
Complete List of Authors:	Haque, Md; ICDDRB Choudhury, Nuzhat; ICDDRB Wahid, Barbie Zaman; ICDDRB Ahmed, SM Tanvir ; Save the Children Bangladesh Farzana, Fahmida Dil; ICDDRB Ali, Mohammad; ICDDRB Naz, Farina; ICDDRB Siddiqua, Towfida Jahan ; Johns Hopkins University, Bangladesh Rahman, Shahed ; Save the Children Bangladesh Faruque, ASG; ICDDRB Ahmed, Tahmeed; ICDDRB
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Nutrition < TROPICAL MEDICINE, STATISTICS & RESEARCH METHODS, EPIDEMIOLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

A predictive modelling approach to illustrate factors correlating with stunting
Md Ahshanul Haque ^{1*} , Nuzhat Choudhury ¹ , Barbie Zaman Wahid ¹ , SM Tanvir Ahmed ² ,
Fahmida Dil Farzana ¹ , Mohammad Ali ¹ , Farina Naz ¹ , Towfida Jahan Siddiqua ¹ , Sheikh Shahed
Rahman ² , ASG Faruque ¹ , Tahmeed Ahmed ¹
¹ Nutrition and Clinical Services Division, icddr,b, Dhaka, 1212, Bangladesh
² Child Poverty Sector, Save the Children Bangladesh, Dhaka, Bangladesh
* Correspondence: Md Ahshanul Haque, Assistant Scientist, Nutrition and Clinical Services
Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh,
Email: <u>ahshanul.haque@icddrb.org</u>
Word count: 4539
Abstract
Objective The aim of this study was to construct a predictive model in order to develop an intervention study to reduce the prevalence of stunting among children aged 12-23 months.
Design The study followed a cluster randomized pre-post design and measured the impacts on
various indicators of livelihood, health, and nutrition. The study was based on a large dataset
collected from two cross-sectional studies (baseline and endline).
Setting The study was conducted in the north-eastern region of Bangladesh under the Sylhet
division, which is vulnerable to both natural disasters and poverty. The study specifically targeted
children between the ages of 12 and 23 months.
Main outcome measures Childhood stunting, defined as a length-for-age z-score (LAZ)<-2, was
the outcome variable in this study. Logistic and probit regression models and a decision tree were
constructed to predict the factors associated with childhood stunting. The predictive performance
1
1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
1.5	
14	
15	
16	
10	
13 14 15 16 17	
18	
19	
17	
20	
21	
22	
22	
23	
24	
25	
25	
26	
27	
20	
28	
29	
30	
21	
31	
32	
33	
34	
54	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
47	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

60

BMJ Open

of the models was evaluated by computing the area under the receiver operating characteristic (ROC) curve analysis. **Results** The baseline survey showed a prevalence of 52.7% stunting, while 50.0% were stunted at endline. Several factors were found to be associated with childhood stunting. The model's sensitivity was 61% and specificity was 56%, with a correctly classified rate of 59% and an area under the ROC curve of 0.615. **Conclusion** The study showed that childhood stunting in the study area was largely influenced by factors such as maternal nutrition and education, food insecurity, and hygiene practices. Despite efforts to address these factors, they remain largely unchanged. The study suggests that a more effective approach may be developed in future to target adolescent mothers, as maternal nutrition and education are age-dependent variables. Policymakers and programme planners need to consider incorporating both nutrition-sensitive and specific activities and enhancing collaboration in their efforts to improve the health of vulnerable rural populations. Study registration: RIDIE-STUDY-ID-5d5678361809b Keywords: Predictive model, Nutrition, Statistics, Logistic regression, Probit regression, Decision tree Strengths and limitations of this study Both parametric and non-parametric models were used and the predictive performance of • the analytical models was calculated The study was designed to mitigate potential impact of seasonal factors by conducting the • baseline and endline surveys at the same time of the year • Use of recall data from the previous 24 hours for dietary diversity, household food insecurity, domestic violence, and maternal healthcare may be subject to recall bias Biological data has not been collected such as enteropathogen and environmental enteric dysfunction, which could have been related to childhood stunting

Introduction

Childhood stunting, which is defined as length-for-age z-score (LAZ)<-2, is a major concern for public health and has been widely used as an indicator of chronic malnutrition in children.¹ Although childhood stunting scenarios have much improved globally, the prevalence of childhood stunting is still very high in low-resource settings, including countries such as Bangladesh. According to the 2018 Global Nutrition Report, 150.8 million children (22.2%) under five years-of-age are stunted globally, compared to 198.4 million (32.6%) and 165 million children in 2000 and 2011, respectively.²³ Asian countries have observed a decrease in the rate of stunting among children under five from 38.1% to 23.2% between 2000 and 2018; nevertheless, South Asia still has the highest prevalence of stunting across the region, at 38.9%.² In Bangladesh, about 5.5 million (36%) children under five were stunted in 2014,⁴ however by 2018, childhood stunting has reduced to about 31%.⁵ As the World Health Organization (WHO) considers a childhood stunting rate of 15% to be an emergency situation, the current prevalence of childhood stunting in Bangladesh reflects an alarming situation of chronic undernutrition.⁶

Literature suggests that the prevalence of stunting is higher in children whose mothers receive appropriate antenatal care, take more rest, consume additional food, and take iron-folic acid (IFA) tablets during pregnancy.⁷⁻⁹ Mass media exposure, receive a vitamin A capsule; have a skilled birth attendant; and have maternal nutritional status and maternal education, both of which are linked to childhood stunting.⁶⁸¹⁰⁻¹² On the other hand, in poor households in Bangladesh, children's stunting status is higher among the employed mothers.¹³ Moreover, evidence suggests that a number of characteristics at the household level, which relate to both children and mothers, can influence childhood stunting. The characteristics of the household head, household food insecurity and lower dietary diversity, household lower-income, household involvement in several earning activities, availability of sanitation facility at home, hand-washing status, family size, religion, and receive several types of allowance from government are most often reported to be associated with stunting in the literature.⁶⁸¹¹¹⁴⁻¹⁶

Based on child characteristics, several indicators are associated with stunting. This status is associated with two basic characteristics: a child's gender and age.⁸ Children are commonly Page 5 of 38

BMJ Open

93 affected by the co-occurrence of illness in low- and middle-income countries, which is one of the 94 most common causes of stunting.¹⁷ Inadequate infant and young child feeding (IYCF) practices 95 also reduce child growth.⁸¹⁵ However, these findings are mostly based on nationally representative 96 cross-sectional and cohort studies, or studies conducted in urban settings.^{18 19} Therefore, a 97 knowledge gap exists on whether similar results would be obtained when nationwide data are 98 compared with data for study populations from poor or very poor rural households in specific 99 vulnerable regions.

Sylhet is one such vulnerable region of north-east Bangladesh, comprising diverse terrains such as plain land, hilly land, *Haor* (wetland), and flash flood-prone areas. This region is reported to perform poorly for all important maternal healthcare indicators,²⁰ despite the fact that Bangladesh has made substantial progress in improving the overall health of the population.²¹ Moreover, the socio-economic profile of the inhabitants in Sylhet region includes both very rich and extremely poor people. This scenario may worsen without the implementation of appropriate strategies in the near future. Sylhet region is also performing poorly compared to the national averages for a number of health and nutritional indicators. Critical indicators such as the infant mortality rate and unemployment status of women are high.¹⁹ In comparison to the overall situation of Bangladesh, where stunting among children under five has decreased, the Bangladesh Demographic and Health Survey (BDHS) 2014 indicates the prevalence of childhood stunting in Sylhet is astonishingly high, at 50%.¹⁹ This alarming figure provided the rationale for implementation of a comprehensive intervention programme in this region. A large-scale nutrition programme, Suchana: Ending the Cycle of Undernutrition in Bangladesh; a multi-sectoral nutrition programme, was undertaken with the aim to prevent chronic malnutrition in Sylhet.

3 116

In general, Suchana nutrition interventions can be divided into two types: nutrition-sensitive and nutrition-specific.²² The concept of nutrition-sensitive intervention refers to an intervention that benefits the beneficiaries in terms of food and nutrition security, and also influences the underlying determinants of nutrition. This type of intervention is largely delivered through the agricultural sector (homestead vegetable and fruit production, pro-poor nutrition-sensitive aquaculture), improved technology (mono-sex tilapia and carp-tilapia polyculture, subsistence fishing, fish drying), demonstrations (village model farms and demo ponds, livestock, food security, promotion

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

of climate-smart technologies), and supported income-generating activities (skill development in business management, engagement with the private sector and other sectors). As nutrition-specific interventions were delivered through nutrition-sensitive interventions, their coverage, effectiveness, and scale can be increased. It can meet the targets by lowering them and implementing nutrition-specific interventions. A nutrition-specific intervention addresses the immediate cause of malnutrition. Direct determinants of nutrition are the focus of this intervention. There is a strong focus on nutrition-specific interventions in the health sector. Whether implemented alone or jointly, nutrition-specific interventions improve health outcomes. Some examples of nutrition-specific interventions are: counselling for mothers at the household level, community-based nutrition education for spouses and in-laws, growth monitoring and promotion sessions integrated with Expanded Programme on Immunization in communities, Government of *Bangladesh* health facilities equipped with *severe acute malnutrition* service delivery, and support for National Nutrition Services service delivery through community clinics, Union Health and Family Welfare Centers, and Upazila health complexes.

28 138

The primary objective of the *Suchana* programme was to reduce the prevalence of childhood stunting in the intervention areas. The secondary objectives were to assess the changes in *Suchana* beneficiaries' households, in terms of an increase and diversification of household income, food security status, optimal IYCF practices, haemoglobin status of children, the empowerment of women, and adolescents' nutritional knowledge and practices.²²

The Suchana programme substantially improved nutritional behaviour, maternal healthcare practices, women's empowerment, household income, and household food security in the intervention area compared to the control area.²³ Contrary to predictions, however, Suchana did not result in any significant reduction in the prevalence of childhood stunting. Therefore, although most other factors related to childhood stunting improved, this raises the question of why the prevalence of stunting did not reduce after the intervention. An important observation from the Suchana survey was that the proportion of households in this study population using hygienic latrines was quite low. This factor was associated with stunting in children,⁸ and did not significantly improve by endline in the intervention areas compared to the control areas.

BMJ Open

In this study, we aimed to construct a predictive model to attempt to explain whether any
improvements in associated factors may promote a significant reduction in stunting among
children aged 12-23 months from poor and extremely poor households in the Sylhet region.

¹⁰ 159 Methods

160 Study design and setting

The Suchana programme was implemented in 157 Unions over 20 sub-districts in the Sylhet region in the north-east of rural Bangladesh. The Suchana programme's protocol has been thoroughly explained elsewhere.²² Union, the smallest local government and administrative entity in rural Bangladesh, was considered as a cluster and divided into four phases at random. Phase-1 was designated as the intervention group, while Phase-4 was the control group, and the other phases were treated as learning phases.²² For implementation purposes, vulnerable villages were selected within Phase-1 and Phase-4 areas. The staff of the programme chose vulnerable villages in each Union based on their vulnerability (e.g., frequent floods or submerging, little or no intervention from other development programmes, poverty or household living circumstances, remoteness and accessibility issues, a high prevalence of superstitions and social taboos). After consultation with the local government representatives, elected officials, and local elites as well as field visits, this selection method was decided upon. The impacts of the intervention on livelihood, health, and nutrition were measured using a pre-post design. A large dataset was collected from two cross-sectional surveys (baseline and endline) under this study. The baseline survey was conducted in November 2016 and February 2017, followed by the endline survey in the same months three years later among the same population and different participants (Supplementary Figure 1).

41 177

Outcome variable

The outcome variable in this study was childhood stunting, which was defined as a length-for-age
z-score (LAZ)<-2.⁵

48 181

50 182 Independent variables

Initially, a list of independent variables was finalized through results obtained from descriptive
and bi-variate analyses, as well as a comprehensive literature review (Table 1). These included at
least four antenatal care (ANC) visits by a skilled service provider, additional resting during

pregnancy, additional food consumption during pregnancy, consumption of at least 100 IFA tablets during pregnancy, receiving vitamin A capsule after last delivery, birth attendant/facility, mother involved in income-generating activities, maternal BMI, maternal education, household food insecurity, household monthly income >15000 BDT, involved with aquaculture, hygienic latrine, water and soap available in handwashing place, household size, household dietary diversity, sex of household head, religion, received any grant/allowance/stipend from the government, access of mass media, child's age, child's sex, childhood illness in the last 15 days, minimum dietary diversity, early initiation of breastfeeding, and received colostrum. Household food insecurity access scale was measured using the Food and Nutrition Technical Assistance's Guideline, which categorizes household food insecurity into four levels: a) food secure, b) mildly food insecure, c) moderately food insecure, and d) severely food insecure.²⁴ In the analysis herein, this indicator was redefined as a binary indicator: severely food insecure or not severely food insecure.

199 Sample size

The sample size for this study was calculated with the STATA "*clustersampsi*" command module, considering the number of clusters in the surveys and considering the expected prevalence of childhood stunting in the control group (Supplemental Appendix 1). It was estimated that the expected prevalence of stunting was 47%, which was hypothesized to be reduced to 41% after three years of intervention. A sample size of 1520 per arm was calculated based on a 5% level of significance, 80% power, 40 clusters per arm, and an intra-cluster correlation coefficient (ICC) of 0.01. After rounding, the estimated sample size per arm was 1620, and the total sample size was 3200 at baseline, with an equal number of participants in the control and intervention groups. For evaluation purposes, the sample size at endline was doubled to ensure a stratified intervention component, resulting in a total sample size of 9600 mother-child pairs (baseline: 3200 and endline: 6400).22

⁸ 212 Sampling

The baseline and endline surveys were conducted in a total of eight and twelve villages respectively, which were randomly selected from each *Union* using a list of vulnerable villages provided by Save the Children. The most vulnerable households were identified and verified using the inclusion criteria of the *Suchana* programme (Supplementary Table 1). These households were Page 9 of 38

BMJ Open

then given an identification number to prepare the sampling frame and required households were
systematically selected for the surveys from the frame. The method of data collection is explained
in detail in the Supplemental Appendix 2.

9 220

222 Statistical analysis

Descriptive statistics: Stata-14 software (StataCorp LP, College Station, TX, USA) and R 4.2.2
(*rpart*) were used to analyse the data. Several statistical plots were used for data visualization.
Descriptive statistics, such as frequency and proportions for categorical variables and mean and
standard deviations for quantitative variables, were used to summarize the data at baseline and
endline.

Predictive model: Three statistical models were used as predictive models. Two parametric models, such as Logistic and Probit regression models, and Decision Tree as a non-parametric model. Logistic and Probit regression models were used as predictive models as well as classifier models. The models were also used to investigate which factors were significantly associated with childhood stunting, and estimate their effect size, in order to predict whether changes in behavioural practices might potentially help to achieve targeted reductions in stunting. Using those variables, a decision tree was applied, and the predictive performance was compared to other models.

38 237

For the parametric models, first, Chi-Square test was used to examine the bivariate associations between stunting and all possible explanatory variables. In the second step, variables with *p*-values <0.25 in the simple model were included in the multiple regression models.²⁵ In the final step, any independent variables thought to be likely predictors were added to the multiple regression model using the stepwise forward selection method. Some indicators, e.g., age, sex, and maternal nutritional status were added regardless of their *p*-value due to their scientific plausibility. The mathematical equation of logistic and probit regression models were given in the Supplemental Appendix 3. As a cluster variable, *Union* was used to adjust the standard errors. Furthermore, for the explanation of the regression model, a *p*-value <0.05 was considered as statistically significant, and the confidence interval (CI) of 95% was also reviewed. From the fitted model, the adjusted

Page 10 of 38

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

effect size (adjusted prevalence difference) against all predictors was estimated using the "adjrr"

package in Stata. The list of independent variables with the value labels used in the model is given

in Table 1.

Table 1. List of all independent variables

Indicators	Code	Stunting Status*	Selection in the model
At least four ANC visits by a skilled service provider			
At least four ANC visits by a skilled service provider	0		Selected
Less than four ANC visits by a skilled service provider	1	Higher prevalence ⁸	
Additional resting during pregnancy			
Took more rest	0		Not selecte
Did not take more rest	1	Higher prevalence ⁸	
Additional food consumption during pregnancy			
Consumed more food	0		Not selecte
Did not consumed more food	1	Higher prevalence ⁷⁸	
Consumption of at least 100 IFA tablets during pregnan	cy		
Consumed at least 100 IFA tablets	0		Not selecte
Did not consumed at least 100 IFA tablets	1	Higher prevalence ⁹	
Received vitamin A capsule after last delivery			
Received	0		Not selecte
Did not receive	1	Higher prevalence ⁸	
Birth attendant/facility			
Skilled	0		Selected
Unskilled	1	Higher prevalence ¹⁰	
Mother involved in income-generating activities			
No	0	Selecte	
Yes	1	Higher prevalence ^{6 13}	
Maternal BMI			
BMI ≥18.5	0		Selected
BMI <18.5	1	Higher prevalence ^{6 11}	
Maternal education			
At least one-year formal education	0		Selected
No schooling	1	Higher prevalence ^{6 11}	_
Access of mass media			
Access	0		Selected
No access	1	Higher prevalence ¹²	
Household food insecurity			
Below severe	0		Selected
Severe	1	Higher prevalence ⁸	
Household monthly income ≥15000 BDT			
≥15000 BDT	0		Selected
<15000 BDT	1	Higher prevalence ¹¹	
Involved with aquaculture		0 - r	
Involved	0		Selected
Did not involved	1	Higher prevalence ¹⁴	200000
Hygienic latrine		0 rwww.ww	
Hygienic latrine	0		Selected

Unhygienic latrine	1	Higher prevalence ^{6 11 15}	
Water and soap available in handwashing place			
Available	0		Select
Unavailable	1	Higher prevalence ¹⁵	
Household size			
Below seven	0		Select
Seven or above	1	Higher prevalence ¹¹	
Household dietary diversity (HDDS)			
HDDS ≥7	0		Select
HDDS <7	1	Higher prevalence ⁸	
Sex of household head			
Female	0		Not sele
Male	1	Higher prevalence ⁸	_
Household head education			
At least one-year formal education	0		Not sele
No schooling	1	Higher prevalence ⁶	
Religion			
Muslim	0		Not sele
Non-Muslim	1	Lower prevalence ⁶	
Received any grant/allowance/stipend from the governm	lent	I	
Received	0		Not sele
Did not receive	1	Higher prevalence ¹⁶	
Child's age			
Age ≤ 18 months	0		Selec
Age >18 months	1	Higher prevalence ⁸	
Child's sex			
Female	0		_
Male	1	Higher prevalence ⁸	
Childhood illness in the last 15 days			
No	0		Selec
Yes	1	Higher prevalence ¹⁷	
Minimum dietary diversity			
Received	0		Not sele
Did not receive	1	Higher prevalence ^{8 15}	
Early initiation of breastfeeding		5 - F	
Received	0		Not sele
Did not receive	1	Higher prevalence ⁸	
Received colostrum		0 · · · · · · · · · · ·	
Received	0		Not sele
Did not receive	1	Higher prevalence ⁸	

Model evaluation: The predictive performance of the three statistical models was evaluated by computing model sensitivity and specificity, and calculating the area under the receiver operating curve (ROC) analysis. To ensure accurate results, the data was randomly split into a training set (75%) and a test set (25%) using a random-number seed 113843. The same training and test datasets were used for evaluating the performance of all algorithms to ensure consistency in the

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

results. The sensitivity and specificity values, as well as the area under the ROC curve, were used
 to determine the overall accuracy of the algorithms in predicting childhood stunting.^{26 27}

264 Patient and public involvement

Patients and public were not actively involved in formulating the research question and or protocol
development, including the outcome measures. To expedite the field implementation, however,
local elites e.g. teachers, religious persons, and local government council members were informed
about the study.

Results

General characteristics: Out of 9600 cases, 9501 cases were found to be available. The refusal rate was around 1%. With respect to the outcome indicator, stunting in children aged 12-23 months, 52.7% of children were stunted at the baseline survey (intervention group: 52.6%; control group: 52.8%), whereas the proportion of children exhibiting stunting at endline was 50.0% (intervention: 49.9%; control: 50.1%; Figure 1). At both the baseline and endline surveys, there was no significant difference in proportion between intervention and control areas. The *difference-indifference* in outcomes over time was also insignificant.

Figure 2 describes several other indicators related to maternal and child health, including the status of consuming a minimum acceptable diet (intervention: 35.2%; control: 14.9%), minimum dietary diversity (intervention: 42.8%; control: 20.4%), maternal decision-making (intervention: 45.0%; control: 31.0%), at least four maternal ANC visits by a skilled service provider (intervention: 36.1%; control: 17.7%), minimum dietary diversity for women (intervention: 52.6%; control: 33.5%), a household dietary diversity score of at least seven (intervention: 88.9%; control: 78.3%), and household food security status (intervention: 26.6%; control: 20.2%). Results from the endline survey showed that these indicators were significantly improved in the intervention group compared to the control group. However, the availability of hygienic latrines did not increase in the intervention group (intervention: 44.0%; control: 44.0%). Table 2 shows the households' socio-demographic characteristics, women's general characteristics, and children's characteristics at baseline and endline.

Indicators, n (%)	Baseline N=3200	Endline <i>N</i> =6301	Total <i>N</i> =9501
At least four ANC visits by a skilled service provi			11 2001
Yes	408 (12.8)	1530 (24.3)	1938 (20.4)
No	2792 (87.2)	4771 (75.7)	7563 (79.6)
Delivery at skilled birth attendant/facility			
Yes	1000 (31.2)	2769 (44.0)	3769 (39.7)
No	2200 (68.8)	3532 (56.0)	5732 (60.3)
Access of mass media			
Access	563 (17.59)	1169 (18.55)	1732 (18.23
No access	2637 (82.41)	5132 (81.45)	7769 (81.77
Mother involved in income-generating activities			
No	3102 (96.9)	5665 (89.9)	8767 (92.2)
Yes	98 (3.1)	639 (10.1)	737 (7.8)
Maternal BMI			
BMI ≥18.5	1859 (58.1)	4073 (64.6)	5932 (62.4)
BMI <18.5	1341 (41.9)	2231 (35.4)	3572 (37.6)
Mother completed primary education			
Yes	1721 (53.8)	3808 (60.4)	5529 (58.2)
No	1479 (46.2)	2496 (39.6)	3975 (41.8)
Maternal age			,
Age <30 years	2145 (67.0)	3559 (56.5)	5704 (60.0)
Age ≥ 30 years	1055 (33.0)	2745 (43.5)	3800 (40.0)
Type of delivery			
Normal	2879 (90.0)	5529 (87.8)	8408 (88.5)
Caesarean	321 (10.0)	772 (12.3)	1093 (11.5)
PNC			,
No	2152 (67.3)	4128 (65.5)	6280 (66.1)
Yes	1048 (32.8)	2173 (34.5)	3221 (33.9)
Household severely food insecure			
Yes	912 (28.5)	1016 (16.1)	1928 (20.3)
No	2288 (71.5)	5285 (83.9)	7573 (79.7)
Household monthly income ≥15000 BDT	, ,		, , ,
Yes	424 (13.2)	1015 (16.1)	1439 (15.1)
No	2776 (86.8)	5289 (83.9)	8065 (84.9)
Household involved with aquaculture			
Yes	161 (5.0)	561 (8.9)	722 (7.6)
No	3039 (95.0)	5740 (91.1)	8779 (92.4)
Hygienic latrine			
Yes	1121 (35.0)	2782 (44.1)	3903 (41.1)
No	2079 (65.0)	3519 (55.9)	5598 (58.9)
Water and soap available in handwashing place			
Yes	862 (26.9)	3170 (50.3)	4032 (42.4)
No	2338 (73.1)	3131 (49.7)	5469 (57.6)
Household savings			
No	1080 (33.8)	2876 (45.6)	3956 (41.6)

Yes	2120 (66.2)	3425 (54.4)	5545 (58.4)
Sex of household head			
Female	110 (3.4)	501 (8.0)	611 (6.4)
Male	3090 (96.6)	5799 (92.0)	8889 (93.6)
Source of drinking water			
Tube well	2748 (85.9)	5713 (90.7)	8461 (89.0)
Others	452 (14.1)	588 (9.3)	1040 (11.0)
Household dietary diversity score			
HDDS ≥7	2182 (68.2)	5322 (84.5)	7504 (79.0)
HDDS <7	1018 (31.8)	979 (15.5)	1997 (21.0)
Household monthly income (Thousand BDT) ¹	6.7 (5, 10)	7.5 (5.1, 10.8)	7.1 (5, 10.4)
Per capita income (Thousand) ¹	2.6 (1.8, 3.7)	2.9 (2, 4.1)	2.8 (2, 4)
Household size ¹	6.2±2.4	5.9±2.1	6±2.2
Child's age in months ²	17.9±3.5	17.3±3.6	17.5±3.6
Length-for-age z-score ²	-2.1±1.2	-2±1.1	-2±1.1
Weight-for-age z-score ²	-1.7±1.1	-1.5±1.0	-1.5±1.0
Weight-for-length z-score ²	-0.9±1.0	-0.7±0.9	-0.7±1.0
Child's age			
Age <18 months	1745 (54.5)	3710 (58.9)	5455 (57.4)
Age ≥ 18 months	1455 (45.5)	2594 (41.1)	4049 (42.6)
Child's sex			
Female	1567 (49.0)	3044 (48.3)	4611 (48.5)
Male	1633 (51.0)	3257 (51.7)	4890 (51.5)
Childhood illness in the last 15 days			
Yes	2867 (89.6)	5763 (91.5)	8630 (90.8)
No	333 (10.4)	538 (8.5)	871 (9.2)
Median (IQR); ² Mean ± SD	,		

Associated factors: The study used two parametric predictive models to determine the correlates of childhood stunting. The results, presented in Table 3, showed the adjusted odds ratios (aOR) computed from multiple logistic regression and the adjusted coefficients computed from multiple probit regression. These results provide important insights into the factors that increase the odds of stunting in childhood, and can inform public health interventions aimed at reducing stunting and improving child health. The aORs provide a quantitative measure of the relationship between different factors and childhood stunting, adjusting for *Union* as cluster variable. Understanding the correlates of childhood stunting is critical for addressing this important public health issue and improving the health and well-being of children globally. The results of this study show that a number of maternal, household and children factors were correlated with an increased prevalence of stunting in children. Children of mothers who did not receive at least four ANC visits from a skilled service provider had 1.16 times higher odds of stunting (95% CI: 1.05, 1.30; p-value=0.005). Children of mothers who gave birth with an unskilled birth attendant or facility had

Page 15 of 38

BMJ Open

1.11 times higher odds of stunting (95% CI: 1.02, 1.20; p-value=0.012). The odds of stunting were 1.18 times higher in children whose mothers were involved in income-generating activities (95%) CI: 1.02, 1.37; p-value=0.030), 1.23 times higher in children of underweight mothers (95% CI: 1.12, 1.36; p-value<0.001), and 1.31 times higher in children of low-educated mothers (95% CI: 1.20, 1.42; p-value<0.001). Furthermore, the lack of exposure to mass media was also found to be associated with stunting, with odds of 1.15 (95% CI: 1.02, 1.30; p-value=0.025) times higher. Children from households with severe food insecurity, lower-income households, households not involved in aquaculture, and households with low dietary diversity, were more likely to be stunted, with odds increasing by 1.12 (95% CI: 1.00, 1.24; p-value=0.041), 1.12 (95% CI: 1.01, 1.25; p-value=0.037), 1.19 (95% CI: 1.03, 1.38; p-value=0.018), and 1.17 (95% CI: 1.07, 1.29; p-value=0.001) times, respectively. The results also showed that the odds of stunting increased with increasing household size (95% CI: 1.11, 1.31; p-value<0.001), the absence of a hygienic latrine (95% CI: 1.10, 1.30; p-value<0.001), the absence of water and soap in the handwashing place (95% CI: 1.08, 1.30; p-value<0.001), increasing child age (95% CI: 1.39, 1.67; p-value<0.001), and being male (95% CI: 1.11, 1.34; p-value<0.001). The odds of stunting were also 1.20 times higher in children with acute illness (95% CI: 1.06, 1.36; p-value=0.003). The logistic and probit regression models were employed to predict stunting in a sample of 9501 individuals. Both models were found to be significant, with log-likelihoods of -6387.94 and -6388.02, respectively, and significant Wald chi-square statistics (p-value < 0.001). The correlations of childhood stunting, as determined by using a decision tree as a non-parametric predictive model, are also presented in Figure 3. Predictive ability of various indicators for the adjusted prevalence of stunting and adjusted prevalence difference (effect size) are given in Supplementary Table 2a and 2b.

43 332

333Table 3. Factors influencing stunting in children aged 12-23 months, computed using

334 logistic and probit regression analyses

Indicators		Logistic		Probit	
		Adjusted OR (95% CI)	p-value	Adjusted Coef. (95% CI)	p-value
At least four ANC visits by a skilled service provider					
	Yes	Reference		Reference	
	No	1.16 (1.05, 1.30)	0.005	0.09 (0.03, 0.16)	0.005
Birth attend	ant/facility				
	Skilled	Reference		Reference	
	Unskilled	1.11 (1.02, 1.20)	0.012	0.06 (0.01, 0.11)	0.012

	volved in income-generat No	Reference		Reference	
	Yes		0.030		0.030
Maternal		1.18 (1.02, 1.37)	0.030	0.10 (0.01, 0.19)	0.030
Maternal					
	BMI ≥18.5		0.000	0.12 (0.07, 0.10)	0.000
M - 4 1	BMI <18.5	1.23 (1.12, 1.36)	0.000	0.13 (0.07, 0.19)	0.000
Maternal	education was primary co			D . C	
	Yes	Reference	0.000	Reference	0.000
	No	1.31 (1.20, 1.42)	0.000	0.17 (0.12, 0.22)	0.000
Access of 1	nass media	D.C.		D.C.	
	Yes	Reference	0.025	Reference	0.005
	No	1.15 (1.02, 1.30)	0.025	0.09 (0.01, 0.16)	0.025
Household	food insecurity				
	Below severe				
	Severe	1.12 (1.00, 1.24)	0.041	0.07 (0.00, 0.13)	0.042
Household	l monthly income <u>></u> 15000				
	Yes	Reference		Reference	
	No	1.12 (1.01, 1.25)	0.037	0.07 (0.00, 0.14)	0.035
Involved v	vith aquaculture				
	Yes	Reference		Reference	
	No	1.19 (1.03, 1.38)	0.018	0.11 (0.02, 0.20)	0.018
Household					
	Below seven	Reference		Reference	
	Seven or above	1.20 (1.11, 1.31)	0.000	0.12 (0.06, 0.17)	0.000
Hygienic l	atrine				
	Yes	Reference		Reference	
	No	1.20 (1.10, 1.30)	0.000	0.11 (0.06, 0.16)	0.000
Water and	l soap available in handw	ashing place			
	Yes	Reference		Reference	
	No	1.19 (1.08, 1.30)	0.000	0.11 (0.05, 0.16)	0.000
Household	l dietary diversity				
	HDDS >7	Reference		Reference	
	HDDS <7	1.17 (1.07, 1.29)	0.001	0.10 (0.04, 0.16)	0.001
Child's ag					
	Age <18 months	Reference		Reference	
	Age >18 months	1.52 (1.39, 1.67)	0.000	0.26 (0.2, 0.32)	0.000
Child's sea					
	Female	Reference		Reference	
	Male	1.22 (1.11, 1.34)	0.000	0.13 (0.07, 0.18)	0.000
Childhood	illness in the last 15 day			(,)	
	No	Reference		Reference	
	Yes	1.20 (1.06, 1.36)	0.003	0.11 (0.04, 0.19)	0.003
Sample siz		n = 9501	0.005	n = 9501	0.002
Sample size and regression diagnostic values for logistic and probit regression analyses		Log-likelihood = -6387.94 Wald chi2(17) = 427.79 p-value< 0.001 Pseudo R ² = 0.0298		Log-likelihood = -6388.0 Wald chi2(17) = 441.18 p-value<0.001 Pseudo R ² = 0.0298	

337 Predictive performance: Table 4 describes the model validation based on sensitivity, specificity,
338 and whether the model was correctly classified for the overall dataset, as well as the training and

Page 17 of 38

BMJ Open

test datasets. The sensitivity and specificity of the model were around 60% and 55%, respectively
for all models. The correctly classified rate was 59%, and the area under the ROC curve was around
61%. We found that these values were approximately equal among the three datasets (main,
training, and test datasets); however, the predictive performance of the model was low.

Table 4. Predictive performance of the model for stunting based on classification, sensitivity,
 and specificity in the full, training and test datasets with area under the receiver operating
 characteristic curve analysis

	Logistic regression	Probit regression	Decision tree
Full dataset			
Overall accuracy	58.46	58.38	56.51
Sensitivity	61.21	61.25	61.15
Specificity	55.61	55.41	51.70
Area under the curve	61.54	61.54	56.72
Training Dataset		'	
Overall accuracy	58.83	58.62	57.66
Sensitivity	61.59	61.70	63.93
Specificity	55.36	55.42	51.61
Area under the curve	61.37	61.37	58.44
Test Dataset			
Overall accuracy	58.11	58.19	56.67
Sensitivity	60.23	60.23	61.58
Specificity	55.90	56.07	51.94
Area under the curve	61.76	61.77	58.01

9 347

349 Discussion

In an effort to understand why the Suchana programme was not effective in reducing the prevalence of childhood stunting, this study analyzed data from both the baseline and endline surveys of the programme. The analysis aimed to identify the factors that were significantly correlated with stunting and to evaluate the model's predictive performance. After controlling for the Union as a cluster variable, the study found several indicators that were significantly related to stunting. These included the number of ANC visits by a skilled service provider, household dietary diversity, household food security, and household monthly income, which improved after the intervention. However, it was noted that the household food security status did not reach the target

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

value of 50%, despite being an important factor associated with childhood stunting.^{8 28 29} On the
other hand, other outcome indicators of the *Suchana* programme, such as dietary diversity of
children, maternal dietary diversity, and maternal empowerment, despite reaching their target
values, were not found to be associated with stunting in this study.

The recent study found that while the Suchana programme showed improvement in certain programme indicators, it did not lead to a significant reduction in childhood stunting. Despite efforts to address key factors such as maternal nutrition and education, household food security, and hygiene practices, these factors remained largely unchanged. However, the study suggests that interventions aimed at adolescent mothers may be more effective in improving maternal nutrition and education, since these are age-dependent variables. Additionally, the results of the study were also impacted by natural disasters in 2017, including heavy rains and flooding in the Sylhet region, which resulted in widespread damage to agriculture, aquaculture, and homes in the study population.^{30 31}

The study found a contradictory relationship between stunting and maternal involvement in income-generating activities, with higher stunting prevalence observed among children whose mothers were engaged in various earning activities. Although there was a slight increase in the proportion of mothers involved in income-generating activities after the intervention, the lack of childcare support for working mothers resulted in a marked rise in childhood stunting among low-income households. It is important to address this issue by providing adequate childcare support measures for working mothers from poor families, to ensure that the essential needs of the child are not impacted by the mother's employment status.¹³ Another important finding based on the post-estimation findings as well as the value of the area under the ROC curve was that the predictive performance of the model was low. Thus, we need to identify other indicators from similar research contexts influencing childhood stunting that were not included in our model.

48 384

 The literature suggests that environmental enteropathy may contribute to poor growth among children in rural Bangladesh and may represent an important factor affecting the study population in the *Suchana* programme.³² Although it was not specifically assessed in this study, indicators such as unsanitary latrines, unimproved floors, lack of handwashing practices, and low education Page 19 of 38

BMJ Open

levels were available.^{18 33} Improving Water, Sanitation and Hygiene (WaSH) variables, particularly latrine facilities and handwashing practices, may help reduce the burden of stunting in young children. One of the components of the intervention was poultry, but our qualitative findings revealed that many households shared living spaces with poultry, ducks, or other animals, which could increase the risk of infections with *Campylobacter* species, a leading food-borne pathogen.¹⁸ ³⁴ Previous studies have shown a strong association between stunting and enteropathy among children who do not respond to nutritional interventions, and findings from rural Bangladesh have linked environmental conditions and stunting in children.³⁵⁻³⁷ While assessing environmental enteropathy was beyond the scope of the Suchana evaluation, collecting data on indicators of enteropathy in the intervention and control areas could help evaluate the impact of appropriate interventions in the future. The failure to achieve the desired outcome may have been due to several factors, including food insecurity and a lack of aquaculture involvement due to natural disasters, poor WaSH status, a lack of focus on maternal education and nutrition, and a lack of focus on the risk of enteropathogen burden.

This study will aid programme managers in prioritizing their focus and designing effective interventions to reduce childhood stunting. Sustainable solutions should be based on the needs of the beneficiaries. Implementing short-term initiatives such as attendance at healthcare-led workshops and campaigns can increase ANC visits, skilled birth attendance, and handwashing practices. Establishing women's healthcare services that focus on maternal and child health and nutrition will also help reduce the incidence of stunting.²³ Improved access to media can help vulnerable communities benefit from government welfare programmes. Food security, income, sanitation, aquaculture, and illness are all time-sensitive factors. Increasing food production through self-production or purchasing can improve household food security and nutrition. However, household wealth and access to nearby markets can impact their ability to buy nutritious food. Climate change adaptation in agriculture is crucial to minimize current risks and prepare for future uncertainties. Using organic fertilizers instead of chemicals in agriculture has environmental benefits, reducing the need for pesticides and protecting human health and biodiversity. Aquaculture can provide a source of protein and improve nutrition, but establishing these facilities takes time. Improving sanitation requires improving socioeconomic status, which is also a time-intensive process. It takes time to improve stunting, as shown by national surveys such as BDHS

and Food Security and National Surveillance Project (FSNSP).^{5 38} To improve maternal nutrition,
women need adequate food during adolescence and maternal education is a strong predictor of a
child's nutritional status. Emphasizing the education of female children can break the cycle of
poverty and stunting.^{6 11} To reduce childhood stunting in developing countries, comprehensive
interventions that include nutritional support, food security, maternal education, incomegenerating activities for women, and addressing domestic violence against women should be
implemented.

Recommendation: The Suchana model offers a holistic and integrated approach to addressing food and nutrition security, recognizing undernutrition as a complex problem caused by multiple factors. The endline survey of Suchana showed significant improvement in programme indicators. The multi-sector approach of Suchana is a meaningful solution to addressing undernutrition. However, policy makers should consider implementing additional nutrition-sensitive and specific activities, such as promoting climate-resilient agriculture and increasing water and sanitation coverage. It is also important to have a sustainable mechanism for improving food security and to promote awareness of seasonal diseases associated with livestock and poultry. To further improve the programme, indicators such as child sex, maternal education, and nutrition could be adjusted during the design stage. The Suchana programme is one of the largest global nutrition interventions, leading to positive changes in critical indicators, with long-term benefits expected for the health and livelihoods of the beneficiaries.

Strength and limitation: The study had several strengths, including a large sample size, randomization, and appropriate sampling techniques. A dedicated quality control team was involved in checking the data, and the use of precise anthropometry instruments and separate training for the measurement team helped ensure accurate data collection. The study was also designed to avoid seasonality by conducting the baseline and endline surveys at the same time of the year. However, the study results may have been impacted by a lack of selection effect in the implementation of the programme, as well as by the short time horizon of the study. The short duration of the study may not have been enough to see a significant impact on stunting. Additionally, changes in the study population between the baseline and endline surveys could also

Page 21 of 38

BMJ Open

1	
1	
2	
3	
4	
5	
6	
7	
8	
9	
	0
1	1
1	2
	3
1	4
1	5
1	6
1	7
1	8
1	9
י כ	0
2	1
2 2	ן ר
2	2
	3
2	4
	5
2	6
2	7
2	8
2	9
- २	0
3	
3	2
3	
	3
3	4
	5
3	6
3	7
3	8
3	9
	0
	1
4	
4	_
4 4	
	-
4	
4	-
4	
4	8
4	
5	0

57 58

59

60

468

have contributed to the lack of differences observed in the results. Another limitation of this study
is that we did not collect food intake data but only recall data from the previous 24 hours. These
data may be subject to recall bias; thus, caution is necessary when drawing conclusions, especially
for indicators such as dietary diversity, household food insecurity, domestic violence, and maternal
healthcare.

- 2 456
- 457

458 Conclusion

Childhood stunting was heavily influenced by a number of factors, and majority of the factors 459 were found in poor status in our study area. Despite the implementation of an intervention 460 programme, the situation remained unchanged due to factors such as food insecurity, lack of 461 462 involvement in aquaculture, poor access to WaSH facilities, and a lack of focus on maternal education and nutrition. The study did not include important indicators such as enteropathogen 463 and environmental enteric dysfunction, which might have contributed to the failure to achieve the 464 desired outcome. The results suggest that policy makers and programme planners should consider 465 466 enhancing collaboration and coordination between nutrition-sensitive and specific activities to address nutritional deficiencies and family health programmes in vulnerable rural populations. 467

Acknowledgments: The study analyzed baseline survey data of Suchana; this intervention has 469 470 been implemented by a consortium led by Save the Children, with support from the Foreign, Commonwealth and Development Office (FCDO) and European Union (EU). icddr,b 471 472 acknowledges with gratitude the commitment of Save the Children, FCDO and EU to its research efforts. We also acknowledge with gratitude the commitment of the Government of the People's 473 474 Republic of Bangladesh to icddr,b's research activities. We also acknowledge the following donors for providing unrestricted support to icddr,b's efforts and advancement of its strategic plan: 475 Canada, Sweden and the United Kingdom. We gratefully acknowledge our core donors for their 476 support and commitment to icddr,b's research efforts. We would like to acknowledge the 477 invaluable contributions of Save the Children as lead agency, our technical partners Helen Keller 478 51 479 International, World Fish, and International Development Enterprises, and the implementing 52 53 partners Friends In Village Development Bangladesh (FIVDB), Rangpur Dinajpur Rural Services 480 54 55 (RDRS), and the Center for Natural Resource Studies (CNRS) who played critical roles in 481 56

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

generating and refining the data-collection tools. We would also like to acknowledge Tasnia Alam, Research Assistant and Md. Maniruzzaman, Assistant Professor, Khulna University, Khulna-9208, Bangladesh as the internal reviewers, and Andrea Devlin of Science Editing Experts for editing and linguistic revision of the manuscript.

Funding: (i) This study was made possible by the committed contribution of Foreign, Commonwealth and Development Office (Grant number: 204131-103), and (ii) icddr,b (N/A).

Conflicts of Interest: The authors declare no conflict of interest.

Author Contributions: TA and NC originated the idea for the study and led the protocol design. MAH conceptualized the manuscript. SMTA, SSR, MAH, NC, FDF, and TA contributed to the survey design. MAH performed statistical analysis and drafted the manuscript. NC and ASGF supervised the work, and critically reviewed and provided feedback for revising the manuscript. MAH, NC, MA, FDF, FN, BZW, TJS, ASGF, TA, and SSR contributed to the revision of the final draft for submission. All authors are responsible for the final content of the manuscript.

Ethics approval: This study was approved by the Research Review Committee and Ethical Review Committee, the two obligatory components of the Institutional Review Board (IRB) of icddr,b. Ethics Committee's approval ID# 00001822. Informed written consent was obtained from

Data availability statement: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy and

1 2		
2 3 4	509	Reference
5 6	510 511	1. Bari A, Nazar M, Iftikhar A, et al. Comparison of Weight-for-Height Z-score and Mid-Upper
7	512	Arm Circumference to Diagnose Moderate and Severe Acute Malnutrition in children aged 6-59
8 9	513	months. <i>Pakistan journal of medical sciences</i> 2019;35(2):337-41. doi: 10.12669/pjms.35.2.45
10 11	514	[published Online First: 2019/05/16]
12 13	-	
14	515	2. Development Initiatives. 2018 Global Nutrition Report: Shining a light to spur action on
15 16	516	nutrition. Bristol, UK: Development Initiatives, 2018.
17 18		
19	517	3. United Nations Children's Fund (UNICEF), World Health Organization, International Bank
20 21	518	for Reconstruction and Development/The World Bank. Levels and trends in child malnutrition:
22 23	519	Key Findings of the 2020 Edition of the Joint Child Malnutrition Estimates. Geneva: World
24 25	520	Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO., 2020.
26		
27 28	521	4. USAID. Bangladesh: Nutrition Profile, 2018.
29 30		
31 32	522	5. National Institute of Population Research and Training (NIPORT), ICF. Bangladesh
33	523	Demographic and Health Survey 2017-18: Key Indicators. NIPORT and ICF: Dhaka,
34 35	524	Bangladesh and Rockville, Maryland, USA, 2019.
36 37		
38	525	6. Kumar P, Rashmi R, Muhammad T, et al. Factors contributing to the reduction in childhood
39 40	526	stunting in Bangladesh: a pooled data analysis from the Bangladesh demographic and health
41 42	527	surveys of 2004 and 2017–18. BMC public health 2021;21(1):2101. doi: 10.1186/s12889-021-
43 44	528	12178-6
45	520	7 Yours C. Wang D. Tong C. at al. Intoles of supplementary food during mean energy and location
46 47	529	7. Yaya S, Wang R, Tang S, et al. Intake of supplementary food during pregnancy and lactation and its association with child nutrition in Timor Leste. <i>PeerJ</i> 2018;6:e5935. doi:
48 49	530	
50	531	10.7717/peerj.5935 [published Online First: 20181115]
51 52	532	8. Choudhury N, Raihan MJ, Sultana S, et al. Determinants of age-specific undernutrition in
53 54	533	children aged less than 2 years-the Bangladesh context. <i>Maternal & child nutrition</i> 2017;13(3)
55 56	534	[published Online First: 2016/10/19]
57	201	
58 59		22
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 24 of 38

1

2 3		
4	535	9. Nisar YB, Dibley MJ, Aguayo VM. Iron-Folic Acid Supplementation During Pregnancy
5 6	536	Reduces the Risk of Stunting in Children Less Than 2 Years of Age: A Retrospective Cohort
7 8	537	Study from Nepal. Nutrients 2016;8(2):67. doi: 10.3390/nu8020067 [published Online First:
9	538	20160127]
10 11		
12 13	539	10. Li Z, Kim R, Vollmer S, et al. Factors Associated With Child Stunting, Wasting, and
14	540	Underweight in 35 Low- and Middle-Income Countries. JAMA Netw Open 2020;3(4):e203386.
15 16	541	doi: 10.1001/jamanetworkopen.2020.3386 [published Online First: 20200401]
17		
18 19	542	11. Katoch OR. Determinants of malnutrition among children: A systematic review. Nutrition
20 21	543	2022;96:111565. doi: 10.1016/j.nut.2021.111565 [published Online First: 20211211]
22		
23 24	544	12. Huo S, Wang K, Liu Z, et al. Influence of Maternal Exposure to Mass Media on Growth
25 26	545	Stunting Among Children Under Five: Mediation Analysis Through the Water, Sanitation, and
27	546	Hygiene Program. JMIR Public Health Surveill 2022;8(4):e33394. doi: 10.2196/33394
28 29	547	[published Online First: 20220406]
30		
31 32	548	13. Win H, Shafique S, Mizan S, et al. Association between mother's work status and child
33 34	549	stunting in urban slums: a cross-sectional assessment of 346 child-mother dyads in Dhaka,
35	550	Bangladesh (2020). Archives of Public Health 2022;80(1):192. doi: 10.1186/s13690-022-00948-
36 37	551	6
38 39		
40	552	14. Iannotti LL, Blackmore I, Cohn R, et al. Aquatic Animal Foods for Nutrition Security and
41 42	553	Child Health. Food Nutr Bull 2022;43(2):127-47. doi: 10.1177/03795721211061924 [published
43 44	554	Online First: 20211214]
45		
46 47	555	15. Prendergast AJ, Chasekwa B, Evans C, et al. Independent and combined effects of improved
48 49 50	556	water, sanitation, and hygiene, and improved complementary feeding, on stunting and anaemia
	557	among HIV-exposed children in rural Zimbabwe: a cluster-randomised controlled trial. The
51 52	558	Lancet Child & adolescent health 2019;3(2):77-90. doi: 10.1016/s2352-4642(18)30340-7
53 54	559	[published Online First: 20181218]
55		
56 57		
58 59		23

Page 25 of 38

60

BMJ Open

1 2		
3 4	560	16. Anwar F, Khomsan A, Sukandar D, et al. High participation in the Posyandu nutrition
5 6 7 8	561	program improved children nutritional status. Nutr Res Pract 2010;4(3):208-14. doi:
	562	10.4162/nrp.2010.4.3.208 [published Online First: 20100628]
9 10	563	17. Orunmoluyi OS, Gayawan E, Manda S. Spatial Co-Morbidity of Childhood Acute
11 12	564	Respiratory Infection, Diarrhoea and Stunting in Nigeria. International journal of environmental
13 14	565	research and public health 2022;19(3) doi: 10.3390/ijerph19031838 [published Online First:
15 16 17	566	20220206]
18 19	567	18. Haque MA, Platts-Mills JA, Mduma E, et al. Determinants of Campylobacter infection and
20	568	association with growth and enteric inflammation in children under 2 years of age in low-
21 22 23	569	resource settings. <i>Scientific reports</i> 2019;9(1):17124. [published Online First: 2019/11/22]
24 25	570	19. National Institute of Population Research and Training - NIPORT/Bangladesh, Mitra and
26 27	571	Associates, ICF International. Bangladesh Demographic and Health Survey 2014. NIPORT,
28 29	572	Mitra and Associates, and ICF International: Dhaka, Bangladesh and Rockville, Maryland, USA,
30 31 32	573	2016.
33 34	574	20. Helen Keller International (HKI) and James P. Grant School of Public Health (JPGSPH).
35 36 37	575	State of food security and nutrition in Bangladesh 2013. HKI and JPGSPH, 2014.
38 39	576	21. Yaya S, Bishwajit G, Ekholuenetale M, et al. Awareness and utilization of community clinic
40	577	services among women in rural areas in Bangladesh: A cross-sectional study. PLOS ONE
41 42 43	578	2017;12(10):e0187303. doi: 10.1371/journal.pone.0187303
44 45	579	22. Choudhury N, Raihan MJ, Ahmed SMT, et al. The evaluation of Suchana, a large-scale
46 47	580	development programme to prevent chronic undernutrition in north-eastern Bangladesh. BMC
48 49 50	581	public health 2020;20(1):744. [published Online First: 2020/05/24]
51 52	582	23. Haque MA, Choudhury N, Ahmed SMT, et al. The large-scale community-based programme
53 54 55 56	583	'Suchana' improved maternal healthcare practices in north-eastern Bangladesh: Findings from a
	584	cluster randomized pre-post study. Maternal & child nutrition 2022;18(1):e13258.
57 58		24
59 60		For peer review only - http://bmiopen.bmi.com/site/about/quidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

1 2		
3	585	24. Coates J, Swindale A, Bilinsky P. Household Food Insecurity Access Scale (HFIAS) for
4 5	586	measurement of food access: indicator guide (v. 3). Washington, D.C.: Food and Nutrition
6 7 8	587	Technical Assistance Project, Academy for Educational Development 2007.
9 10 11	588	25. Bursac Z, Gauss CH, Williams DK, et al. Purposeful selection of variables in logistic
11 12 13	589	regression. Source code for biology and medicine 2008;3:17.
14 15	590	26. Tardini E, Zhang X, Canahuate G, et al. Optimal Treatment Selection in Sequential Systemic
16 17	591	and Locoregional Therapy of Oropharyngeal Squamous Carcinomas: Deep Q-Learning With a
18 19	592	Patient-Physician Digital Twin Dyad. Journal of Medical Internet Research 2022;24(4):e29455.
20	593	doi: 10.2196/29455 [published Online First: 20220420]
21 22		
23 24	594	27. Adamker G, Holzer T, Karakis I, et al. Prediction of Shigellosis outcomes in Israel using
25	595	machine learning classifiers. Epidemiology and Infection 2018;146(11):1445-51. doi:
26 27 28	596	10.1017/s0950268818001498 [published Online First: 20180608]
29 30	597	28. Weatherspoon DD, Miller S, Ngabitsinze JC, et al. Stunting, food security, markets and food
31 32	598	policy in Rwanda. BMC public health 2019;19(1):882. doi: 10.1186/s12889-019-7208-0
33 34 35	599	[published Online First: 2019/07/06]
36	600	29. Agho KE, Mukabutera C, Mukazi M, et al. Moderate and severe household food insecurity
37 38	601	predicts stunting and severe stunting among Rwanda children aged 6-59 months residing in
39 40	602	Gicumbi district. <i>Maternal & child nutrition</i> 2019;15(3):e12767.
41 42	002	
42 43 44 45	603	30. Chowdhury D. Flood situation worsens in Sylhet. <i>The Daily Star</i> 2017.
46 47	604	31. ACAPS. ACAPS Briefing Note: Bangladesh - Floods in Moulvibazar and Sylhet (20 June
48	605	2018): reliefweb; 2018 [Available from: https://reliefweb.int/report/bangladesh/acaps-briefing-
49 50	606	note-bangladesh-floods-moulvibazar-and-sylhet-20-june-20182023.
51 52		
53		
54 55		
56 57		
58		25
59		

60

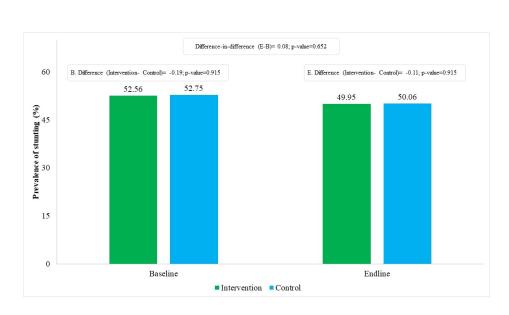
Page 27 of 38

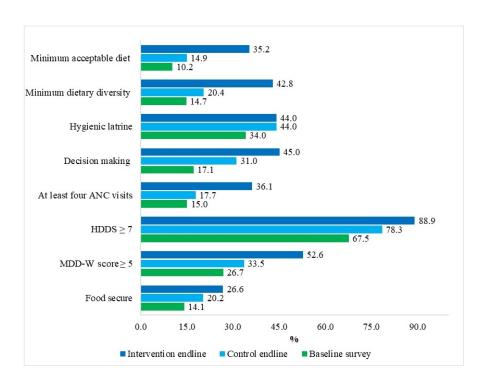
BMJ Open

vith <i>ine</i> 0429] on in s	BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmj
85-	n-2022-067961 o
dren	n 26 April 2023. Downlc
e <i>l of</i>	0
<i>al of</i> ed	nj.com/ on April 19, ;
). 16.	pen.bmj.com/ on April 19, 2024 by guest. Protected by copyright
26	right.

2		
3 4	607	32. Lin A, Arnold BF, Afreen S, et al. Household environmental conditions are associated with
5	608	enteropathy and impaired growth in rural Bangladesh. American Journal of Tropical Medicine
6 7 8	609	and Hygiene 2013;89(1):130-37. doi: 10.4269/ajtmh.12-0629 [published Online First: 2013042
9 10	610	33. Amour C, Gratz J, Mduma E, et al. Epidemiology and Impact of Campylobacter Infection in
11 12	611	Children in 8 Low-Resource Settings: Results From the MAL-ED Study. Clinical Infectious
13 14 15	612	Diseases 2016;63(9):1171-79. doi: 10.1093/cid/ciw542 [published Online First: 08/07]
16 17	613	34. Smith S, Meade J, Gibbons J, et al. The impact of environmental conditions on
18 19	614	Campylobacter jejuni survival in broiler faeces and litter. Infect Ecol Epidemiol 2016;6:31685-
20 21 22	615	85. doi: 10.3402/iee.v6.31685
23 24	616	35. Chen RY, Kung VL, Das S, et al. Duodenal Microbiota in Stunted Undernourished Children
25	617	with Enteropathy. New England Journal of Medicine 2020;383(4):321-33. doi:
26 27 28	618	10.1056/NEJMoa1916004
29 30	619	36. George CM, Oldja L, Biswas SK, et al. Fecal Markers of Environmental Enteropathy are
31 32	620	Associated with Animal Exposure and Caregiver Hygiene in Bangladesh. American Journal of
33 34	621	Tropical Medicine and Hygiene 2015;93(2):269-75. doi: 10.4269/ajtmh.14-0694 [published
35 36 37	622	Online First: 20150608]
38 39	623	37. Perin J, Burrowes V, Almeida M, et al. A Retrospective Case-Control Study of the
40	624	Relationship between the Gut Microbiota, Enteropathy, and Child Growth. American Journal of
41 42	625	Tropical Medicine and Hygiene 2020;103(1):520-27. doi: 10.4269/ajtmh.19-0761 [published
43 44 45	626	Online First: 20200514]
46 47	627	38. Helen Keller International (HKI) and James P. Grant School of Public Health (JPGSPH).
48 49	628	State of food security and nutrition in Bangladesh 2014. HKI and JPGSPH: Dhaka, BD, 2016.
50 51 52 53 54 55 56 57 58 59	629 630	

1 2		
3	631	Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline
4 5	632	compared to endline. The p-value of the difference-in-difference was estimated using interaction
6 7	633	analysis in the multiple logistic regression model.
8 9	634	
10	635	Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS:
11 12	636	household dietary diversity score, MDD-w: minimum dietary diversity for women.
13 14	637	
15 16	638	Figure 3. Factors influencing stunting in children aged 12-23 months, computed using decision tree analysis.
17	639	tree analysis.
18 19	640	
20 21		
22		
23 24		
25 26		
27 28		
29		
30 31		
32 33		
34 35		
36		
37 38		
39 40		
41 42		
43		
44 45		
46 47		
48		
49 50		
51 52		
53 54		
55		
56 57		
58 59		27
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml




Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline compared to endline. The p-value of the difference-in-difference was estimated using interaction analysis in the multiple logistic regression model.

338x190mm (96 x 96 DPI)

Page 30 of 38

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS: household dietary diversity score, MDD-w: minimum dietary diversity for women

254x190mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

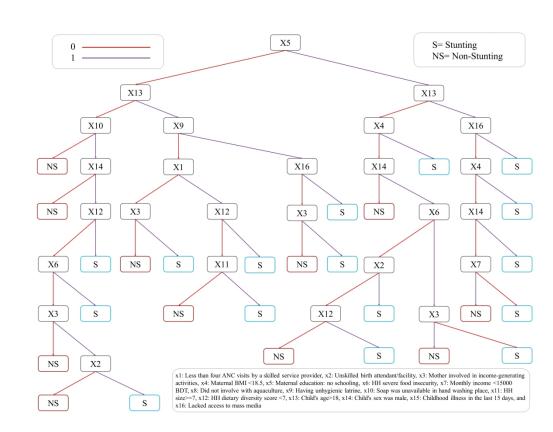


Figure 3. Factors influencing stunting in children aged 12-23 months, computed using decision tree analysis

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

325x254mm (300 x 300 DPI)

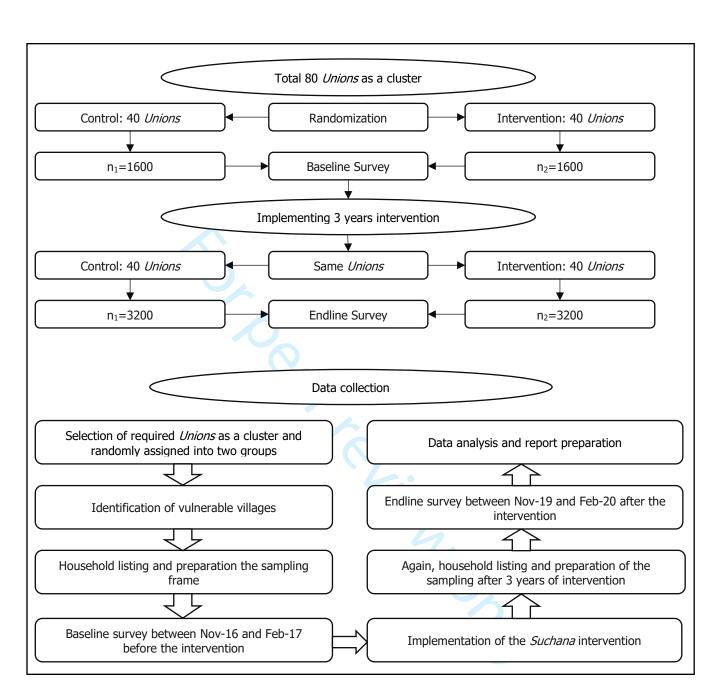
BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Appendix 1. Sample size calculation

clustersampsi, binomial samplesize p1(0.47) p2(0.41) k40) rho0.01)alpha(0.05) beta(0.8)

Output of the STATA command for sample size calculation

Sample size calculation to determine number of observations required per cluster, for a twosample comparison of proportions (using normal approximations) without continuity correction.


```
For the user specified parameters:
      p1: 0.4700
      p2: 0.4100
      significance level: 0.05
      power: 0.80
                4

jc):

in randomisa

i randomisatio.

20
      number of clusters available: 40
      intra cluster correlation (ICC): 0.0100
clustersampsi estimated parameters:
      Firstly, assuming individual randomisation: sample size per arm: 1071
      Then, allowing for cluster randomisation: average cluster size required: 38
      sample size per arm: 1520
```


Supplementary Figure 1. The evaluation diagram of Suchana programme

Appendix 2. Data collection

The Suchana data collection software contained built-in validation rules. As the data were entered at the interviewer level and the records were uploaded to a server at the icddr,b using the built-in internet connectivity of the devices, maximum validation rules were set in the data system to prevent errors during data entry, which reduced the data entry burden. This allowed the data analysis team to review the

consistency of the data every day. Data were synchronized to the central server "Web Service" developed in Asp.Net based on the C# (C Sharp) code. Activities such as editing (after receiving any feedback from field staff members), updating, range checks, duplication checks, consistency checks, frequency checks and cross tabulation were regularly performed during the data entry period. In case of any unusual observations, the issues were discussed and resolved.

Appendix 3. Equation of logistic and probit regression

 $logit(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{12} X_{12} + \beta_{13} X_{13} + \beta_{14} X_{14} + \beta_{15} X_{15} + \beta_{16} X_{16}$

 $probit(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{12} X_{12} + \beta_{13} X_{13} + \beta_{14} X_{14} + \beta_{15} X_{15} + \beta_{16} X_{16} +$

Where,

- x1: Less than four ANC visits by a skilled service provider
- x2: Unskilled birth attendant/facility
- x3: Mother involved in income-generating activities
- x4: Maternal BMI <18.5
- x5: Maternal education: no schooling
- x6: HH severe food insecurity
- x7: Monthly income <15000 BDT
- x8: Did not involve with aquaculture

and

logit(y) = log[y/(1-y)]

- x9: Having unhygienic latrine x10: Soap was unavailable in hand washing place x11: HH size≥7 x12: HH dietary diversity score <7 x13: Child's age>18
- x14: Child's sex was male
- x15: Childhood illness in the last 15 days
- x16: Lacked access to mass media

currently participating/member of any livelihood, food sset transfer program Ford three (3) full meals per day for all family members ar monthly income BDT 7,500 or more productive asset value worth BDT 15,000 or more and, pond and homestead) of homestead land 10 decimals or more of cultivable land 50 decimals or more	questions
Sord three (3) full meals per day for all family members ar monthly income BDT 7,500 or more productive asset value worth BDT 15,000 or more and, pond and homestead) of homestead land 10 decimals or more	questions s If anyone is "NO" go
Ford three (3) full meals per day for all family members ar monthly income BDT 7,500 or more productive asset value worth BDT 15,000 or more and, pond and homestead) of homestead land 10 decimals or more	s If anyone is "NO" go
ar monthly income BDT 7,500 or more productive asset value worth BDT 15,000 or more and, pond and homestead) of homestead land 10 decimals or more	If anyone is "NO" go
ar monthly income BDT 7,500 or more productive asset value worth BDT 15,000 or more and, pond and homestead) of homestead land 10 decimals or more	If anyone is "NO" go
monthly income BDT 7,500 or more productive asset value worth BDT 15,000 or more and, pond and homestead) of homestead land 10 decimals or more	
productive asset value worth BDT 15,000 or more and, pond and homestead) of homestead land 10 decimals or more	
and, pond and homestead) of homestead land 10 decimals or more	
of homestead land 10 decimals or more	anead for next questions
of cultivable land 50 decimals or more (excluding	
end the set detining of more (cherdung	y
r pond)	
have married women with in child bearing age (15 to) If among is (Vas) as
	If anyone is 'Yes' go
 Ownership of cultivable land 50 decimals or more (excluding homestead or pond) Step 3 Households have married women with in child bearing age (15 to 45 years) Households have pregnant women (including abandoned or widowed woman) Households have 0-23 months old children Households have adolescent girls (15-19 years) 	ahead for registration of enrolling as vulnerable
	Household
have 0-23 months old children	Household
have adolescent girls (15-19 years)	
	have pregnant women (including abandoned or oman) have 0-23 months old children

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	Prediction of adjusted stunting [% (95% CI)]	Prediction of adjusted prevalence difference as effect size [*]	p-value
At least four ANC v	isits by a skilled service provider		
Yes	51.64 (50.05, 53.23)	Reference	
No	47.99 (45.46, 50.53)	3.65 (1.07, 6.22)	0.006
Birth attendant/faci			
Skilled	51.87 (50.23, 53.51)	Reference	
Unskilled	49.42 (47.48, 51.36)	2.45 (0.55, 4.35)	0.012
	income-generating activities		
No	54.55 (50.90, 58.19)	Reference	
Yes	50.59 (49.08, 52.11)	3.95 (0.40, 7.51)	0.029
Maternal BMI	50.55 (19.00, 52.11)	5.55 (0.10, 7.51)	0.02)
BMI ≥18.5	54.04 (52.01, 56.07)	Reference	
BMI <18.5	49.01 (47.21, 50.81)	5.03 (2.66, 7.41)	< 0.001
	was primary completed	5.05 (2.00, 7.41)	<0.001
Yes	54.66 (52.58, 56.74)	Reference	
No	48.21 (46.67, 49.75)	6.45 (4.49, 8.40)	< 0.001
HH food insecurity	48.21 (40.07, 49.75)	0.43 (4.49, 8.40)	<0.001
Below severe	53.03 (50.91, 55.15)	Reference	
		2.66 (0.11, 5.22)	0.041
Severe	50.36 (48.63, 52.09)	2.00 (0.11, 5.22)	0.041
HH monthly income		Deferre	
Yes	51.31 (49.79, 52.84)	Reference	0.027
No	48.58 (45.86, 51.30)	2.73 (0.17, 5.30)	0.037
Involved with aquac			
Yes	51.22 (49.72, 52.72)	Reference	0.010
No	46.99 (43.30, 50.69)	4.23 (0.73, 7.73)	0.018
Hygienic latrine			
Yes	52.67 (50.94, 54.4)	Reference	
No	48.36 (46.5, 50.23)	4.31 (2.34, 6.28)	< 0.001
-	ilable in handwashing place		
Yes	52.64 (50.71, 54.58)	Reference	
No	48.54 (46.74, 50.33)	4.10 (1.83, 6.38)	< 0.001
HH size			
Below seven	53.86 (51.98, 55.74)	Reference	
Seven or above	49.41 (47.70, 51.13)	4.44 (2.43, 6.46)	< 0.001
HH dietary diversity			
HDDS <u>></u> 7	53.92 (51.25, 56.60)	Reference	
HDDS <7	50.10 (48.70, 51.50)	3.83 (1.63, 6.02)	< 0.001
Child's age			
Age <18 months	56.72 (54.77, 58.67)	Reference	
Age >18 months	46.59 (44.82, 48.35)	10.1 (7.94, 12.32)	< 0.001
Child's sex			
Female	53.25 (51.17, 55.34)	Reference	
Male	48.40 (46.78, 50.03)	4.85 (2.59, 7.10)	< 0.001
Childhood illness in			
No	54.90 (52.04, 57.77)	Reference	
Yes	50.49 (48.94, 52.05)	4.41 (1.48, 7.34)	0.003
Access of mass medi			
Yes	51.51 (49.88, 53.15)	Reference	
No	48.13 (45.39, 50.88)	3.38 (0.42, 6.34)	0.028

*Differences in the predicted values of stunting between the two groups were calculated using the Stata "adjrr" package

	Prediction of adjusted stunting	Prediction of adjusted prevalence	
	[% (95% CI)]	difference as effect size*	p-va
At least four ANC vi	sits by a skilled service provider		
Yes	51.64 (50.05, 53.23)	Reference	
No	47.99 (45.46, 50.53)	3.65 (1.08, 6.22)	0.00
Birth attendant/facil			
Skilled	51.87 (50.23, 53.51)	Reference	
Unskilled	49.42 (47.48, 51.36)	2.45 (0.54, 4.35)	0.01
	ncome-generating activities		
No	54.55 (50.90, 58.16)	Reference	
Yes	50.59 (49.08, 52.11)	3.93 (0.39, 7.48)	0.02
Maternal BMI	50.55 (15.00, 52.11)	5.55 (0.55, 7.10)	0.02
BMI ≥18.5	54.04 (52.01, 56.07)	Reference	
BMI <18.5	49.01 (47.21, 50.81)	5.03 (2.66, 7.40)	< 0.0
	was primary completed	5.05 (2.00, 7.40)	<0.0
	54.66 (52.58, 56.74)	Reference	
Yes			-0.0
No	48.21 (46.67, 49.75)	6.45 (4.49, 8.41)	< 0.0
HH food insecurity	52 01 (50 00 55 10)		
Below severe	53.01 (50.89, 55.12)	Reference	0.0
Severe	50.37 (48.64, 52.10)	2.64 (0.09, 5.19)	0.04
HH monthly income			
Yes	51.32 (49.79, 52.84)	Reference	
No	48.56 (45.84, 51.28)	2.75 (0.19, 5.32)	0.03
Involved with aquact			
Yes	51.22 (49.73, 52.71)	Reference	
No	46.99 (43.28, 50.69)	4.24 (0.73, 7.74)	0.01
Hygienic latrine			
Yes	52.67 (50.94, 54.4)	Reference	
No	48.36 (46.5, 50.23)	4.31 (2.34, 6.28)	< 0.0
Water and soap avai	lable in handwashing place		
Yes	52.64 (50.71, 54.58)	Reference	
No	48.53 (46.74, 50.33)	4.11 (1.83, 6.39)	< 0.0
HH size	10.00 (10.71, 00.00)	(1100, 0.07)	.0.0
Below seven	53.86 (51.98, 55.73)	Reference	
Seven or above	49.41 (47.70, 51.13)	4.44 (2.43, 6.46)	< 0.0
HH dietary diversity		4.44 (2.43, 0.40)	<0.0
	53.90 (51.23, 56.57)	Reference	
HDDS ≥ 7			-0.0
HDDS <7	50.10 (48.71, 51.50)	3.79 (1.60, 5.98)	< 0.0
Child's age			
Age ≤ 18 months	56.72 (54.76, 58.67)	Reference	0.0
Age >18 months	46.59 (44.83, 48.35)	10.1 (7.93, 12.3)	< 0.0
Child's sex			
Female	53.25 (51.17, 55.33)	Reference	
Male	48.41 (46.78, 50.03)	4.85 (2.60, 7.10)	< 0.0
Childhood illness in t			
No	54.90 (52.04, 57.75)	Reference	
Yes	50.50 (48.94, 52.05)	4.40 (1.47, 7.33)	0.00
Access of mass media			
Yes	51.51 (49.88, 53.15)	Reference	
No	48.13 (45.40, 50.86)	3.38 (0.42, 6.34)	0.02

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
5	
6	
_	
/	
8	
_	
9	
1	0
1	1
I	1
1	2
1	3
	4
1	5
1	6
1	7
1	
1	8
1	9
	0
2	1
2	'
2	2
2	
2	4
2	5
	6
2	7
2	8
2	9
2	0
3	1
3	2
3	r
5	5
3	4
3	5
2	6
3	7
3	8
2	9
- 3	
	9
4	0
	0
4 4	0 1
4	0 1
4 4 4	0 1 2
4 4 4 4	0 1 2 3
4 4 4	0 1 2 3
4 4 4 4	0 1 2 3 4
4 4 4 4 4	0 1 2 3 4 5
4 4 4 4 4	0 1 2 3 4 5
4 4 4 4 4 4	0 1 2 3 4 5 6
4 4 4 4 4	0 1 2 3 4 5 6
4 4 4 4 4 4 4	0 1 2 3 4 5 6 7
4 4 4 4 4 4	0 1 2 3 4 5 6 7
4 4 4 4 4 4 4 4 4	0 1 2 3 4 5 6 7 8
4 4 4 4 4 4 4 4 4 4	0 1 2 3 4 5 6 7 8 9
4 4 4 4 4 4 4 4 4	0 1 2 3 4 5 6 7 8 9
4 4 4 4 4 4 4 4 4 5	0 1 2 3 4 5 6 7 8 9 0
4 4 4 4 4 4 4 4 4 4 5 5	0 1 2 3 4 5 6 7 8 9 0 1
4 4 4 4 4 4 4 4 4 4 5 5	0 1 2 3 4 5 6 7 8 9 0 1
4 4 4 4 4 4 4 4 4 4 5 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2
4 4 4 4 4 4 4 4 4 4 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2
4 4 4 4 4 4 4 4 4 5 5 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2 3
4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	0123456789012345
4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	01234567890123456
4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	01234567890123456
4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	012345678901234567
4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	012345678901234567
4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	0123456789012345678
4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	0123456789012345678

STROBE Statement—Checklist of items that should be included in reports of cros	s-sectional studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	1-2
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	1-2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being	3-6
Ohiostissa	2	reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	6
1		of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6-7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-7
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	19
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling	8-9
		strategy	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	11
1		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	11
1		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	
		interest	1
Outcome data	15*	Report numbers of outcome events or summary measures	11
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	11-
		estimates and their precision (eg, 95% confidence interval). Make clear	14
		which confounders were adjusted for and why they were included	1

		(b) Report category boundaries when continuous variables were	
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	1
		risk for a meaningful time period	1:
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	10
Limitations	19	Discuss limitations of the study, taking into account sources of potential	19
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	16
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	16
			18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	20
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

A predictive modelling approach to illustrate factors correlating with stunting among children aged 12-23 months: a cluster randomized pre-post study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067961.R3
Article Type:	Original research
Date Submitted by the Author:	07-Mar-2023
Complete List of Authors:	Haque, Md; ICDDRB Choudhury, Nuzhat; ICDDRB Wahid, Barbie Zaman; ICDDRB Ahmed, SM Tanvir ; Save the Children Bangladesh Farzana, Fahmida Dil; ICDDRB Ali, Mohammad; ICDDRB Naz, Farina; ICDDRB Siddiqua, Towfida Jahan ; Johns Hopkins University, Bangladesh Rahman, Shahed ; Save the Children Bangladesh Faruque, ASG; ICDDRB Ahmed, Tahmeed; ICDDRB
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Nutrition < TROPICAL MEDICINE, EPIDEMIOLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	
50	

1	A predictive modelling approach to illustrate factors correlating with stunting among
2	children aged 12-23 months: a cluster randomized pre-post study
3	
4	Md Ahshanul Haque ^{1*} , Nuzhat Choudhury ¹ , Barbie Zaman Wahid ¹ , SM Tanvir Ahmed ² ,
5	Fahmida Dil Farzana ¹ , Mohammad Ali ¹ , Farina Naz ¹ , Towfida Jahan Siddiqua ¹ , Sheikh Shahed
6	Rahman ² , ASG Faruque ¹ , Tahmeed Ahmed ¹
7	
8	¹ Nutrition and Clinical Services Division, icddr,b, Dhaka, 1212, Bangladesh
9	² Child Poverty Sector, Save the Children Bangladesh, Dhaka, Bangladesh
10	
11	* Correspondence: Md Ahshanul Haque, Assistant Scientist, Nutrition and Clinical Services
12	Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh,
13	Email: <u>ahshanul.haque@icddrb.org</u>
14	
15	Word count: 4977
16	
17	Abstract
18	Objective The aim of this study was to construct a predictive model in order to develop an
19	intervention study to reduce the prevalence of stunting among children aged 12-23 months.
20	
21	Design The study followed a cluster randomized pre-post design and measured the impacts on
22	various indicators of livelihood, health, and nutrition. The study was based on a large dataset
23	collected from two cross-sectional studies (baseline and endline).
24	
25	Setting The study was conducted in the north-eastern region of Bangladesh under the Sylhet
26	division, which is vulnerable to both natural disasters and poverty. The study specifically targeted
27	children between the ages of 12 and 23 months.
28	
29	Main outcome measures Childhood stunting, defined as a length-for-age z-score (LAZ)<-2, was
30	the outcome variable in this study. Logistic and probit regression models and a decision tree were
31	constructed to predict the factors associated with childhood stunting. The predictive performance

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

П
≌
Ş.
0
ŏ
õ
<u> </u>
Ŧ.
first
t published as 10
פ
⊆
<u>o</u>
<u>.</u>
Ť
ō
0
ດາ
ົດ
Ξ.
5
9
<u> </u>
<u></u>
8
≤
₫
3
<u> </u>
Ř
10.1136/bmjopen-2022-067961 on 26 April 2023
Ť
1
2
2
3
1
2
_o
2
ŝ
5
_
0
د
N
o
⊳
4
¥
=:
N
0
N
ω
Q
Q
<
S
Vnlc
vnloa
vnload
vnloade
n
vnloaded fi
vnloaded fro
± t
vnloaded from
vnloaded from ht
vnloaded from http
vnloaded from http:
d from http://
d from http://
d from http://bn
d from http://bmjc
d from http://bn
d from http://bmjopen.bmj.com/ on April 19, 2024 by
d from http://bmjopen.bmj.com/ on April 19, 2024 by g
d from http://bmjopen.bmj.com/ on April 19, 2024 by g
d from http://bmjopen.bmj.com/ on April 19, 2024 by
d from http://bmjopen.bmj.com/ on April 19, 2024 by g
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by g
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.
d from http://bmjopen.bmj.com/ on April 19, 2024 by guest.

of the models was evaluated by computing the area under the receiver operating characteristic (ROC) curve analysis. **Results** The baseline survey showed a prevalence of 52.7% stunting, while 50.0% were stunted at endline. Several factors were found to be associated with childhood stunting. The model's sensitivity was 61% and specificity was 56%, with a correctly classified rate of 59% and an area under the ROC curve of 0.615. **Conclusion** The study showed that childhood stunting in the study area was largely influenced by factors such as maternal nutrition and education, food insecurity, and hygiene practices. Despite efforts to address these factors, they remain largely unchanged. The study suggests that a more effective approach may be developed in future to target adolescent mothers, as maternal nutrition and education are age-dependent variables. Policymakers and programme planners need to consider incorporating both nutrition-sensitive and specific activities and enhancing collaboration in their efforts to improve the health of vulnerable rural populations. Study registration: RIDIE-STUDY-ID-5d5678361809b Keywords: Childhood stunting, Chronic malnutrition, Global public health, Logistic regression, Probit regression, Decision tree Strengths and limitations of this study The study used a combination of parametric and non-parametric predictive models to • estimate the effect size of the independent variables and identify significant correlates of childhood stunting • The study was designed to mitigate the potential impact of seasonal factors by conducting the baseline and endline surveys at the same time of the year A binary indicator of stunting based on a single LAZ cut-off point (<-2) may not provide • a complete evaluation of the severity of malnutrition among children as it does not consider micronutrient deficiencies

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

• Use of recall data from the previous 24 hours for dietary diversity, household food insecurity, domestic violence, and maternal healthcare may be subject to recall bias

Biological data has not been collected such as enteropathogen and environmental enteric • dysfunction, which could have been related to childhood stunting

Introduction

Childhood stunting, which is defined as length-for-age z-score $(LAZ)^{<-2}$, is a major concern for public health and has been widely used as an indicator of chronic malnutrition in children.[1, 2] Although childhood stunting scenarios have much improved globally, the prevalence of childhood stunting is still very high in low-resource settings, including countries such as Bangladesh. According to the 2018 Global Nutrition Report, 150.8 million children (22.2%) under five years-of-age are stunted globally, compared to 198.4 million (32.6%) and 165 million children in 2000 and 2011, respectively.[3, 4] Between 2000 and 2018, Asian countries have experienced a decrease in the rate of stunting among children under five from 38.1% to 23.2%. However, South Asia still has the highest prevalence of stunting in the region, with a rate of 38.9% in 2018.[3] In Bangladesh, about 5.5 million (36%) children under five were stunted in 2014,[5] however by 2018, childhood stunting has reduced to about 31%.[2] As the World Health Organization (WHO) considers a childhood stunting rate of 15% to be an emergency situation, the current prevalence of childhood stunting in Bangladesh reflects an alarming situation of chronic undernutrition.[6]

Literature suggests that children are at a higher prevalence of stunting if their mothers do not receive adequate antenatal care, fail to rest sufficiently, do not consume additional food, and neglect to take iron-folic acid (IFA) tablets during pregnancy.[7-9] Mass media exposure, receive a vitamin A capsule; have a skilled birth attendant; and have maternal nutritional status and maternal education, both of which are linked to childhood stunting.[6, 8, 10-12] Children in poor households in Bangladesh are more likely to experience stunted growth if their mothers are employed, as there are inadequate day-care centres available for the children, leading to insufficient breastfeeding.[13] Moreover, evidence suggests that a number of characteristics at the household level, which relate to both children and mothers, can influence childhood stunting. The characteristics of the household head, household food insecurity and lower dietary diversity, household lower-income, household involvement in several earning activities, availability of

BMJ Open

sanitation facility at home, hand-washing status, family size, religion, and receive several types of
allowance from government are most often reported to be associated with stunting in the
literature.[6, 8, 11, 14-16]

Based on child characteristics, several indicators are associated with stunting. This status is associated with two basic characteristics: a child's gender and age.[8] Children are commonly affected by the co-occurrence of illness in low- and middle-income countries, which is one of the most common causes of stunting.[17] Inadequate infant and young child feeding (IYCF) practices also reduce child growth.[8, 15] However, these findings are mostly based on nationally representative cross-sectional and cohort studies, or studies conducted in urban settings.[18, 19] Therefore, a knowledge gap exists on whether similar results would be obtained when nationwide data are compared with data for study populations from poor or very poor rural households in specific vulnerable regions.

Sylhet is one such vulnerable region of north-east Bangladesh, comprising diverse terrains such as plain land, hilly land, Haor (wetland), and flash flood-prone areas. This region is reported to perform poorly for all important maternal healthcare indicators, [20] despite the fact that Bangladesh has made substantial progress in improving the overall health of the population.[21] Moreover, the socio-economic profile of the inhabitants in Sylhet region includes both very rich and extremely poor people. This scenario may worsen without the implementation of appropriate strategies in the near future. Sylhet region is also performing poorly compared to the national averages for a number of health and nutritional indicators. Critical indicators such as the infant mortality rate and unemployment status of women are high.[19] In comparison to the overall situation of Bangladesh, where stunting among children under five has decreased, the Bangladesh Demographic and Health Survey (BDHS) 2014 indicates the prevalence of childhood stunting in Sylhet is astonishingly high, at 50%.[19] This alarming figure provided the rationale for implementation of a comprehensive intervention programme in this region. A large-scale nutrition programme, Suchana: Ending the Cycle of Undernutrition in Bangladesh; a multi-sectoral *nutrition programme*, was undertaken with the aim to prevent chronic malnutrition in Sylhet.

In general, Suchana nutrition interventions can be divided into two types: nutrition-sensitive and nutrition-specific.[22] The concept of nutrition-sensitive intervention refers to an intervention that benefits the beneficiaries in terms of food and nutrition security, and also influences the underlying determinants of nutrition. This type of intervention is largely delivered through the agricultural sector (homestead vegetable and fruit production, pro-poor nutrition-sensitive aquaculture), improved technology (mono-sex tilapia and carp-tilapia polyculture, subsistence fishing, fish drying), demonstrations (village model farms and demo ponds, livestock, food security, promotion of climate-smart technologies), and supported income-generating activities (skill development in business management, engagement with the private sector and other sectors). As nutrition-specific interventions were delivered through nutrition-sensitive interventions, their coverage, effectiveness, and scale can be increased. It can meet the targets by lowering them and implementing nutrition-specific interventions. A nutrition-specific intervention addresses the immediate cause of malnutrition. Direct determinants of nutrition are the focus of this intervention. There is a strong focus on nutrition-specific interventions in the health sector. Whether implemented alone or jointly, nutrition-specific interventions improve health outcomes. Some examples of nutrition-specific interventions are: counselling for mothers at the household level, community-based nutrition education for spouses and in-laws, growth monitoring and promotion sessions integrated with Expanded Programme on Immunization in communities, Government of Bangladesh health facilities equipped with severe acute malnutrition service delivery, and support for National Nutrition Services service delivery through community clinics, Union Health and Family Welfare Centers, and Upazila health complexes. The primary objective of the Suchana programme was to reduce the prevalence of childhood stunting in the intervention areas. The secondary objectives were to assess the changes in Suchana beneficiaries' households, in terms of an increase and diversification of household income, food security status, optimal IYCF practices, haemoglobin status of children, the empowerment of women, and adolescents' nutritional knowledge and practices.[22]

The Suchana programme substantially improved nutritional behaviour, maternal healthcare practices, women's empowerment, household income, and household food security in the intervention area compared to the control area.[23] Contrary to predictions, however, Suchana did

Page 7 of 39

BMJ Open

ig
S
nti
wa
e
0
e a
a
23
sett
gra
of
ere
cc
in
lea
ha
as
n c
.cc
th
ele
10i 1
al
vei
rs

inificant reduction in the prevalence of childhood stunting. Therefore, although not result in any si related to childhood stunting improved, this raises the question of why the most other factor prevalence of stur ing did not reduce after the intervention. An important observation from the Suchana survey v as that the proportion of households in this study population using hygienic latrines was quite low. This factor was associated with stunting in children,[8] and did not significantly impr ve by endline in the intervention areas compared to the control areas.

aimed to construct a predictive model to attempt to explain whether any In this study, we associated factors may promote a significant reduction in stunting among improvements in children aged 12-2 months from poor and extremely poor households in the Sylhet region.

Methods

Study design and s ting

umme was implemented in 157 Unions over 20 sub-districts in the Sylhet region The Suchana prog in the north-east rural Bangladesh. The Suchana programme's protocol has been thoroughly e.[22] Union, the smallest local government and administrative entity in rural explained elsewhe Bangladesh, was onsidered as a cluster and divided into four phases at random. Phase-1 was ntervention group, while Phase-4 was the control group, and the other phases designated as the were treated as arning phases.[22] For implementation purposes, vulnerable villages were se-1 and Phase-4 areas. The staff of the programme chose vulnerable villages selected within Pl in each Union ba ed on their vulnerability (e.g., frequent floods or submerging, little or no other development programmes, poverty or household living circumstances, intervention from remoteness and a essibility issues, a high prevalence of superstitions and social taboos). After consultation with e local government representatives, elected officials, and local elites as well as field visits, this se ction method was decided upon. The impacts of the intervention on livelihood, health, and nutriti n were measured using a pre-post design. A large dataset was collected from two cross-section surveys (baseline and endline) under this study. The baseline survey was conducted in Nov mber 2016 and February 2017, followed by the endline survey in the same later among the same population and different participants (Supplementary months three year Figure 1).

1		
2 3	185	
4 5	186	Outcome variable
6 7	187	The outcome variable in this study was childhood stunting, which was defined as a length-for-age
8 9	188	z-score (LAZ)<-2.[2]
10	189	
11 12	190	Independent variables
13 14	191	Initially, a list of independent variables was finalized through results obtained from descriptive
15	192	and bi-variate analyses, as well as a comprehensive literature review (Table 1). These included at
16 17	193	least four antenatal care (ANC) visits by a skilled service provider, additional resting during
18 19	194	pregnancy, additional food consumption during pregnancy, consumption of at least 100 IFA tablets
20 21	195	during pregnancy, receiving vitamin A capsule after last delivery, birth attendant/facility, mother
22 23	196	involved in income-generating activities, maternal BMI, maternal education, household food
24	197	insecurity, household monthly income >15000 BDT, involved with aquaculture, hygienic latrine,
25 26	198	water and soap available in handwashing place, household size, household dietary diversity, sex
27 28	199	of household head, religion, received any grant/allowance/stipend from the government, access of
29 30	200	mass media, child's age, child's sex, childhood illness in the last 15 days, minimum dietary
31	201	diversity, early initiation of breastfeeding, and received colostrum. Household food insecurity
32 33	202	access scale was measured using the Food and Nutrition Technical Assistance's Guideline, which
34 35	203	categorizes household food insecurity into four levels: a) food secure, b) mildly food insecure, c)
36 37	204	moderately food insecure, and d) severely food insecure.[24] In the analysis herein, this indicator
38	205	was redefined as a binary indicator: severely food insecure or not severely food insecure.
39 40	206	
41 42	207	Sample size
43 44	208	The sample size for this study was calculated with the STATA "clustersampsi" command module,
45	209	considering the number of clusters in the surveys and considering the expected prevalence of
46 47	210	childhood stunting in the control group (Supplemental Appendix 1). It was estimated that the
48 49	211	expected prevalence of stunting was 47%, which was hypothesized to be reduced to 41% after
	212	three years of intervention. A communication of 1520 ner are year calculated based on a 50/ layer of

significance, 80% power, 40 clusters per arm, and an intra-cluster correlation coefficient (ICC) of
0.01. After rounding, the estimated sample size per arm was 1620, and the total sample size was

215 3200 at baseline, with an equal number of participants in the control and intervention groups. For

three years of intervention. A sample size of 1520 per arm was calculated based on a 5% level of

BMJ Open

evaluation purposes, the sample size at endline was doubled to ensure a stratified intervention
component, resulting in a total sample size of 9600 mother-child pairs (baseline: 3200 and endline:
6400).[22]

9 219

10 220 **Sampling**

The baseline and endline surveys were conducted in a total of eight and twelve villages respectively, which were randomly selected from each *Union* using a list of vulnerable villages provided by Save the Children. The most vulnerable households were identified and verified using the inclusion criteria of the *Suchana* programme (Supplementary Table 1). These households were then given an identification number to prepare the sampling frame and required households were systematically selected for the surveys from the frame. The method of data collection is explained in detail in the Supplemental Appendix 2.

228 25

229 Statistical analysis

General characteristics: Stata-14 software (StataCorp LP, College Station, TX, USA) and R 4.2.2 (*rpart*)[25] were used to analyse the data. Bar diagram was used for data visualization. Descriptive statistics, such as frequency and proportions for categorical variables and mean and standard deviations for quantitative variables, were used to summarize the data at baseline and endline. Cross-tabulation was used to present that outcome variable segregated by intervention and control group at baseline survey as well as the endline survey. The *difference in difference* method was used to estimate the contrast of an intervention by comparing the difference in the outcomes between an intervention group and a control group before and after the intervention.[26]

Predictive model: Three statistical models were used as predictive models. Two parametric models, such as Logistic and Probit regression models, and Decision Tree as a non-parametric model. Logistic and Probit regression models were used as predictive models as well as classifier models. The models were also used to investigate which factors were significantly associated with childhood stunting, and estimate their effect size, in order to predict whether changes in behavioural practices might potentially help to achieve targeted reductions in stunting. Using those variables, a decision tree was applied, and the predictive performance was compared to other models.

247	
248	For the parametric models, first, Chi-Square test was used to examine the bivariate associations
249	between stunting and all possible explanatory variables. In the second step, variables with <i>p</i> -values
250	<0.25 in the simple model were included in the multiple regression models.[27] In the final step,
251	any independent variables thought to be likely predictors were added to the multiple regression
252	model using the stepwise forward selection method. Some indicators, e.g., age, sex, and maternal
253	nutritional status were added regardless of their <i>p</i> -value due to their scientific plausibility. The
254	mathematical equation of logistic and probit regression models were given in the Supplemental
255	Appendix 3. As a cluster variable, Union was used to adjust the standard errors. Furthermore, for
256	the explanation of the regression model, a p -value <0.05 was considered as statistically significant,
257	and the confidence interval (CI) of 95% was also reviewed. From the fitted model, the adjusted
258	effect size (adjusted prevalence difference) against all predictors was estimated using the "adjrr"
259	package in Stata. The list of independent variables with the value labels used in the model is given
260	in Table 1.
261	

262 Table 1. List of all independent variables

Indicators	Code	Stunting Status*	Selection in the model
At least four ANC visits by a skilled service provider			
At least four ANC visits by a skilled service provider	0		Selected
Less than four ANC visits by a skilled service provider	1	Higher prevalence[8]	
Additional resting during pregnancy	-		
Took more rest	0		Not selected
Did not take more rest	1	Higher prevalence[8]	
Additional food consumption during pregnancy			
Consumed more food	0		Not selected
Did not consumed more food	1	Higher prevalence[7, 8]	
Consumption of at least 100 IFA tablets during pregnan	cy		
Consumed at least 100 IFA tablets	0		Not selected
Did not consumed at least 100 IFA tablets	1	Higher prevalence[9]	
Received vitamin A capsule after last delivery			
Received	0		Not selected
Did not receive	1	Higher prevalence[8]	
Birth attendant/facility			
Skilled	0		Selected
Unskilled	1	Higher prevalence[10]	
Mother involved in income-generating activities			
No	0		Selected
Yes	1	Higher prevalence[6, 13]	
Maternal BMI			
BMI ≥18.5	0		Selected
BMI <18.5	1	Higher prevalence[6, 11]	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2
3 4
5 6 7
7 8 9
10 11
12 13 14
15 16
17 18 19
20 21
22 23 24
24 25 26
27 28
29 30 31
32 33
34 35 36
37 38
39 40 41
42 43
44 45 46
47 48
49 50 51
52 53
55 56
57 58 59
59 60

Maternal education	0		C 1
At least one-year formal education	0		Select
No schooling	1	Higher prevalence[6, 11]	
Access of mass media			~ .
Access	0		Select
No access	1	Higher prevalence[12]	
Household food insecurity			
Below severe	0		Select
Severe	1	Higher prevalence[8]	
Household monthly income ≥15000 BDT			
≥15000 BDT	0		Select
<15000 BDT	1	Higher prevalence[11]	
Involved with aquaculture			
Involved	0		Select
Did not involved	1	Higher prevalence[14]	
Hygienic latrine			
Hygienic latrine	0		Select
Unhygienic latrine	1	Higher prevalence[6, 11, 15]	Sciect
Water and soap available in handwashing place			
Available	0		Select
Unavailable	1	Higher prevalence[15]	
Household size			
Below seven	0		Select
Seven or above	1	Higher prevalence[11]	
Household dietary diversity (HDDS)			
HDDS ≥7	0		Select
HDDS <7	1	Higher prevalence[8]	
Sex of household head			
Female	0		Not sele
Male	1	Higher prevalence[8]	
Household head education			
At least one-year formal education	0		Not sele
No schooling	1	Higher prevalence[6]	
Religion			
Muslim	0		Not sele
Non-Muslim	1	Lower prevalence[6]	
Received any grant/allowance/stipend from the governm	ent		
Received	0		Not sele
Did not receive	1	Higher prevalence[16]	
Child's age			
Age ≤ 18 months	0		Select
Age >18 months	1	Higher prevalence[8]	
Child's sex			
Female	0		
Male	1	Higher prevalence[8]	
Childhood illness in the last 15 days			
No	0		Select
Yes	1	Higher prevalence[17]	
Minimum dietary diversity			
Received	0		Not sele
Did not receive	1	Higher prevalence[8, 15]	
Early initiation of breastfeeding		<u> </u>	
Received	0		Not sele

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Did not receive	1	Higher prevalence[8]	
Received colostrum			
Received	0		Not selected
Did not receive	1	Higher prevalence[8]	
¹ Expected effects based on findings of the literature			

Model evaluation: The predictive performance of the three statistical models was evaluated by
computing model sensitivity and specificity, and calculating the area under the receiver operating
curve (ROC) analysis. To ensure accurate results, the data was randomly split into a training set
(75%) and a test set (25%) using a random-number seed 113843. The same training and test
datasets were used for evaluating the performance of all algorithms to ensure consistency in the
results. The sensitivity and specificity values, as well as the area under the ROC curve, were used
to determine the overall accuracy of the algorithms in predicting childhood stunting.[28, 29]

273 Patient and public involvement

Patients and public were not actively involved in formulating the research question and or protocol
development, including the outcome measures. To expedite the field implementation, however,
local elites e.g. teachers, religious persons, and local government council members were informed
about the study.

3 278

Results

General characteristics: Out of 9600 cases, 9501 cases were found to be available. The refusal rate was around 1%. With respect to the outcome indicator, stunting in children aged 12-23 months, 52.7% of children were stunted at the baseline survey (intervention group: 52.6%; control group: 52.8%), whereas the proportion of children exhibiting stunting at endline was 50.0% (intervention: 49.9%; control: 50.1%; Figure 1). At both the baseline and endline surveys, there was no significant difference in proportion between intervention and control areas. The *difference-indifference* in outcomes over time was also insignificant.

¹⁸ 287

Figure 2 describes several other indicators related to maternal and child health, including the status
of consuming a minimum acceptable diet (intervention: 35.2%; control: 14.9%), minimum dietary
diversity (intervention: 42.8%; control: 20.4%), maternal decision-making (intervention: 45.0%;
control: 31.0%), at least four maternal ANC visits by a skilled service provider (intervention:

36.1%; control: 17.7%), minimum dietary diversity for women (intervention: 52.6%; control: 33.5%), a household dietary diversity score of at least seven (intervention: 88.9%; control: 78.3%), and household food security status (intervention: 26.6%; control: 20.2%). Results from the endline survey showed that these indicators were significantly improved in the intervention group compared to the control group. However, the availability of hygienic latrines did not increase in the intervention group (intervention: 44.0%; control: 44.0%). Table 2 shows the households' socio-demographic characteristics, women's general characteristics, and children's characteristics at baseline and endline.

301 Table 2. General characteristics of the *Suchana* beneficiaries

Indicators, n (%)	Baseline N=3200	Endline <i>N</i> =6301	Total <i>N</i> =9501					
At least four ANC visits by a skilled service provider								
Yes	408 (12.8)	1530 (24.3)	1938 (20.4)					
No	2792 (87.2)	4771 (75.7)	7563 (79.6)					
Delivery at skilled birth attendant/facility	, ,		, , ,					
Yes	1000 (31.2)	2769 (44.0)	3769 (39.7)					
No	2200 (68.8)	3532 (56.0)	5732 (60.3)					
Access of mass media	, , ,		, , ,					
Access	563 (17.59)	1169 (18.55)	1732 (18.23					
No access	2637 (82.41)	5132 (81.45)	7769 (81.77					
Mother involved in income-generating activities								
No	3102 (96.9)	5665 (89.9)	8767 (92.2)					
Yes	98 (3.1)	639 (10.1)	737 (7.8)					
Maternal BMI								
BMI ≥18.5	1859 (58.1)	4073 (64.6)	5932 (62.4)					
BMI <18.5	1341 (41.9)	2231 (35.4)	3572 (37.6)					
Mother completed primary education								
Yes	1721 (53.8)	3808 (60.4)	5529 (58.2)					
No	1479 (46.2)	2496 (39.6)	3975 (41.8)					
Maternal age								
Age <30 years	2145 (67.0)	3559 (56.5)	5704 (60.0)					
Age \geq 30 years	1055 (33.0)	2745 (43.5)	3800 (40.0)					
Type of delivery								
Normal	2879 (90.0)	5529 (87.8)	8408 (88.5)					
Caesarean	321 (10.0)	772 (12.3)	1093 (11.5)					
PNC								
No	2152 (67.3)	4128 (65.5)	6280 (66.1)					
Yes	1048 (32.8)	2173 (34.5)	3221 (33.9)					
Household severely food insecure								
Yes	912 (28.5)	1016 (16.1)	1928 (20.3)					
No	2288 (71.5)	5285 (83.9)	7573 (79.7)					
Household monthly income >15000 BDT	, ,		. ,					

Yes	424 (13.2)	1015 (16.1)	1439 (15.1)
No	2776 (86.8)	5289 (83.9)	8065 (84.9)
Household involved with aquaculture			
Yes	161 (5.0)	561 (8.9)	722 (7.6)
No	3039 (95.0)	5740 (91.1)	8779 (92.4)
Hygienic latrine			. ,
Yes	1121 (35.0)	2782 (44.1)	3903 (41.1)
No	2079 (65.0)	3519 (55.9)	5598 (58.9)
Water and soap available in handwashing place			
Yes	862 (26.9)	3170 (50.3)	4032 (42.4)
No	2338 (73.1)	3131 (49.7)	5469 (57.6)
Household savings			
No	1080 (33.8)	2876 (45.6)	3956 (41.6)
Yes	2120 (66.2)	3425 (54.4)	5545 (58.4)
Sex of household head			
Female	110 (3.4)	501 (8.0)	611 (6.4)
Male	3090 (96.6)	5799 (92.0)	8889 (93.6
Source of drinking water			
Tube well	2748 (85.9)	5713 (90.7)	8461 (89.0
Others	452 (14.1)	588 (9.3)	1040 (11.0
Household dietary diversity score			
HDDS ≥7	2182 (68.2)	5322 (84.5)	7504 (79.0
HDDS <7	1018 (31.8)	979 (15.5)	1997 (21.0
Household monthly income (Thousand BDT) ¹	6.7 (5, 10)	7.5 (5.1, 10.8)	7.1 (5, 10.4
Per capita income (Thousand) ¹	2.6 (1.8, 3.7)	2.9 (2, 4.1)	2.8 (2, 4)
Household size ¹	6.2±2.4	5.9±2.1	6±2.2
Child's age in months ²	17.9±3.5	17.3±3.6	17.5±3.6
Length-for-age z-score ²	-2.1±1.2	-2±1.1	-2±1.1
Weight-for-age z-score ²	-1.7±1.1	-1.5±1.0	-1.5±1.0
Weight-for-length z-score ²	-0.9±1.0	-0.7±0.9	-0.7±1.0
Child's age			
Age <18 months	1745 (54.5)	3710 (58.9)	5455 (57.4)
Age ≥ 18 months	1455 (45.5)	2594 (41.1)	4049 (42.6
Child's sex		()	(
Female	1567 (49.0)	3044 (48.3)	4611 (48.5
Male	1633 (51.0)	3257 (51.7)	4890 (51.5
Childhood illness in the last 15 days	1000 (01.0)		
Yes	2867 (89.6)	5763 (91.5)	8630 (90.8)
No	333 (10.4)	538 (8.5)	871 (9.2)
$\frac{1 \text{NO}}{\text{Median (IQR); }^2 \text{Mean} \pm \text{SD}}$	<i>333</i> (10.4)	338 (8.3)	0/1 (9.2)

304 Correlated factors: The study used two parametric predictive models to determine the correlates
305 of childhood stunting. The results, presented in Table 3, showed the adjusted odds ratios (aOR)
306 computed from multiple logistic regression and the adjusted coefficients computed from multiple
307 probit regression. These results provide important insights into the factors that increase the odds
308 of stunting in childhood, and can inform public health interventions aimed at reducing stunting

Page 15 of 39

BMJ Open

and improving child health. The aORs provide a quantitative measure of the relationship between different factors and childhood stunting, adjusting for *Union* as cluster variable. Understanding the correlates of childhood stunting is critical for addressing this important public health issue and improving the health and well-being of children globally. The results of this study show that a number of maternal, household and children factors were correlated with an increased prevalence of stunting in children. Children of mothers who did not receive at least four ANC visits from a skilled service provider had 1.16 times higher odds of stunting (95% CI: 1.05, 1.30; p-value=0.005). Children of mothers who gave birth with an unskilled birth attendant or facility had 1.11 times higher odds of stunting (95% CI: 1.02, 1.20; p-value=0.012). The odds of stunting were 1.18 times higher in children whose mothers were involved in income-generating activities (95%) CI: 1.02, 1.37; p-value=0.030), 1.23 times higher in children of underweight mothers (95% CI: 1.12, 1.36; p-value<0.001), and 1.31 times higher in children of low-educated mothers (95% CI: 1.20, 1.42; p-value<0.001). Furthermore, the lack of exposure to mass media was also found to be associated with stunting, with odds of 1.15 (95% CI: 1.02, 1.30; p-value=0.025) times higher. Children from households with severe food insecurity, lower-income households, households not involved in aquaculture, and households with low dietary diversity, were more likely to be stunted, with odds increasing by 1.12 (95% CI: 1.00, 1.24; p-value=0.041), 1.12 (95% CI: 1.01, 1.25; p-value=0.037), 1.19 (95% CI: 1.03, 1.38; p-value=0.018), and 1.17 (95% CI: 1.07, 1.29; p-value=0.001) times, respectively. The results also showed that the odds of stunting increased with increasing household size (95% CI: 1.11, 1.31; p-value<0.001), the absence of a hygienic latrine (95% CI: 1.10, 1.30; p-value<0.001), the absence of water and soap in the handwashing place (95% CI: 1.08, 1.30; p-value<0.001), increasing child age (95% CI: 1.39, 1.67; p-value<0.001), and being male (95% CI: 1.11, 1.34; p-value<0.001). The odds of stunting were also 1.20 times higher in children with acute illness (95% CI: 1.06, 1.36; p-value=0.003). The logistic and probit regression models were employed to predict stunting in a sample of 9501 individuals. Both models were found to be significant, with log-likelihoods of -6387.94 and -6388.02, respectively, and significant Wald chi-square statistics (p-value < 0.001). Predictive ability of various indicators for the adjusted prevalence of stunting and adjusted prevalence difference (effect size) are given in Supplementary Table 2a and 2b. The Factors correlating with childhood stunting, as determined by using a decision tree as a non-parametric predictive model, are also presented in Figure 3. The decision tree result suggests that maternal education was the most important variable in predicting

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

childhood stunting, as it was the main root node. The other variables, such as maternal nutrition, hand washing indicators, and hygienic latrine, were also important, as they were next root node

- 342 variables. This tree model can be used to predict the childhood stunting status with relative ease.

344 Table 3. Factors correlating with stunting in children aged 12-23 months, computed using

345 logistic and probit regression analyses

Indicators	Logistic		Probit	
	Adjusted OR p-value		Adjusted Coef.	p-value
	(95% CI)		(95% CI)	
At least four ANC visits by a skilled				
Yes	Reference		Reference	
No	1.16 (1.05, 1.30)	0.005	0.09 (0.03, 0.16)	0.005
Birth attendant/facility				
Skilled	Reference		Reference	
Unskilled	1.11 (1.02, 1.20)	0.012	0.06 (0.01, 0.11)	0.012
Mother involved in income-generat				
No	Reference		Reference	
Yes	1.18 (1.02, 1.37)	0.030	0.10 (0.01, 0.19)	0.030
Maternal BMI				
BMI ≥18.5				
BMI <18.5	1.23 (1.12, 1.36)	0.000	0.13 (0.07, 0.19)	0.000
Maternal education was primary co				
Yes	Reference		Reference	
No	1.31 (1.20, 1.42)	0.000	0.17 (0.12, 0.22)	0.000
Access of mass media				
Yes	Reference		Reference	
No	1.15 (1.02, 1.30)	0.025	0.09 (0.01, 0.16)	0.025
Household food insecurity	1.10 (1.02, 1.50)	0.020	0.09 (0.01, 0.10)	0.020
Below severe				
Severe	1.12 (1.00, 1.24)	0.041	0.07 (0.00, 0.13)	0.042
Household monthly income >15000		0.041	0.07 (0.00, 0.15)	0.042
Yes	Reference		Reference	
No	1.12 (1.01, 1.25)	0.037	0.07 (0.00, 0.14)	0.035
Involved with aquaculture	1.12 (1.01, 1.23)	0.037	0.07 (0.00, 0.14)	0.035
Yes	Reference		Reference	
No		0.019		0.019
	1.19 (1.03, 1.38)	0.018	0.11 (0.02, 0.20)	0.018
Household size	Defenses		D . C	
Below seven	Reference	0.000	Reference	0.000
Seven or above	1.20 (1.11, 1.31)	0.000	0.12 (0.06, 0.17)	0.000
Hygienic latrine				
Yes	Reference		Reference	
No	1.20 (1.10, 1.30)	0.000	0.11 (0.06, 0.16)	0.000
Water and soap available in handw				
Yes	Reference		Reference	
No	1.19 (1.08, 1.30)	0.000	0.11 (0.05, 0.16)	0.000
Household dietary diversity				
HDDS ≥7	Reference		Reference	
HDDS <7	1.17 (1.07, 1.29)	0.001	0.10 (0.04, 0.16)	0.001
Child's age				

Age ≤ 18 months	Reference		Reference	
Age >18 months	1.52 (1.39, 1.67)	0.000	0.26 (0.2, 0.32)	0.000
Child's sex				
Female	Reference		Reference	
Male	1.22 (1.11, 1.34)	0.000	0.13 (0.07, 0.18)	0.000
Childhood illness in the last 15 day	s			
No	Reference		Reference	
Yes	1.20 (1.06, 1.36)	0.003	0.11 (0.04, 0.19)	0.003
Sample size and regression	n = 9501		n = 9501	
diagnostic values for logistic and	Log-likelihood = -6387.94		Log-likelihood = -6388.02	
probit regression analyses	Wald $chi2(17) = 427.79$		Wald $chi2(17) = 441.18$	
			p-value<0.001	
	Pseudo $R^2 = 0.0298$		Pseudo $R^2 = 0.02$	298

Unions were adjusted as clusters. Baseline and endline were adjusted as time variables

Predictive performance: Table 4 describes the model validation based on sensitivity, specificity, and whether the model was correctly classified for the overall dataset, as well as the training and test datasets. The sensitivity and specificity of the model were around 60% and 55%, respectively for all models. The correctly classified rate was 59%, and the area under the ROC curve was around 61%. We found that these values were approximately equal among the three datasets (main, training, and test datasets); however, the predictive performance of the model was low.

Table 4. Predictive performance of the model for stunting based on classification, sensitivity,
 and specificity in the full, training and test datasets with area under the receiver operating
 characteristic curve analysis

	Logistic regression	Probit regression	Decision tree
Full dataset			
Overall accuracy	58.46	58.38	56.51
Sensitivity	61.21	61.25	61.15
Specificity	55.61	55.41	51.70
Area under the curve	61.54	61.54	56.72
Fraining Dataset		·	
Overall accuracy	58.83	58.62	57.66
Sensitivity	61.59	61.70	63.93
Specificity	55.36	55.42	51.61
Area under the curve	61.37	61.37	58.44
Test Dataset			
Overall accuracy	58.11	58.19	56.67
Sensitivity	60.23	60.23	61.58
Specificity	55.90	56.07	51.94

	Area under the curve	61.76	61.77	58.01
358				

360 Discussion

In an effort to understand why the Suchana programme was not effective in reducing the prevalence of childhood stunting, this study analyzed data from both the baseline and endline surveys of the programme. The analysis aimed to identify the factors that were significantly correlated with stunting and to evaluate the model's predictive performance. After controlling for the Union as a cluster variable, the study found several indicators that were significantly related to stunting. These included the number of ANC visits by a skilled service provider, household dietary diversity, household food security, and household monthly income, all of which improved after the intervention. However, it was noted that the household food security status did not reach the target value of 50%, despite being an important factor associated with childhood stunting.[8, 30, 31] On the other hand, other outcome indicators of the Suchana programme, such as the dietary diversity of children, maternal dietary diversity, and maternal empowerment, despite reaching their target values, were not found to be associated with stunting in this study.

The study found that while the *Suchana* programme showed improvement in certain programme indicators, it did not lead to a significant reduction in childhood stunting. Despite efforts to address key factors such as maternal nutrition and education, household food security, and hygiene practices, these factors remained largely unchanged. However, the study suggests that interventions aimed at adolescent mothers may be more effective in improving maternal nutrition and education, since these are age-dependent variables. Additionally, the results of the study were also impacted by natural disasters in 2017, including heavy rains and flooding in the Sylhet region, which resulted in widespread damage to agriculture, aquaculture, and homes in the study population.[32, 33]

48 383

The study found a contradictory relationship between stunting and maternal involvement in income-generating activities, with a higher prevalence of stunting observed among children whose mothers were engaged in various earning activities. Although there was a slight increase in the proportion of mothers involved in income-generating activities after the intervention, the lack of Page 19 of 39

BMJ Open

childcare support for working mothers resulted in a marked rise in childhood stunting among low-income households. It is important to address this issue by providing adequate childcare support measures for working mothers from poor families to ensure that the child's essential needs are not impacted by the mother's employment status.[13] Additionally, efforts should be made to increase awareness among working mothers regarding the importance of child health and nutrition. This can be achieved through targeted education and outreach programmes that provide information on proper child feeding practices, hygiene, and health-seeking behaviours.

The literature suggests that environmental enteropathy may contribute to poor growth among children in rural Bangladesh and may represent an important factor affecting the study population in the Suchana programme.[34] Although it was not specifically assessed in this study, indicators such as unsanitary latrines, unimproved floors, a lack of handwashing practices, and low education levels were available.[18, 35] Improving Water, Sanitation and Hygiene (WaSH) variables, particularly latrine facilities and handwashing practices, may help reduce the burden of stunting in young children. One of the components of the intervention was poultry, but our qualitative findings revealed that many households shared living spaces with poultry, ducks, or other animals, which could increase the risk of infections with *Campylobacter* species, a leading food-borne pathogen.[18, 36] Previous studies have shown a strong association between stunting and enteropathy among children who do not respond to nutritional interventions, and findings from rural Bangladesh have linked environmental conditions and stunting in children.[37-39] While assessing environmental enteropathy was beyond the scope of the Suchana evaluation, collecting data on indicators of enteropathy in the intervention and control areas could help evaluate the impact of appropriate interventions in the future. The failure to achieve the desired outcome may have been due to several factors, including food insecurity and a lack of aquaculture involvement due to natural disasters, poor WaSH status, a lack of focus on maternal education and nutrition, and a lack of focus on the risk of enteropathogen burden.

Another important finding based on the post-estimation findings as well as the value of the area under the ROC curve was that the predictive performance of the model was low. Thus, we need to identify other indicators from similar research contexts that influence childhood stunting but were not included in our model. Future research in the field of childhood stunting should give priority

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

to the development of more suitable methods for monitoring and identifying effective interventions. It is also essential to collect data that considers biological and environmental factors related to childhood stunting, following the literature. By considering these diverse factors, we can improve the accuracy and predictive performance of statistical models. This, in turn, can help draw more reliable conclusions about the effectiveness of interventions aimed at reducing childhood stunting in similar contexts. Additionally, evaluating the model on an independent dataset or conducting external validation could help to determine the generalizability of the model to new data.

This study will aid programme managers in prioritizing their focus and designing effective interventions to reduce childhood stunting. Sustainable solutions should be based on the needs of the beneficiaries. Implementing short-term initiatives such as attendance at healthcare-led workshops and campaigns can increase ANC visits, skilled birth attendance, and handwashing practices. Establishing women's healthcare services that focus on maternal and child health and nutrition will also help reduce the incidence of stunting.[23] Improved access to media can help vulnerable communities benefit from government welfare programmes. Food security, income, sanitation, aquaculture, and illness are all time-sensitive factors. Increasing food production through self-production or purchasing can improve household food security and nutrition. However, household wealth and access to nearby markets can impact their ability to buy nutritious food. Climate change adaptation in agriculture is crucial to minimize current risks and prepare for future uncertainties. Using organic fertilizers instead of chemicals in agriculture has environmental benefits, reducing the need for pesticides and protecting human health and biodiversity. Aquaculture can provide a source of protein and improve nutrition, but establishing these facilities takes time. Improving sanitation requires improving socioeconomic status, which is also a time-intensive process. It takes time to improve stunting, as shown by national surveys such as the BDHS and the Food Security and National Surveillance Project (FSNSP).[2, 40] Improving maternal nutrition and education is crucial for promoting the optimal growth and development of children. Adequate food, good environmental conditions, and access to schooling facilities during adolescence are necessary for women to maintain their own health and to positively impact the health of their children. Emphasizing the education of female children can break the cycle of poverty and stunting, as it can lead to improved knowledge and decision-making skills related to

Page 21 of 39

BMJ Open

nutrition and health.[6, 11] To reduce childhood stunting in developing countries, comprehensive interventions that include nutritional support, food security, maternal education, income-generating activities for women with childcare support, and addressing domestic violence against women should be implemented. These interventions should be tailored to the specific needs and cultural context of the community in which they are implemented, and community participation and engagement are essential for their success. By addressing the underlying factors contributing to childhood stunting, we can make significant progress towards reducing its prevalence and improving the health and well-being of children in developing countries. Furthermore, continued monitoring and evaluation of these interventions is essential to ensure their effectiveness and to identify areas for improvement.

Recommendation: The Suchana model offers a holistic and integrated approach to addressing food and nutrition security, recognizing undernutrition as a complex problem caused by multiple factors. The endline survey of Suchana showed significant improvement in programme indicators. The multi-sector approach of *Suchana* is a meaningful solution to addressing undernutrition. However, policy makers should consider implementing additional nutrition-sensitive and specific activities, such as promoting climate-resilient agriculture and increasing water and sanitation coverage. It is also important to have a sustainable mechanism for improving food security and to promote awareness of seasonal diseases associated with livestock and poultry. To further improve the programme, indicators such as child sex, maternal education, and nutrition could be adjusted during the design stage. The Suchana programme is one of the largest global nutrition interventions, leading to positive changes in critical indicators, with long-term benefits expected for the health and livelihoods of the beneficiaries.

Strength and limitation: The study had several strengths, including a large sample size, randomization, and appropriate sampling techniques. A dedicated quality control team was involved in checking the data, and the use of precise anthropometry instruments and separate training for the measurement team helped ensure accurate data collection. The study was also designed to avoid seasonality by conducting the baseline and endline surveys at the same time of the year. However, the study results may have been impacted by a lack of selection effect in the implementation of the programme, as well as by the short time horizon of the study. The short

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

duration of the study may not have been enough to see a significant impact on stunting. Additionally, changes in the study population between the baseline and endline surveys could also have contributed to the lack of differences observed in the results. Another limitation of this study is that we did not collect food intake data but only recall data from the previous 24 hours. These data may be subject to recall bias; thus, caution is necessary when drawing conclusions, especially for indicators such as dietary diversity, household food insecurity, domestic violence, and maternal healthcare. Finally, using a binary indicator of stunting based on a single LAZ cut-off point, which was defined as <-2, may not provide a comprehensive assessment of the severity of malnutrition among children, as it fails to account for micronutrient deficiencies

492 Conclusion

Childhood stunting was heavily influenced by a number of factors, and majority of the factors were found in poor status in our study area. Despite the implementation of an intervention programme, the situation remained unchanged due to factors such as food insecurity, lack of involvement in aquaculture, poor access to WaSH facilities, and a lack of focus on maternal education and nutrition. The study did not include important indicators such as enteropathogen and environmental enteric dysfunction, which might have contributed to the failure to achieve the desired outcome. The results suggest that policy makers and programme planners should consider enhancing collaboration and coordination between nutrition-sensitive and specific activities to address nutritional deficiencies and family health programmes in vulnerable rural populations.

Acknowledgments: The study analyzed baseline survey data of Suchana; this intervention has been implemented by a consortium led by Save the Children, with support from the Foreign, Commonwealth and Development Office (FCDO) and European Union (EU). icddr,b acknowledges with gratitude the commitment of Save the Children, FCDO and EU to its research efforts. We also acknowledge with gratitude the commitment of the Government of the People's Republic of Bangladesh to icddr,b's research activities. We also acknowledge the following donors for providing unrestricted support to icddr,b's efforts and advancement of its strategic plan: Canada, Sweden and the United Kingdom. We gratefully acknowledge our core donors for their support and commitment to icddr,b's research efforts. We would like to acknowledge the

Page 23 of 39

BMJ Open

1 2	
3	512
4 5	513
6 7	514
8 9	515
10	516
11 12	517
13 14	518
15	519
16 17	520
18 19	521
20 21	522
22	523
23 24	524
25 26	525
27 28	526
29	527
30 31	528
32 33	529
34	530
35 36	531
37 38	532
39 40	533
41	534
42 43	535
44 45	536
46	537
47 48	538
49 50	539
51 52	540
53	541
54 55	542
56 57	

58

59

60

invaluable contributions of Save the Children as lead agency, our technical partners Helen Keller 12 International, World Fish, and International Development Enterprises, and the implementing 13 partners Friends In Village Development Bangladesh (FIVDB), Rangpur Dinajpur Rural Services 14 (RDRS), and the Center for Natural Resource Studies (CNRS) who played critical roles in 15 generating and refining the data-collection tools. We would also like to acknowledge Tasnia Alam, 16 Research Assistant and Md. Maniruzzaman, Assistant Professor, Khulna University, Khulna-9208, 17 Bangladesh as the internal reviewers, and Andrea Devlin of Science Editing Experts for editing 18 and linguistic revision of the manuscript. 19 20

Funding: (i) This study was made possible by the committed contribution of Foreign,
Commonwealth and Development Office (Grant number: 204131-103), and (ii) icddr,b (N/A).

524 **Conflicts of Interest:** The authors declare no conflict of interest.

Author Contributions: TA and NC originated the idea for the study and led the protocol design.
MAH conceptualized the manuscript. SMTA, SSR, MAH, NC, FDF, and TA contributed to the
survey design. MAH performed statistical analysis and drafted the manuscript. NC and ASGF
supervised the work, and critically reviewed and provided feedback for revising the manuscript.
MAH, NC, MA, FDF, FN, BZW, TJS, ASGF, TA, and SSR contributed to the revision of the final
draft for submission. All authors are responsible for the final content of the manuscript.

533 Ethics approval: This study was approved by the Research Review Committee and Ethical 534 Review Committee, the two obligatory components of the Institutional Review Board (IRB) of 535 icddr,b. Ethics Committee's approval ID# 00001822. Informed written consent was obtained from 536 study participants.

538 Data availability statement: The data that support the findings of this study are available on
539 request from the corresponding author. The data are not publicly available due to privacy and
540 ethical restrictions.

1 2		
2 3 4	543	Reference
5 6 7 8 9 10 11 12 13 14 15 16	544 545	1. Bari, A., et al., Comparison of Weight-for-Height Z-score and Mid-Upper Arm
	546	Circumference to Diagnose Moderate and Severe Acute Malnutrition in children aged 6-59
	547	months. Pakistan Journal of Medical Sciences, 2019. 35 (2): p. 337-341.
	548	2. National Institute of Population Research and Training (NIPORT) and ICF, Bangladesh
	549	Demographic and Health Survey 2017-18: Key Indicators. 2019, Dhaka, Bangladesh and
	550	Rockville, Maryland, USA: NIPORT and ICF.
17 18		
19	551	3. Development Initiatives, 2018 Global Nutrition Report: Shining a light to spur action on
20 21	552	nutrition. 2018: Bristol, UK: Development Initiatives.
22 23		
24	553	4. United Nations Children's Fund (UNICEF), World Health Organization, and
25 26 27 28 29 30	554	International Bank for Reconstruction and Development/The World Bank, Levels and trends in
	555	child malnutrition: Key Findings of the 2020 Edition of the Joint Child Malnutrition Estimates.
	556	2020: Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.
31		
32 33	557	5. USAID, Bangladesh: Nutrition Profile. 2018.
34 35		
36	558	6. Kumar, P., et al., <i>Factors contributing to the reduction in childhood stunting in</i>
37 38	559	Bangladesh: a pooled data analysis from the Bangladesh demographic and health surveys of
39 40	560	2004 and 2017–18. BMC Public Health, 2021. 21(1): p. 2101.
41 42		
43	561	7. Yaya, S., et al., Intake of supplementary food during pregnancy and lactation and its
44 45	562	association with child nutrition in Timor Leste. PeerJ, 2018. 6: p. e5935.
46 47	500	9 Chaudhury Neat al Determinents of goo gravific undernutvition in children good loss
48	563	8. Choudhury, N., et al., <i>Determinants of age-specific undernutrition in children aged less</i>
49 50	564	than 2 years-the Bangladesh context. Maternal & Child Nutrition, 2017. 13(3).
51 52	565	9. Nisar, Y.B., M.J. Dibley, and V.M. Aguayo, <i>Iron-Folic Acid Supplementation During</i>
53 54	566	Pregnancy Reduces the Risk of Stunting in Children Less Than 2 Years of Age: A Retrospective
55	567	<i>Cohort Study from Nepal.</i> Nutrients, 2016. 8 (2): p. 67.
56 57	307	Conort Sunny from Tropus. Traitonio, 2010. 0(2). p. 07.
58 59		23
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	568	10. Li, Z., et al., Factors Associated With Child Stunting, Wasting, and Underweight in 35
5 6 7	569	Low- and Middle-Income Countries. JAMA Network Open, 2020. 3(4): p. e203386.
8 9	570	11. Katoch, O.R., Determinants of malnutrition among children: A systematic review.
10 11 12	571	Nutrition, 2022. 96 : p. 111565.
13 14	572	12. Huo, S., et al., Influence of Maternal Exposure to Mass Media on Growth Stunting
15	573	Among Children Under Five: Mediation Analysis Through the Water, Sanitation, and Hygiene
16 17 18	574	Program. JMIR Public Health and Surveillance, 2022. 8(4): p. e33394.
19 20	575	13. Win, H., et al., Association between mother's work status and child stunting in urban
21 22	576	slums: a cross-sectional assessment of 346 child-mother dyads in Dhaka, Bangladesh (2020).
23 24	577	Archives of Public Health, 2022. 80(1): p. 192.
25		
26 27	578	14. Iannotti, L.L., et al., Aquatic Animal Foods for Nutrition Security and Child Health. Food
28 29 30	579	and Nutrition Bulletin, 2022. 43 (2): p. 127-147.
31 32	580	15. Prendergast, A.J., et al., Independent and combined effects of improved water, sanitation,
33 34	581	and hygiene, and improved complementary feeding, on stunting and anaemia among HIV-
35	582	exposed children in rural Zimbabwe: a cluster-randomised controlled trial. The Lancet Child &
36 37 38	583	Adolescent Health, 2019. 3 (2): p. 77-90.
39 40	584	16. Anwar, F., et al., High participation in the Posyandu nutrition program improved
41 42 43	585	children nutritional status. Nutrition Research and Practice, 2010. 4(3): p. 208-14.
44 45	586	17. Orunmoluyi, O.S., E. Gayawan, and S. Manda, Spatial Co-Morbidity of Childhood Acute
46 47	587	Respiratory Infection, Diarrhoea and Stunting in Nigeria. International Journal of Environmental
48 49 50	588	Research and Public Health, 2022. 19(3).
51 52	589	18. Haque, M.A., et al., Determinants of Campylobacter infection and association with
53 54	590	growth and enteric inflammation in children under 2 years of age in low-resource settings.
55 56	591	Scientific Reports, 2019. 9(1): p. 17124.
57 58		24
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

19. National Institute of Population Research and Training - NIPORT/Bangladesh, Mitra and
Associates, and ICF International, *Bangladesh Demographic and Health Survey 2014*. 2016,
Dhaka, Bangladesh and Rockville, Maryland, USA: NIPORT, Mitra and Associates, and ICF
International.

596 20. Helen Keller International (HKI) and James P. Grant School of Public Health (JPGSPH),
597 *State of food security and nutrition in Bangladesh 2013*. 2014: HKI and JPGSPH.

Yaya, S., et al., *Awareness and utilization of community clinic services among women in rural areas in Bangladesh: A cross-sectional study.* PLOS ONE, 2017. 12(10): p. e0187303.

Choudhury, N., et al., *The evaluation of Suchana, a large-scale development programme to prevent chronic undernutrition in north-eastern Bangladesh.* BMC Public Health, 2020. 20(1):
p. 744.

603 23. Haque, M.A., et al., *The large-scale community-based programme 'Suchana' improved*604 *maternal healthcare practices in north-eastern Bangladesh: Findings from a cluster randomized*605 *pre-post study.* Maternal & Child Nutrition, 2022. 18(1): p. e13258.

606 24. Coates, J., A. Swindale, and P. Bilinsky, *Household Food Insecurity Access Scale*607 (*HFIAS*) for measurement of food access: indicator guide (v. 3). 2007, Washington, D.C.: Food
608 and Nutrition Technical Assistance Project, Academy for Educational Development.

609 25. Therneau, T., B. Atkinson, and B. Ripley. *rpart: Recursive partitioning and regression*610 *trees*. R package version 2022 [cited 2023; Available from: <u>https://cran.r-</u>
611 project.org/package=rpart.

612 26. Villa, J.M., *Simplifying the estimation of difference-in-differences treatment effects*. The
613 Stata Journal, 2016: p. 52-71.

614 27. Bursac, Z., et al., *Purposeful selection of variables in logistic regression*. Source Code
615 for Biology and Medicine, 2008. 3: p. 17.

1 2		
3 4	616	28. Tardini, E., et al., Optimal Treatment Selection in Sequential Systemic and Locoregional
5	617	Therapy of Oropharyngeal Squamous Carcinomas: Deep Q-Learning With a Patient-Physician
6 7 8	618	Digital Twin Dyad. Journal of Medical Internet Research, 2022. 24(4): p. e29455.
9 10	619	29. Adamker, G., et al., Prediction of Shigellosis outcomes in Israel using machine learning
11 12 13	620	classifiers. Epidemiology and Infection, 2018. 146(11): p. 1445-1451.
14 15	621	30. Weatherspoon, D.D., et al., <i>Stunting, food security, markets and food policy in Rwanda</i> .
16 17 18	622	BMC Public Health, 2019. 19 (1): p. 882.
19 20	623	31. Agho, K.E., et al., <i>Moderate and severe household food insecurity predicts stunting and</i>
21 22	624	severe stunting among Rwanda children aged 6-59 months residing in Gicumbi district. Maternal
23	625	& Child Nutrition, 2019. 15 (3): p. e12767.
24 25		
26 27 28	626	32. Chowdhury, D., <i>Flood situation worsens in Sylhet</i> , in <i>The Daily Star</i> . 2017: Dhaka.
29 30	627	33. ACAPS. ACAPS Briefing Note: Bangladesh - Floods in Moulvibazar and Sylhet (20 June
31 32	628	2018). 2018 [cited 2023; Available from: https://reliefweb.int/report/bangladesh/acaps-briefing-
33	629	note-bangladesh-floods-moulvibazar-and-sylhet-20-june-2018.
34 35		
36 37	630	34. Lin, A., et al., Household environmental conditions are associated with enteropathy and
38 39	631	impaired growth in rural Bangladesh. American Journal of Tropical Medicine and Hygiene,
40 41 42	632	2013. 89 (1): p. 130-137.
43	633	35. Amour, C., et al., Epidemiology and Impact of Campylobacter Infection in Children in 8
44 45 46 47 48	634	Low-Resource Settings: Results From the MAL-ED Study. Clinical Infectious Diseases, 2016.
	635	63 (9): p. 1171-1179.
49 50	636	36. Smith, S., et al., <i>The impact of environmental conditions on Campylobacter jejuni</i>
51 52	637	survival in broiler faeces and litter. Infection Ecology & Epidemiology, 2016. 6: p. 31685-
53 54 55 56	638	31685.
57 58		26
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

639 37. Chen, R.Y., et al., *Duodenal Microbiota in Stunted Undernourished Children with*640 *Enteropathy.* The New England Journal of Medicine, 2020. 383(4): p. 321-333.

George, C.M., et al., *Fecal Markers of Environmental Enteropathy are Associated with Animal Exposure and Caregiver Hygiene in Bangladesh.* American Journal of Tropical Medicine
and Hygiene, 2015. 93(2): p. 269-75.

Berin, J., et al., *A Retrospective Case-Control Study of the Relationship between the Gut Microbiota, Enteropathy, and Child Growth.* American Journal of Tropical Medicine and
Hygiene, 2020. 103(1): p. 520-527.

40. Helen Keller International (HKI) and James P. Grant School of Public Health (JPGSPH), *State of food security and nutrition in Bangladesh 2014*. 2016, Dhaka, BD: HKI and JPGSPH.

Page 29 of 39

BMJ Open

Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline compared to endline. The p-value of the *difference-in-difference* was estimated using interaction analysis in the multiple logistic regression model.

Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS:

household dietary diversity score, MDD-w: minimum dietary diversity for women.

Figure 3. Factors correlating with stunting in children aged 12-23 months, computed using decision tree analysis. (X₁: Less than four ANC visits by a skilled service provider, X₂: Unskilled birth attendant/facility, X₃: Mother involved in income-generating activities, X₄: Maternal BMI <18.5, X_5 : Maternal education: no schooling, X_6 : Household severe food insecurity, X_7 : Monthly income <15000 BDT, X₈: Did not involve with aquaculture, X₉: Having unhygienic latrine, X₁₀: Soap was unavailable in hand washing place, X_{11} : HH size>7, X_{12} : HH dietary diversity score <7, X_{13} : Child's age>18, X_{14} : Child's sex was male, X_{15} : Childhood illness in the last 15 days, and X_{16} : Lacked access to mass media)

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

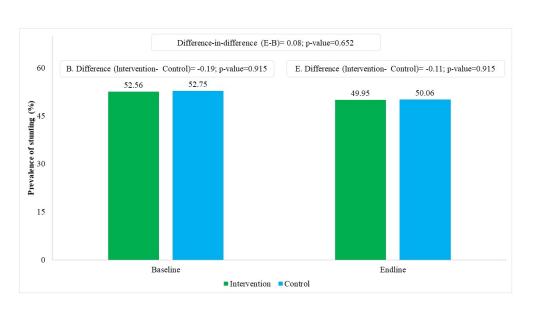


Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline compared to endline. The p-value of the difference-in-difference was estimated using interaction analysis in the multiple logistic regression model.

108x60mm (300 x 300 DPI)

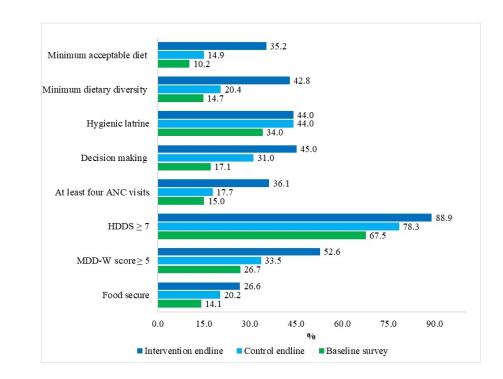


Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS: household dietary diversity score, MDD-w: minimum dietary diversity for women.

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

254x190mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

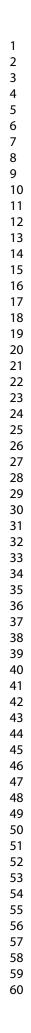


Figure 3. Factors correlating with stunting in children aged 12-23 months, computed using decision tree analysis. (X1: Less than four ANC visits by a skilled service provider, X2: Unskilled birth attendant/facility, X3: Mother involved in income-generating activities, X4: Maternal BMI <18.5, X5: Maternal education: no schooling, X6: Household severe food insecurity, X7: Monthly income <15000 BDT, X8: Did not involve with aquaculture, X9: Having unhygienic latrine, X10: Soap was unavailable in hand washing place, X11: HH size>7, X12: HH dietary diversity score <7, X13: Child's age>18, X14: Child's sex was male, X15: Childhood illness in the last 15 days, and X16: Lacked access to mass media)

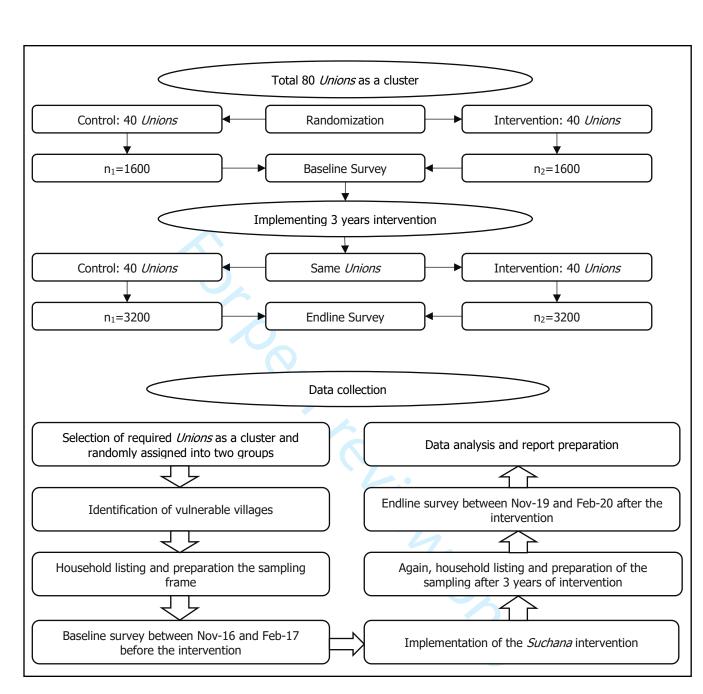
325x254mm (300 x 300 DPI)

Appendix 1. Sample size calculation

clustersampsi, binomial samplesize p1(0.47) p2(0.41) k40) rho0.01)alpha(0.05) beta(0.8)

Output of the STATA command for sample size calculation

Sample size calculation to determine number of observations required per cluster, for a twosample comparison of proportions (using normal approximations) without continuity correction.


```
For the user specified parameters:
     p1: 0.4700
     p2: 0.4100
     significance level: 0.05
     power: 0.80
                4

joint

in randomisation

20
     number of clusters available: 40
     intra cluster correlation (ICC): 0.0100
clustersampsi estimated parameters:
     Firstly, assuming individual randomisation: sample size per arm: 1071
     Then, allowing for cluster randomisation: average cluster size required: 38
     sample size per arm: 1520
```

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Supplementary Figure 1. The evaluation diagram of Suchana programme

Appendix 2. Data collection

The Suchana data collection software contained built-in validation rules. As the data were entered at the interviewer level and the records were uploaded to a server at the icddr,b using the built-in internet connectivity of the devices, maximum validation rules were set in the data system to prevent errors during data entry, which reduced the data entry burden. This allowed the data analysis team to review the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

consistency of the data every day. Data were synchronized to the central server "Web Service" developed in Asp.Net based on the C# (C Sharp) code. Activities such as editing (after receiving any feedback from field staff members), updating, range checks, duplication checks, consistency checks, frequency checks and cross tabulation were regularly performed during the data entry period. In case of any unusual observations, the issues were discussed and resolved.

Appendix 3. Equation of logistic and probit regression

 $logit(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{12} X_{12} + \beta_{13} X_{13} + \beta_{14} X_{14} + \beta_{15} X_{15} + \beta_{16} X_{16}$

 $probit(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{12} X_{12} + \beta_{13} X_{13} + \beta_{14} X_{14} + \beta_{15} X_{15} + \beta_{16} X_{16} +$

Where,

- x1: Less than four ANC visits by a skilled service provider
- x2: Unskilled birth attendant/facility
- x3: Mother involved in income-generating activities
- x4: Maternal BMI <18.5
- x5: Maternal education: no schooling
- x6: HH severe food insecurity
- x7: Monthly income <15000 BDT
- x8: Did not involve with aquaculture

and

logit(y) = log[y/(1-y)]

- x9: Having unhygienic latrine x10: Soap was unavailable in hand washing place x11: HH size≥7 x12: HH dietary diversity score <7 x13: Child's age>18
- x14: Child's sex was male
- x15: Childhood illness in the last 15 days
- x16: Lacked access to mass media

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 35	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

Supplementary Table 1. *Suchana* inclusion criteria for registration of enrolling as vulnerable households

	Vulnerable household verification questions	Inclusion criteria
Step •	<i>I</i> Households currently participating/member of any livelihood, food security or asset transfer program	If "NO" go ahead for nez questions
Step	2	
•	Ability to afford three (3) full meals per day for all family members round the year	
•	Households monthly income BDT 7,500 or more Household productive asset value worth BDT 15,000 or more	If anyone is "NO" go ahead for next questions
•	(excluding land, pond and homestead) Ownership of homestead land 10 decimals or more	Ĩ
•	Ownership of cultivable land 50 decimals or more (excluding homestead or pond)	
Step	p 3	
•	Households have married women with in child bearing age (15 to 45 years) Households have pregnant women (including abandoned or widowed woman) Households have 0-23 months old children	If anyone is 'Yes' go ahead for registration of enrolling as vulnerable Household
•	Households have adolescent girls (15-19 years)	
	pling frame was prepared for collecting data from mother-child pair if ths old children	the households had 0-23

	Prediction of adjusted stunting [% (95% CI)]	Prediction of adjusted prevalence difference as effect size [*]	p-valu
At least four ANC vi	sits by a skilled service provider		
Yes	51.64 (50.05, 53.23)	Reference	
No	47.99 (45.46, 50.53)	3.65 (1.07, 6.22)	0.006
Birth attendant/facil			
Skilled	51.87 (50.23, 53.51)	Reference	
Unskilled	49.42 (47.48, 51.36)	2.45 (0.55, 4.35)	0.012
	ncome-generating activities		
No	54.55 (50.90, 58.19)	Reference	
Yes	50.59 (49.08, 52.11)	3.95 (0.40, 7.51)	0.029
Maternal BMI			
BMI ≥18.5	54.04 (52.01, 56.07)	Reference	
BMI <18.5	49.01 (47.21, 50.81)	5.03 (2.66, 7.41)	< 0.00
	was primary completed	5.05 (2.00, 7.11)	<0.00
Yes	54.66 (52.58, 56.74)	Reference	
No	48.21 (46.67, 49.75)	6.45 (4.49, 8.40)	< 0.00
HH food insecurity	40.21 (40.07, 49.75)	0.15 (1.17, 0.10)	<0.00
Below severe	53.03 (50.91, 55.15)	Reference	
Severe	50.36 (48.63, 52.09)	2.66 (0.11, 5.22)	0.041
HH monthly income		2.00 (0.11, 5.22)	0.041
Yes	<u>51.31 (49.79, 52.84)</u>	Reference	
No		2.73 (0.17, 5.30)	0.027
	48.58 (45.86, 51.30)	2.75 (0.17, 5.50)	0.037
Involved with aquace		Deferrere	
Yes	51.22 (49.72, 52.72)	Reference	0.010
No	46.99 (43.30, 50.69)	4.23 (0.73, 7.73)	0.018
Hygienic latrine	52 (50 04 54 4)		
Yes	52.67 (50.94, 54.4)	Reference	0.00
No	48.36 (46.5, 50.23)	4.31 (2.34, 6.28)	< 0.00
-	lable in handwashing place		
Yes	52.64 (50.71, 54.58)	Reference	0.00
No	48.54 (46.74, 50.33)	4.10 (1.83, 6.38)	< 0.00
HH size			
Below seven	53.86 (51.98, 55.74)	Reference	
Seven or above	49.41 (47.70, 51.13)	4.44 (2.43, 6.46)	< 0.00
HH dietary diversity			
HDDS ≥ 7	53.92 (51.25, 56.60)	Reference	
HDDS <7	50.10 (48.70, 51.50)	3.83 (1.63, 6.02)	< 0.00
Child's age			
Age <18 months	56.72 (54.77, 58.67)	Reference	
Age >18 months	46.59 (44.82, 48.35)	10.1 (7.94, 12.32)	$<\!0.00$
Child's sex			
Female	53.25 (51.17, 55.34)	Reference	
Male	48.40 (46.78, 50.03)	4.85 (2.59, 7.10)	< 0.00
Childhood illness in t			
No	54.90 (52.04, 57.77)	Reference	
Yes	50.49 (48.94, 52.05)	4.41 (1.48, 7.34)	0.003
Access of mass media	,		
Yes	51.51 (49.88, 53.15)	Reference	
No	48.13 (45.39, 50.88)	3.38 (0.42, 6.34)	0.028

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Prediction of adjusted stunting [% (95% CI)]	Prediction of adjusted prevalence difference as effect size [*]	p-value
At least four ANC vi	sits by a skilled service provider		
Yes	51.64 (50.05, 53.23)	Reference	
No	47.99 (45.46, 50.53)	3.65 (1.08, 6.22)	0.007
Birth attendant/facil	ity		
Skilled	51.87 (50.23, 53.51)	Reference	
Unskilled	49.42 (47.48, 51.36)	2.45 (0.54, 4.35)	0.011
Mother involved in i	ncome-generating activities		
No	54.55 (50.90, 58.16)	Reference	
Yes	50.59 (49.08, 52.11)	3.93 (0.39, 7.48)	0.024
Maternal BMI			
BMI ≥18.5	54.04 (52.01, 56.07)	Reference	
BMI <18.5	49.01 (47.21, 50.81)	5.03 (2.66, 7.40)	< 0.001
	was primary completed		
Yes	54.66 (52.58, 56.74)	Reference	
No	48.21 (46.67, 49.75)	6.45 (4.49, 8.41)	< 0.001
HH food insecurity			
Below severe	53.01 (50.89, 55.12)	Reference	
Severe	50.37 (48.64, 52.10)	2.64 (0.09, 5.19)	0.042
HH monthly income			
Yes	51.32 (49.79, 52.84)	Reference	
No	48.56 (45.84, 51.28)	2.75 (0.19, 5.32)	0.035
Involved with aquac			
Yes	51.22 (49.73, 52.71)	Reference	
No	46.99 (43.28, 50.69)	4.24 (0.73, 7.74)	0.018
Hygienic latrine			
Yes	52.67 (50.94, 54.4)	Reference	
No	48.36 (46.5, 50.23)	4.31 (2.34, 6.28)	< 0.001
	lable in handwashing place		
Yes	52.64 (50.71, 54.58)	Reference	
No	48.53 (46.74, 50.33)	4.11 (1.83, 6.39)	< 0.001
HH size			
Below seven	53.86 (51.98, 55.73)	Reference	
Seven or above	49.41 (47.70, 51.13)	4.44 (2.43, 6.46)	< 0.001
HH dietary diversity			
HDDS ≥ 7	53.90 (51.23, 56.57)	Reference	
HDDS <7	50.10 (48.71, 51.50)	3.79 (1.60, 5.98)	< 0.001
Child's age			
Age <18 months	56.72 (54.76, 58.67)	Reference	
Age >18 months	46.59 (44.83, 48.35)	10.1 (7.93, 12.3)	< 0.001
Child's sex	(
Female	53.25 (51.17, 55.33)	Reference	
Male	48.41 (46.78, 50.03)	4.85 (2.60, 7.10)	< 0.001
Childhood illness in			.0.001
No	54.90 (52.04, 57.75)	Reference	
Yes	50.50 (48.94, 52.05)	4.40 (1.47, 7.33)	0.003
Access of mass media			0.000
Yes	51.51 (49.88, 53.15)	Reference	
No	48.13 (45.40, 50.86)	3.38 (0.42, 6.34)	0.028

*Differences in the predicted values of stunting between the two groups were calculated using the Stata "adjrr" package

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-7
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-7
measurement		of assessment (measurement). Describe comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	20
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8-9
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	8-9
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	11
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	11
		(b) Indicate number of participants with missing data for each variable of interest	
Outcome data	15*	Report numbers of outcome events or summary measures	11
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	11-
		estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	14

		(b) Report category boundaries when continuous variables were	
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	11
		risk for a meaningful time period	15
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	17
Limitations	19	Discuss limitations of the study, taking into account sources of potential	20
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	17
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
			18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	22
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

A predictive modelling approach to illustrate factors correlating with stunting among children aged 12-23 months: a cluster randomized pre-post study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067961.R4
Article Type:	Original research
Date Submitted by the Author:	30-Mar-2023
Complete List of Authors:	Haque, Md; ICDDRB Choudhury, Nuzhat; ICDDRB Wahid, Barbie Zaman; ICDDRB Ahmed, SM Tanvir ; Save the Children Bangladesh Farzana, Fahmida Dil; ICDDRB Ali, Mohammad; ICDDRB Naz, Farina; ICDDRB Siddiqua, Towfida Jahan ; Johns Hopkins University, Bangladesh Rahman, Shahed ; Save the Children Bangladesh Faruque, ASG; ICDDRB Ahmed, Tahmeed; ICDDRB
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Nutrition < TROPICAL MEDICINE, EPIDEMIOLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

1 2		
3 4	1	A predictive modelling approach to illustrate factors correlating with stunting among
5	2	children aged 12-23 months: a cluster randomized pre-post study
6 7	3	
8 9	4	Md Ahshanul Haque ^{1*} , Nuzhat Choudhury ¹ , Barbie Zaman Wahid ¹ , SM Tanvir Ahmed ² ,
10 11	5	Fahmida Dil Farzana ¹ , Mohammad Ali ¹ , Farina Naz ¹ , Towfida Jahan Siddiqua ¹ , Sheikh Shahed
12	6	Rahman ² , ASG Faruque ¹ , Tahmeed Ahmed ¹
13 14	7	
15 16	8	¹ Nutrition and Clinical Services Division, icddr,b, Dhaka, 1212, Bangladesh
17 18	9	² Child Poverty Sector, Save the Children Bangladesh, Dhaka, Bangladesh
19	10	
20 21	11	* Correspondence: Md Ahshanul Haque, Assistant Scientist, Nutrition and Clinical Services
22 23	12	Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh,
24 25	13	Email: <u>ahshanul.haque@icddrb.org</u>
26	14	
27 28	15	Word count: 4977
29 30	16	Word count: 4977
31 32	17	Abstract
33	18	Objective The aim of this study was to construct a predictive model in order to develop an
34 35	19	intervention study to reduce the prevalence of stunting among children aged 12-23 months.
36 37	20	
38	21	Design The study followed a cluster randomized pre-post design and measured the impacts on
39 40	22	various indicators of livelihood, health, and nutrition. The study was based on a large dataset
41 42	23	collected from two cross-sectional studies (baseline and endline).
43 44	24	
45	25	Setting The study was conducted in the north-eastern region of Bangladesh under the Sylhet
46 47	26	division, which is vulnerable to both natural disasters and poverty. The study specifically targeted
48 49	27	children between the ages of 12 and 23 months.
50 51	28	
52	29	Main outcome measures Childhood stunting, defined as a length-for-age z-score (LAZ)<-2, was
53 54	30	the outcome variable in this study. Logistic and probit regression models and a decision tree were
55 56	31	constructed to predict the factors associated with childhood stunting. The predictive performance
57 58		1
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		

of the models was evaluated by computing the area under the receiver operating characteristic
(ROC) curve analysis.
Results The baseline survey showed a prevalence of 52.7% stunting, while 50.0% were stunted at
endline. Several factors were found to be associated with childhood stunting. The model's
sensitivity was 61% and specificity was 56%, with a correctly classified rate of 59% and an area
under the ROC curve of 0.615.
Conclusion The study found that childhood stunting in the study area was correlated with several
factors, including maternal nutrition and education, food insecurity, and hygiene practices. Despite
efforts to address these factors, they remain largely unchanged. The study suggests that a more
effective approach may be developed in future to target adolescent mothers, as maternal nutrition
and education are age-dependent variables. Policymakers and programme planners need to
consider incorporating both nutrition-sensitive and specific activities and enhancing collaboration
in their efforts to improve the health of vulnerable rural populations.
Study registration: RIDIE-STUDY-ID-5d5678361809b
Keywords: Childhood stunting, Chronic malnutrition, Global public health, Logistic regression,
Probit regression, Decision tree
Strengths and limitations of this study
• The study used a combination of parametric and non-parametric predictive models to
estimate the effect size of the independent variables and identify significant correlates of
childhood stunting
• The study was designed to mitigate the potential impact of seasonal factors by conducting
the baseline and endline surveys at the same time of the year
• A binary indicator of stunting based on a single LAZ cut-off point (<-2) may not provide
a complete evaluation of the severity of malnutrition among children as it does not
consider micronutrient deficiencies
2
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

• Use of recall data from the previous 24 hours for dietary diversity, household food insecurity, domestic violence, and maternal healthcare may be subject to recall bias

Biological data has not been collected such as enteropathogen and environmental enteric • dysfunction, which could have been related to childhood stunting

Introduction

Childhood stunting, which is defined as length-for-age z-score (LAZ)<-2, is a major concern for public health and has been widely used as an indicator of chronic malnutrition in children.^{1 2} Although childhood stunting scenarios have much improved globally, the prevalence of childhood stunting is still very high in low-resource settings, including countries such as Bangladesh. According to the 2018 Global Nutrition Report, 150.8 million children (22.2%) under five years-of-age are stunted globally, compared to 198.4 million (32.6%) and 165 million children in 2000 and 2011, respectively.^{3 4} Between 2000 and 2018, Asian countries have experienced a decrease in the rate of stunting among children under five from 38.1% to 23.2%. However, South Asia still has the highest prevalence of stunting in the region, with a rate of 38.9% in 2018.³ In Bangladesh, about 5.5 million (36%) children under five were stunted in 2014,⁵ however by 2018, childhood stunting has reduced to about 31%.² As the World Health Organization (WHO) considers a childhood stunting rate of 15% to be an emergency situation, the current prevalence of childhood stunting in Bangladesh reflects an alarming situation of chronic undernutrition.⁶

Literature suggests that children are at a higher prevalence of stunting if their mothers do not receive adequate antenatal care, fail to rest sufficiently, do not consume additional food, and neglect to take iron-folic acid (IFA) tablets during pregnancy.⁷⁻⁹ Additionally, maternal and child health are correlated with mass media exposure, receiving a vitamin A capsule, having a skilled birth attendant, and maternal education.⁶⁸¹⁰⁻¹² Children in poor households in Bangladesh are more likely to experience stunted growth if their mothers are employed, as there are inadequate day-care centres available for the children, leading to insufficient breastfeeding.¹³ Moreover, evidence suggests that a number of characteristics at the household level, which relate to both children and mothers, can influence childhood stunting. The characteristics of the household head, household food insecurity and lower dietary diversity, household lower-income, household involvement in several earning activities, availability of sanitation facility at home, hand-washing status, family

BMJ Open

size, religion, and receive several types of allowance from government are most often reported to be associated with stunting in the literature.⁶⁸¹¹¹⁴⁻¹⁶

Based on child characteristics, several indicators are associated with stunting. This status is associated with two basic characteristics: a child's gender and age.⁸ Children are commonly affected by the co-occurrence of illness in low- and middle-income countries, which is one of the most common causes of stunting.¹⁷ Inadequate infant and young child feeding (IYCF) practices also reduce child growth.⁸¹⁵ However, these findings are mostly based on nationally representative cross-sectional and cohort studies, or studies conducted in urban settings.¹⁸ ¹⁹ Therefore, a knowledge gap exists on whether similar results would be obtained when nationwide data are compared with data for study populations from poor or very poor rural households in specific vulnerable regions.

Sylhet is one such vulnerable region of north-east Bangladesh, comprising diverse terrains such as plain land, hilly land, *Haor* (wetland), and flash flood-prone areas. This region is reported to perform poorly for all important maternal healthcare indicators,²⁰ despite the fact that Bangladesh has made substantial progress in improving the overall health of the population.²¹ Moreover, the socio-economic profile of the inhabitants in Sylhet region includes both very rich and extremely poor people. This scenario may worsen without the implementation of appropriate strategies in the near future. Sylhet region is also performing poorly compared to the national averages for a number of health and nutritional indicators. Critical indicators such as the infant mortality rate and unemployment status of women are high.¹⁹ In comparison to the overall situation of Bangladesh, where stunting among children under five has decreased, the Bangladesh Demographic and Health Survey (BDHS) 2014 indicates the prevalence of childhood stunting in Sylhet is astonishingly high, at 50%.¹⁹ This alarming figure provided the rationale for implementation of a comprehensive intervention programme in this region. A large-scale nutrition programme, Suchana: Ending the Cycle of Undernutrition in Bangladesh; a multi-sectoral nutrition programme, was undertaken with the aim to prevent chronic malnutrition in Sylhet.

In general, Suchana nutrition interventions can be divided into two types: nutrition-sensitive and nutrition-specific.²² The concept of nutrition-sensitive intervention refers to an intervention that

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

benefits the beneficiaries in terms of food and nutrition security, and also influences the underlying determinants of nutrition. This type of intervention is largely delivered through the agricultural sector (homestead vegetable and fruit production, pro-poor nutrition-sensitive aquaculture), improved technology (mono-sex tilapia and carp-tilapia polyculture, subsistence fishing, fish drying), demonstrations (village model farms and demo ponds, livestock, food security, promotion of climate-smart technologies), and supported income-generating activities (skill development in business management, engagement with the private sector and other sectors). As nutrition-specific interventions were delivered through nutrition-sensitive interventions, their coverage, effectiveness, and scale can be increased. It can meet the targets by lowering them and implementing nutrition-specific interventions. A nutrition-specific intervention addresses the immediate cause of malnutrition. Direct determinants of nutrition are the focus of this intervention. There is a strong focus on nutrition-specific interventions in the health sector. Whether implemented alone or jointly, nutrition-specific interventions improve health outcomes. Some examples of nutrition-specific interventions are: counselling for mothers at the household level, community-based nutrition education for spouses and in-laws, growth monitoring and promotion sessions integrated with Expanded Programme on Immunization in communities, Government of Bangladesh health facilities equipped with severe acute malnutrition service delivery, and support for National Nutrition Services service delivery through community clinics, Union Health and Family Welfare Centers, and Upazila health complexes.

- The primary objective of the *Suchana* programme was to reduce the prevalence of childhood stunting in the intervention areas. The secondary objectives were to assess the changes in *Suchana* beneficiaries' households, in terms of an increase and diversification of household income, food security status, optimal IYCF practices, haemoglobin status of children, the empowerment of women, and adolescents' nutritional knowledge and practices.²²

The Suchana programme substantially improved nutritional behaviour, maternal healthcare practices, women's empowerment, household income, and household food security in the intervention area compared to the control area.²³ Contrary to predictions, however, Suchana did not result in any significant reduction in the prevalence of childhood stunting. Therefore, although most other factors related to childhood stunting improved, this raises the question of why the

Page 7 of 40

1

BMJ Open

2	
_	
3	
4	
5	
6	
/	
8	
9	
2	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
~~	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
~ ~	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

prevalence of stunting did not reduce after the intervention. An important observation from the *Suchana* survey was that the proportion of households in this study population using hygienic latrines was quite low. This factor was associated with stunting in children,⁸ and did not significantly improve by endline in the intervention areas compared to the control areas.

160 In this study, we aimed to construct a predictive model to attempt to explain whether any 161 improvements in associated factors may promote a significant reduction in stunting among 162 children aged 12-23 months from poor and extremely poor households in the Sylhet region.

9 164) 165 **Methods**

163

159

² 166 **Study design and setting**

The Suchana programme was implemented in 157 Unions over 20 sub-districts in the Sylhet region 167 in the north-east of rural Bangladesh. The Suchana programme's protocol has been thoroughly 168 explained elsewhere.²² Union, the smallest local government and administrative entity in rural 169 170 Bangladesh, was considered as a cluster and divided into four phases at random. Phase-1 was designated as the intervention group, while Phase-4 was the control group, and the other phases 171 were treated as learning phases.²² For implementation purposes, vulnerable villages were selected 172 within Phase-1 and Phase-4 areas. The staff of the programme chose vulnerable villages in each 173 174 Union based on their vulnerability (e.g., frequent floods or submerging, little or no intervention from other development programmes, poverty or household living circumstances, remoteness and 175 176 accessibility issues, a high prevalence of superstitions and social taboos). After consultation with the local government representatives, elected officials, and local elites as well as field visits, this 177 178 selection method was decided upon. The impacts of the intervention on livelihood, health, and 179 nutrition were measured using a pre-post design. A large dataset was collected from two crosssectional surveys (baseline and endline) under this study. The baseline survey was conducted in 180 November 2016 and February 2017, followed by the endline survey in the same months three years 181 182 later among the same population and different participants (Supplementary Figure 1).

184 **Outcome variable**

183

The outcome variable in this study was childhood stunting, which was defined as a length-for-age z-score $(LAZ) < -2.^2$

188 Independent variables

Initially, a list of independent variables was finalized through results obtained from descriptive and bi-variate analyses, as well as a comprehensive literature review (Table 1). These included at least four antenatal care (ANC) visits by a skilled service provider, additional resting during pregnancy, additional food consumption during pregnancy, consumption of at least 100 IFA tablets during pregnancy, receiving vitamin A capsule after last delivery, birth attendant/facility, mother involved in income-generating activities, maternal BMI, maternal education, household food insecurity, household monthly income >15000 BDT, involved with aquaculture, hygienic latrine, water and soap available in handwashing place, household size, household dietary diversity, sex of household head, religion, received any grant/allowance/stipend from the government, access of mass media, child's age, child's sex, childhood illness in the last 15 days, minimum dietary diversity, early initiation of breastfeeding, and received colostrum. Household food insecurity access scale was measured using the Food and Nutrition Technical Assistance's Guideline, which categorizes household food insecurity into four levels: a) food secure, b) mildly food insecure, c) moderately food insecure, and d) severely food insecure.²⁴ In the analysis herein, this indicator was redefined as a binary indicator: severely food insecure or not severely food insecure.

36 204

205 Sample size

The sample size for this study was calculated with the STATA "*clustersampsi*" command module, considering the number of clusters in the surveys and considering the expected prevalence of childhood stunting in the control group (Supplemental Appendix 1). It was estimated that the expected prevalence of stunting was 47%, which was hypothesized to be reduced to 41% after three years of intervention. A sample size of 1520 per arm was calculated based on a 5% level of significance, 80% power, 40 clusters per arm, and an intra-cluster correlation coefficient (ICC) of 0.01. After rounding, the estimated sample size per arm was 1620, and the total sample size was 3200 at baseline, with an equal number of participants in the control and intervention groups. For evaluation purposes, the sample size at endline was doubled to ensure a stratified intervention

BMJ Open

component, resulting in a total sample size of 9600 mother-child pairs (baseline: 3200 and endline:
6400).²²

⁸₉ 218 **Sampling**

The baseline and endline surveys were conducted in a total of eight and twelve villages respectively, which were randomly selected from each Union using a list of vulnerable villages provided by Save the Children. The most vulnerable households were identified and verified using the inclusion criteria of the Suchana programme (Supplementary Table 1). These households were then given an identification number to prepare the sampling frame and required households were systematically selected for the surveys from the frame. The method of data collection is explained in detail in the Supplemental Appendix 2.

24 227 Statistical analysis25

General characteristics: Stata-14 software (StataCorp LP, College Station, TX, USA) and R 4.2.2 (*rpart*)²⁵ were used to analyse the data. Bar diagram was used for data visualization. Descriptive statistics, such as frequency and proportions for categorical variables and mean and standard deviations for quantitative variables, were used to summarize the data at baseline and endline. Cross-tabulation was used to present that outcome variable segregated by intervention and control group at baseline survey as well as the endline survey. The *difference in difference* method was used to estimate the contrast of an intervention by comparing the difference in the outcomes between an intervention group and a control group before and after the intervention.²⁶

Predictive model: Three statistical models were used as predictive models. Two parametric models, such as Logistic and Probit regression models, and Decision Tree as a non-parametric model. Logistic and Probit regression models were used as predictive models as well as classifier models. The models were also used to investigate which factors were significantly associated with childhood stunting, and estimate their effect size, in order to predict whether changes in behavioural practices might potentially help to achieve targeted reductions in stunting. Using those variables, a decision tree was applied, and the predictive performance was compared to other models.

 BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

For the parametric models, first, Chi-Square test was used to examine the bivariate associations between stunting and all possible explanatory variables. In the second step, variables with p-values <0.25 in the simple model were included in the multiple regression models.²⁷ In the final step, any independent variables thought to be likely predictors were added to the multiple regression model using the stepwise forward selection method. Some indicators, e.g., age, sex, and maternal nutritional status were added regardless of their *p*-value due to their scientific plausibility. The mathematical equation of logistic and probit regression models were given in the Supplemental Appendix 3. As a cluster variable, *Union* was used to adjust the standard errors. Furthermore, for the explanation of the regression model, a *p*-value < 0.05 was considered as statistically significant, and the confidence interval (CI) of 95% was also reviewed. From the fitted model, the adjusted effect size (adjusted prevalence difference) against all predictors was estimated using the "adjrr" package in Stata. The list of independent variables with the value labels used in the model is given in Table 1. riables

260 Table 1. List of all independent variabl
--

Indicators	Code	Stunting Status*	Selection in the model
At least four ANC visits by a skilled service provider			
At least four ANC visits by a skilled service provider	0		Selected
Less than four ANC visits by a skilled service provider	1	Higher prevalence ⁸	
Additional resting during pregnancy			
Took more rest	0		Not selected
Did not take more rest	1	Higher prevalence ⁸	
Additional food consumption during pregnancy			
Consumed more food	0		Not selected
Did not consumed more food	1	Higher prevalence ^{7 8}	
Consumption of at least 100 IFA tablets during pregnan	cy		
Consumed at least 100 IFA tablets	0		Not selected
Did not consumed at least 100 IFA tablets	1	Higher prevalence9	
Received vitamin A capsule after last delivery			
Received	0		Not selected
Did not receive	1	Higher prevalence ⁸	
Birth attendant/facility			
Skilled	0		Selected
Unskilled	1	Higher prevalence ¹⁰	
Mother involved in income-generating activities			
No	0		Selected
Yes	1	Higher prevalence ⁶ ¹³	
Maternal BMI			
BMI ≥18.5	0		Selected
BMI <18.5	1	Higher prevalence ^{6 11}	
Maternal education			Selected

At least one-year formal education	0		
No schooling	1	Higher prevalence ^{6 11}	
Access of mass media			
Access	0		Select
No access	1	Higher prevalence ¹²	
Household food insecurity			
Below severe	0		Select
Severe	1	Higher prevalence ⁸	
Household monthly income ≥15000 BDT			
≥15000 BDT	0		Selecte
<15000 BDT	1	Higher prevalence ¹¹	
Involved with aquaculture			
Involved	0		Selecte
Did not involved	1	Higher prevalence ¹⁴	
Hygienic latrine			
Hygienic latrine	0		Selecte
Unhygienic latrine	1	Higher prevalence ^{6 11 15}	
Water and soap available in handwashing place			
Available	0		Selecte
Unavailable	1	Higher prevalence ¹⁵	
Household size			
Below seven	0		Select
Seven or above	1	Higher prevalence ¹¹	
Household dietary diversity (HDDS)	-		
HDDS ≥7	0		Selecte
HDDS <7	1	Higher prevalence ⁸	Server
Sex of household head	-		
Female	0		Not sele
Male	1	Higher prevalence ⁸	
Household head education	1		
At least one-year formal education	0		Not sele
No schooling	1	Higher prevalence ⁶	
Religion	1		
Muslim	0		Not sele
Non-Muslim	1	Lower prevalence ⁶	
Received any grant/allowance/stipend from the governm	-	Lower prevalence	
Received any grant/anowance/supend nom the governm	0		Not sele
Did not receive	1	Higher prevalence ¹⁶	Not sele
Child's age	1		
Age ≤ 18 months	0		Select
		Lligher provolon as	Selecti
Age >18 months Child's sex	1	Higher prevalence ⁸	
Female	0		
		Higher provelances	
Male Childhood illness in the last 15 days	1	Higher prevalence ⁸	
Childhood illness in the last 15 days	0		0.1
No	0	TT' 1 1 17	Selecte
Yes	1	Higher prevalence ¹⁷	
Minimum dietary diversity	0		
Received	0	TT: 1 015	Not sele
Did not receive	1	Higher prevalence ^{8 15}	
Early initiation of breastfeeding			
	0		Not sele
Received Did not receive	0	Higher prevalence ⁸	1.00.0010

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Received colostrum				
Received			Not selected	
Did not receive	1	Higher prevalence ⁸		

¹Expected effects based on findings of the literature

Model evaluation: The predictive performance of the three statistical models was evaluated by computing model sensitivity and specificity, and calculating the area under the receiver operating curve (ROC) analysis. To ensure accurate results, the data was randomly split into a training set (75%) and a test set (25%) using a random-number seed 113843. The same training and test datasets were used for evaluating the performance of all algorithms to ensure consistency in the results. The sensitivity and specificity values, as well as the area under the ROC curve, were used to determine the overall accuracy of the algorithms in predicting childhood stunting.^{28 29}

271 Patient and public involvement

Patients and public were not actively involved in formulating the research question and or protocol
development, including the outcome measures. To expedite the field implementation, however,
local elites e.g. teachers, religious persons, and local government council members were informed
about the study.

2 276

277 Results

General characteristics: Out of 9600 cases, 9501 cases were found to be available. The refusal rate was around 1%. With respect to the outcome indicator, stunting in children aged 12-23 months, 52.7% of children were stunted at the baseline survey (intervention group: 52.6%; control group: 52.8%), whereas the proportion of children exhibiting stunting at endline was 50.0% (intervention: 49.9%; control: 50.1%; Figure 1). At both the baseline and endline surveys, there was no significant difference in proportion between intervention and control areas. The *difference-indifference* in outcomes over time was also insignificant.

48 285

Figure 2 describes several other indicators related to maternal and child health, including the status of consuming a minimum acceptable diet (intervention: 35.2%; control: 14.9%), minimum dietary diversity (intervention: 42.8%; control: 20.4%), maternal decision-making (intervention: 45.0%; control: 31.0%), at least four maternal ANC visits by a skilled service provider (intervention: 36.1%; control: 17.7%), minimum dietary diversity for women (intervention: 52.6%; control:

33.5%), a household dietary diversity score of at least seven (intervention: 88.9%; control: 78.3%),
and household food security status (intervention: 26.6%; control: 20.2%). Results from the endline
survey showed that these indicators were significantly improved in the intervention group
compared to the control group. However, the availability of hygienic latrines did not increase in
the intervention group (intervention: 44.0%; control: 44.0%). Table 2 shows the
households' socio-demographic characteristics, women's general characteristics, and children's
characteristics at baseline and endline.

299	Table 2. General	characteristics	s of the Suchana beneficiaries	
-----	------------------	-----------------	--------------------------------	--

Indicators, n (%)	Baseline N=3200	Endline <i>N</i> =6301	Total <i>N</i> =9501
At least four ANC visits by a skilled service prov	ider		
Yes	408 (12.8)	1530 (24.3)	1938 (20.4)
No	2792 (87.2)	4771 (75.7)	7563 (79.6)
Delivery at skilled birth attendant/facility			
Yes	1000 (31.2)	2769 (44.0)	3769 (39.7)
No	2200 (68.8)	3532 (56.0)	5732 (60.3)
Access of mass media			
Access	563 (17.59)	1169 (18.55)	1732 (18.23)
No access	2637 (82.41)	5132 (81.45)	7769 (81.77)
Mother involved in income-generating activities			
No	3102 (96.9)	5665 (89.9)	8767 (92.2)
Yes	98 (3.1)	639 (10.1)	737 (7.8)
Maternal BMI			
BMI ≥18.5	1859 (58.1)	4073 (64.6)	5932 (62.4)
BMI <18.5	1341 (41.9)	2231 (35.4)	3572 (37.6)
Mother completed primary education			
Yes	1721 (53.8)	3808 (60.4)	5529 (58.2)
No	1479 (46.2)	2496 (39.6)	3975 (41.8)
Maternal age			
Age <30 years	2145 (67.0)	3559 (56.5)	5704 (60.0)
Age \geq 30 years	1055 (33.0)	2745 (43.5)	3800 (40.0)
Type of delivery			
Normal	2879 (90.0)	5529 (87.8)	8408 (88.5)
Caesarean	321 (10.0)	772 (12.3)	1093 (11.5)
PNC			
No	2152 (67.3)	4128 (65.5)	6280 (66.1)
Yes	1048 (32.8)	2173 (34.5)	3221 (33.9)
Household severely food insecure			
Yes	912 (28.5)	1016 (16.1)	1928 (20.3)
No	2288 (71.5)	5285 (83.9)	7573 (79.7)
Household monthly income ≥15000 BDT			
Yes	424 (13.2)	1015 (16.1)	1439 (15.1)
No	2776 (86.8)	5289 (83.9)	8065 (84.9)

Household involved with aquaculture			
Yes	161 (5.0)	561 (8.9)	722 (7.6)
No	3039 (95.0)	5740 (91.1)	8779 (92.4
Hygienic latrine			
Yes	1121 (35.0)	2782 (44.1)	3903 (41.1
No	2079 (65.0)	3519 (55.9)	5598 (58.9
Water and soap available in handwashing place			
Yes	862 (26.9)	3170 (50.3)	4032 (42.4
No	2338 (73.1)	3131 (49.7)	5469 (57.6
Household savings			
No	1080 (33.8)	2876 (45.6)	3956 (41.6
Yes	2120 (66.2)	3425 (54.4)	5545 (58.4
Sex of household head			
Female	110 (3.4)	501 (8.0)	611 (6.4)
Male	3090 (96.6)	5799 (92.0)	8889 (93.6
Source of drinking water			
Tube well	2748 (85.9)	5713 (90.7)	8461 (89.0
Others	452 (14.1)	588 (9.3)	1040 (11.0
Household dietary diversity score	, ,	`, ,	,
HDDS ≥7	2182 (68.2)	5322 (84.5)	7504 (79.0
HDDS <7	1018 (31.8)	979 (15.5)	1997 (21.0
Household monthly income (Thousand BDT) ¹	6.7 (5, 10)	7.5 (5.1, 10.8)	7.1 (5, 10.4
Per capita income (Thousand) ¹	2.6 (1.8, 3.7)	2.9 (2, 4.1)	2.8 (2, 4)
Household size ¹	6.2±2.4	5.9±2.1	6±2.2
Child's age in months ²	17.9±3.5	17.3±3.6	17.5±3.6
Length-for-age z-score ²	-2.1±1.2	-2±1.1	-2±1.1
Weight-for-age z-score ²	-1.7±1.1	-1.5±1.0	-1.5 ± 1.0
Weight-for-length z-score ²	-0.9±1.0	-0.7±0.9	-0.7 ± 1.0
Child's age			
Age <18 months	1745 (54.5)	3710 (58.9)	5455 (57.4
Age ≥ 18 months	1455 (45.5)	2594 (41.1)	4049 (42.6
Child's sex	()	()	(
Female	1567 (49.0)	3044 (48.3)	4611 (48.5
Male	1633 (51.0)	3257 (51.7)	4890 (51.5
Childhood illness in the last 15 days			
Yes	2867 (89.6)	5763 (91.5)	8630 (90.8
No	333 (10.4)	538 (8.5)	871 (9.2)

Correlated factors: The study used two parametric predictive models to determine the correlates of childhood stunting. The results, presented in Table 3, showed the adjusted odds ratios (aOR) computed from multiple logistic regression and the adjusted coefficients computed from multiple probit regression. These results provide important insights into the factors that increase the odds of stunting in childhood, and can inform public health interventions aimed at reducing stunting and improving child health. The aORs provide a quantitative measure of the relationship between Page 15 of 40

BMJ Open

different factors and childhood stunting, adjusting for *Union* as cluster variable. Understanding the correlates of childhood stunting is critical for addressing this important public health issue and improving the health and well-being of children globally. The results of this study show that a number of maternal, household and children factors were correlated with an increased prevalence of stunting in children. Children of mothers who did not receive at least four ANC visits from a skilled service provider had 1.16 times higher odds of stunting (95% CI: 1.05, 1.30; p-value=0.005). Children of mothers who gave birth with an unskilled birth attendant or facility had 1.11 times higher odds of stunting (95% CI: 1.02, 1.20; p-value=0.012). The odds of stunting were 1.18 times higher in children whose mothers were involved in income-generating activities (95%) CI: 1.02, 1.37; p-value=0.030), 1.23 times higher in children of underweight mothers (95% CI: 1.12, 1.36; p-value<0.001), and 1.31 times higher in children of low-educated mothers (95% CI: 1.20, 1.42; p-value<0.001). Furthermore, the lack of exposure to mass media was also found to be associated with stunting, with odds of 1.15 (95% CI: 1.02, 1.30; p-value=0.025) times higher. Children from households with severe food insecurity, lower-income households, households not involved in aquaculture, and households with low dietary diversity, were more likely to be stunted, with odds increasing by 1.12 (95% CI: 1.00, 1.24; p-value=0.041), 1.12 (95% CI: 1.01, 1.25; p-value=0.037), 1.19 (95% CI: 1.03, 1.38; p-value=0.018), and 1.17 (95% CI: 1.07, 1.29; p-value=0.001) times, respectively. The results also showed that the odds of stunting increased with increasing household size (95% CI: 1.11, 1.31; p-value<0.001), the absence of a hygienic latrine (95% CI: 1.10, 1.30; p-value<0.001), the absence of water and soap in the handwashing place (95% CI: 1.08, 1.30; p-value<0.001), increasing child age (95% CI: 1.39, 1.67; p-value<0.001), and being male (95% CI: 1.11, 1.34; p-value<0.001). The odds of stunting were also 1.20 times higher in children with acute illness (95% CI: 1.06, 1.36; p-value=0.003). The logistic and probit regression models were employed to predict stunting in a sample of 9501 individuals. Both models were found to be significant, with log-likelihoods of -6387.94 and -6388.02, respectively, and significant Wald chi-square statistics (p-value < 0.001). Predictive ability of various indicators for the adjusted prevalence of stunting and adjusted prevalence difference (effect size) are given in Supplementary Table 2a and 2b. The Factors correlating with childhood stunting, as determined by using a decision tree as a non-parametric predictive model, are also presented in Figure 3. The decision tree result suggests that maternal education was the most important variable in predicting childhood stunting, as it was the main root node. The other variables, such as maternal nutrition,

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

339	hand washing indica	ators, and	hygienic	latrine,	were also	o important,	as they	were next root node

variables. This tree model can be used to predict the childhood stunting status with relative ease.

Table 3. Factors correlating with stunting in children aged 12-23 months, computed using

logistic and probit regression analyses

Indicators	Logistic		Probit	
	Adjusted OR (95% CI)	p-value	Adjusted Coef. (95% CI)	p-value
At least four ANC visits by a skil	led service provider			
Yes	Reference		Reference	
No	1.16 (1.05, 1.30)	0.005	0.09 (0.03, 0.16)	0.005
Birth attendant/facility				
Skilled	Reference		Reference	
Unskilled	1.11 (1.02, 1.20)	0.012	0.06 (0.01, 0.11)	0.012
Mother involved in income-gener				
No	Reference		Reference	
Yes	1.18 (1.02, 1.37)	0.030	0.10 (0.01, 0.19)	0.030
Maternal BMI				
BMI≥18.5				
BMI <18.5	1.23 (1.12, 1.36)	0.000	0.13 (0.07, 0.19)	0.000
Maternal education was primary				
Yes	Reference		Reference	
No	1.31 (1.20, 1.42)	0.000	0.17 (0.12, 0.22)	0.000
Access of mass media				
Yes	Reference	•	Reference	
No	1.15 (1.02, 1.30)	0.025	0.09 (0.01, 0.16)	0.025
Household food insecurity				
Below severe				
Severe	1.12 (1.00, 1.24)	0.041	0.07 (0.00, 0.13)	0.042
Household monthly income ≥ 150	00 BDT			
Yes	Reference		Reference	
No	1.12 (1.01, 1.25)	0.037	0.07 (0.00, 0.14)	0.035
Involved with aquaculture				
Yes	Reference		Reference	
No	1.19 (1.03, 1.38)	0.018	0.11 (0.02, 0.20)	0.018
Household size				
Below seven	Reference		Reference	
Seven or above	1.20 (1.11, 1.31)	0.000	0.12 (0.06, 0.17)	0.000
Hygienic latrine				
Yes	Reference		Reference	
No	1.20 (1.10, 1.30)	0.000	0.11 (0.06, 0.16)	0.000
Water and soap available in han	dwashing place			
Yes	Reference		Reference	
No	1.19 (1.08, 1.30)	0.000	0.11 (0.05, 0.16)	0.000
Household dietary diversity				
HDDS ≥7	Reference		Reference	
HDDS <7	1.17 (1.07, 1.29)	0.001	0.10 (0.04, 0.16)	0.001
Child's age				
Age ≤ 18 months	Reference		Reference	
Age >18 months	1.52 (1.39, 1.67)	0.000	0.26 (0.2, 0.32)	0.000

Child's sex				
Female	Reference		Reference	
Male	1.22 (1.11, 1.34)	0.000	0.13 (0.07, 0.18)	0.000
Childhood illness in the last 15 days	· · · · · · · · · · · · · · · · · · ·			
No	Reference		Reference	
Yes	1.20 (1.06, 1.36)	0.003	0.11 (0.04, 0.19)	0.003
Sample size and regression	n = 9501		n = 9501	
diagnostic values for logistic and	Log-likelihood = -6387	7.94	Log-likelihood =	-6388.02
probit regression analyses	Wald $chi2(17) = 427.79$	9	Wald $chi2(17) =$	441.18
	p-value<0.001		p-value<0.001	
	Pseudo $R^2 = 0.0298$		Pseudo $R^2 = 0.02$	298

Unions were adjusted as clusters. Baseline and endline were adjusted as time variables

Predictive performance: Table 4 describes the model validation based on sensitivity, specificity, and whether the model was correctly classified for the overall dataset, as well as the training and test datasets. The sensitivity and specificity of the model were around 60% and 55%, respectively for all models. The correctly classified rate was 59%, and the area under the ROC curve was around 61%. We found that these values were approximately equal among the three datasets (main, training, and test datasets); however, the predictive performance of the model was low.

Table 4. Predictive performance of the model for stunting based on classification, sensitivity,
and specificity in the full, training and test datasets with area under the receiver operating
characteristic curve analysis

	Logistic regression	Probit regression	Decision tree
full dataset			
Overall accuracy	58.46	58.38	56.51
Sensitivity	61.21	61.25	61.15
Specificity	55.61	55.41	51.70
Area under the curve	61.54	61.54	56.72
raining Dataset			
Overall accuracy	58.83	58.62	57.66
Sensitivity	61.59	61.70	63.93
Specificity	55.36	55.42	51.61
Area under the curve	61.37	61.37	58.44
'est Dataset			
Overall accuracy	58.11	58.19	56.67
Sensitivity	60.23	60.23	61.58
Specificity	55.90	56.07	51.94
Area under the curve	61.76	61.77	58.01

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

358 Discussion

In an effort to understand why the Suchana programme was not effective in reducing the prevalence of childhood stunting, this study analyzed data from both the baseline and endline surveys of the programme. The analysis aimed to identify the factors that were significantly correlated with stunting and to evaluate the model's predictive performance. After controlling for the Union as a cluster variable, the study found several indicators that were significantly related to stunting. These included the number of ANC visits by a skilled service provider, household dietary diversity, household food security, and household monthly income, all of which improved after the intervention. However, it was noted that the household food security status did not reach the target value of 50%, despite being an important factor associated with childhood stunting.^{8 30 31} On the other hand, other outcome indicators of the Suchana programme, such as the dietary diversity of children, maternal dietary diversity, and maternal empowerment, despite reaching their target values, were not found to be associated with stunting in this study.

The study found that while the Suchana programme showed improvement in certain programme indicators, it did not lead to a significant reduction in childhood stunting. Despite efforts to address key factors such as maternal nutrition and education, household food security, and hygiene practices, these factors remained largely unchanged. However, the study suggests that interventions aimed at adolescent mothers may be more effective in improving maternal nutrition and education, since these are age-dependent variables. Additionally, the results of the study were also impacted by natural disasters in 2017, including heavy rains and flooding in the Sylhet region, which resulted in widespread damage to agriculture, aquaculture, and homes in the study population.32 33

45 381

The study found a contradictory relationship between stunting and maternal involvement in income-generating activities, with a higher prevalence of stunting observed among children whose mothers were engaged in various earning activities. Although there was a slight increase in the proportion of mothers involved in income-generating activities after the intervention, the lack of childcare support for working mothers resulted in a marked rise in childhood stunting among low-income households. It is important to address this issue by providing adequate childcare support

Page 19 of 40

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

measures for working mothers from poor families to ensure that the child's essential needs are not impacted by the mother's employment status.¹³ Additionally, efforts should be made to increase awareness among working mothers regarding the importance of child health and nutrition. This can be achieved through targeted education and outreach programmes that provide information on proper child feeding practices, hygiene, and health-seeking behaviours.

The literature suggests that environmental enteropathy may contribute to poor growth among children in rural Bangladesh and may represent an important factor affecting the study population in the Suchana programme.³⁴ Although it was not specifically assessed in this study, indicators such as unsanitary latrines, unimproved floors, a lack of handwashing practices, and low education levels were available.¹⁸ ³⁵ Improving Water, Sanitation and Hygiene (WaSH) variables, particularly latrine facilities and handwashing practices, may help reduce the burden of stunting in young children. One of the components of the intervention was poultry, but our qualitative findings revealed that many households shared living spaces with poultry, ducks, or other animals, which could increase the risk of infections with *Campylobacter* species, a leading food-borne pathogen.¹⁸ ³⁶ Previous studies have shown a strong association between stunting and enteropathy among children who do not respond to nutritional interventions, and findings from rural Bangladesh have linked environmental conditions and stunting in children.³⁷⁻³⁹ While assessing environmental enteropathy was beyond the scope of the Suchana evaluation, collecting data on indicators of enteropathy in the intervention and control areas could help evaluate the impact of appropriate interventions in the future. The failure to achieve the desired outcome may have been due to several factors, including food insecurity and a lack of aquaculture involvement due to natural disasters, poor WaSH status, a lack of focus on maternal education and nutrition, and a lack of focus on the risk of enteropathogen burden.

Another important finding based on the post-estimation findings as well as the value of the area under the ROC curve was that the predictive performance of the model was low. Thus, we need to identify other indicators from similar research contexts that influence childhood stunting but were not included in our model. Future research in the field of childhood stunting should give priority to the development of more suitable methods for monitoring and identifying effective interventions. It is also essential to collect data that considers biological and environmental factors

related to childhood stunting, following the literature. By considering these diverse factors, we can improve the accuracy and predictive performance of statistical models. This, in turn, can help draw more reliable conclusions about the effectiveness of interventions aimed at reducing childhood stunting in similar contexts. Additionally, evaluating the model on an independent dataset or conducting external validation could help to determine the generalizability of the model to new data.

This study will aid programme managers in prioritizing their focus and designing effective interventions to reduce childhood stunting. Sustainable solutions should be based on the needs of the beneficiaries. Implementing short-term initiatives such as attendance at healthcare-led workshops and campaigns can increase ANC visits, skilled birth attendance, and handwashing practices. Establishing women's healthcare services that focus on maternal and child health and nutrition will also help reduce the incidence of stunting.²³ Improved access to media can help vulnerable communities benefit from government welfare programmes. Food security, income, sanitation, aquaculture, and illness are all time-sensitive factors. Increasing food production through self-production or purchasing can improve household food security and nutrition. However, household wealth and access to nearby markets can impact their ability to buy nutritious food. Climate change adaptation in agriculture is crucial to minimize current risks and prepare for future uncertainties. Using organic fertilizers instead of chemicals in agriculture has environmental benefits, reducing the need for pesticides and protecting human health and biodiversity. Aquaculture can provide a source of protein and improve nutrition, but establishing these facilities takes time. Improving sanitation requires improving socioeconomic status, which is also a timeintensive process. It takes time to improve stunting, as shown by national surveys such as the BDHS and the Food Security and National Surveillance Project (FSNSP).²⁴⁰ Improving maternal nutrition and education is crucial for promoting the optimal growth and development of children. Adequate food, good environmental conditions, and access to schooling facilities during adolescence are necessary for women to maintain their own health and to positively impact the health of their children. Emphasizing the education of female children can break the cycle of poverty and stunting, as it can lead to improved knowledge and decision-making skills related to nutrition and health.^{6 11} To reduce childhood stunting in developing countries, comprehensive interventions that include nutritional support, food security, maternal education, income-

Page 21 of 40

BMJ Open

generating activities for women with childcare support, and addressing domestic violence against women should be implemented. These interventions should be tailored to the specific needs and cultural context of the community in which they are implemented, and community participation and engagement are essential for their success. By addressing the underlying factors contributing to childhood stunting, we can make significant progress towards reducing its prevalence and improving the health and well-being of children in developing countries. Furthermore, continued monitoring and evaluation of these interventions is essential to ensure their effectiveness and to identify areas for improvement.

Recommendation: The Suchana model offers a holistic and integrated approach to addressing food and nutrition security, recognizing undernutrition as a complex problem caused by multiple factors. The endline survey of *Suchana* showed significant improvement in programme indicators. The multi-sector approach of *Suchana* is a meaningful solution to addressing undernutrition. However, policy makers should consider implementing additional nutrition-sensitive and specific activities, such as promoting climate-resilient agriculture and increasing water and sanitation coverage. It is also important to have a sustainable mechanism for improving food security and to promote awareness of seasonal diseases associated with livestock and poultry. To further improve the programme, indicators such as child sex, maternal education, and nutrition could be adjusted during the design stage. The Suchana programme is one of the largest global nutrition interventions, leading to positive changes in critical indicators, with long-term benefits expected for the health and livelihoods of the beneficiaries.

Strength and limitation: The study had several strengths, including a large sample size, randomization, and appropriate sampling techniques. A dedicated quality control team was involved in checking the data, and the use of precise anthropometry instruments and separate training for the measurement team helped ensure accurate data collection. The study was also designed to avoid seasonality by conducting the baseline and endline surveys at the same time of the year. However, the study results may have been impacted by a lack of selection effect in the implementation of the programme, as well as by the short time horizon of the study. The short duration of the study may not have been enough to see a significant impact on stunting. Additionally, changes in the study population between the baseline and endline surveys could also

have contributed to the lack of differences observed in the results. Another limitation of this study is that we did not collect food intake data but only recall data from the previous 24 hours. These data may be subject to recall bias; thus, caution is necessary when drawing conclusions, especially for indicators such as dietary diversity, household food insecurity, domestic violence, and maternal healthcare. Finally, using a binary indicator of stunting based on a single LAZ cut-off point, which was defined as <-2, may not provide a comprehensive assessment of the severity of malnutrition among children, as it fails to account for micronutrient deficiencies

Conclusion

Childhood stunting was heavily influenced by a number of factors, and majority of the factors were found in poor status in our study area. Despite the implementation of an intervention programme, the situation remained unchanged due to factors such as food insecurity, lack of involvement in aquaculture, poor access to WaSH facilities, and a lack of focus on maternal education and nutrition. The study did not include important indicators such as enteropathogen and environmental enteric dysfunction, which might have contributed to the failure to achieve the desired outcome. The results suggest that policy makers and programme planners should consider enhancing collaboration and coordination between nutrition-sensitive and specific activities to address nutritional deficiencies and family health programmes in vulnerable rural populations.

Acknowledgments: The study analyzed baseline survey data of Suchana; this intervention has been implemented by a consortium led by Save the Children, with support from the Foreign, Commonwealth and Development Office (FCDO) and European Union (EU). icddr,b acknowledges with gratitude the commitment of Save the Children, FCDO and EU to its research efforts. We also acknowledge with gratitude the commitment of the Government of the People's Republic of Bangladesh to icddr,b's research activities. We also acknowledge the following donors for providing unrestricted support to icddr,b's efforts and advancement of its strategic plan: Canada, Sweden and the United Kingdom. We gratefully acknowledge our core donors for their support and commitment to icddr,b's research efforts. We would like to acknowledge the invaluable contributions of Save the Children as lead agency, our technical partners Helen Keller International, World Fish, and International Development Enterprises, and the implementing

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Page 23 of 40

512	partners Friends In Village Development Bangladesh (FIVDB), Rangpur Dinajpur Rural Services
513	(RDRS), and the Center for Natural Resource Studies (CNRS) who played critical roles in
514	generating and refining the data-collection tools. We would also like to acknowledge Tasnia Alam,
515	Research Assistant and Md. Maniruzzaman, Assistant Professor, Khulna University, Khulna-9208,
516	Bangladesh as the internal reviewers, and Andrea Devlin of Science Editing Experts for editing
517	and linguistic revision of the manuscript.
518	
519	Funding: (i) This study was made possible by the committed contribution of Foreign,
520	Commonwealth and Development Office (Grant number: 204131-103), and (ii) icddr,b (N/A).
521	
522	Conflicts of Interest: The authors declare no conflict of interest.
523	
524	Author Contributions: TA and NC originated the idea for the study and led the protocol design.
525	MAH conceptualized the manuscript. SMTA, SSR, MAH, NC, FDF, and TA contributed to the
526	survey design. MAH performed statistical analysis and drafted the manuscript. NC and ASGF
527	supervised the work, and critically reviewed and provided feedback for revising the manuscript.
528	MAH, NC, MA, FDF, FN, BZW, TJS, ASGF, TA, and SSR contributed to the revision of the final
529	draft for submission. All authors are responsible for the final content of the manuscript.
530	
531	Ethics approval: This study was approved by the Research Review Committee and Ethical
532	Review Committee, the two obligatory components of the Institutional Review Board (IRB) of
533	icddr,b. Ethics Committee's approval ID# 00001822. Informed written consent was obtained from
534	study participants.
535	
536	Data availability statement: The data that support the findings of this study are available on
537	request from the corresponding author. The data are not publicly available due to privacy and
538	ethical restrictions.
539 540	
	22

1 2		
2 3 4	541	Reference
5 6	542 543	1. Bari A, Nazar M, Iftikhar A, et al. Comparison of Weight-for-Height Z-score and Mid-Upper
7 8 9 10 11 12	544	Arm Circumference to Diagnose Moderate and Severe Acute Malnutrition in children aged 6-59
	545	months. Pakistan journal of medical sciences 2019;35(2):337-41. doi: 10.12669/pjms.35.2.45
	546	[published Online First: 2019/05/16]
13 14	547	2. National Institute of Population Research and Training (NIPORT), ICF. Bangladesh
15 16 17 18	548	Demographic and Health Survey 2017-18: Key Indicators. NIPORT and ICF: Dhaka,
	549	Bangladesh and Rockville, Maryland, USA, 2019.
19		
20 21	550	3. Development Initiatives. 2018 Global Nutrition Report: Shining a light to spur action on
22 23	551	nutrition. Bristol, UK: Development Initiatives, 2018.
24		
25 26	552	4. United Nations Children's Fund (UNICEF), World Health Organization, International Bank
27 28 29 30 31 32 33 34 35 36	553	for Reconstruction and Development/The World Bank. Levels and trends in child malnutrition:
	554	Key Findings of the 2020 Edition of the Joint Child Malnutrition Estimates. Geneva: World
	555	Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO., 2020.
	556	5. USAID. Bangladesh: Nutrition Profile, 2018.
37 38	557	6. Kumar P, Rashmi R, Muhammad T, et al. Factors contributing to the reduction in childhood
39	558	stunting in Bangladesh: a pooled data analysis from the Bangladesh demographic and health
40 41	559	surveys of 2004 and 2017–18. BMC public health 2021;21(1):2101. doi: 10.1186/s12889-021-
42 43	560	12178-6
44 45 46	561	7. Yaya S, Wang R, Tang S, et al. Intake of supplementary food during pregnancy and lactation
47 48	562	and its association with child nutrition in Timor Leste. PeerJ 2018;6:e5935. doi:
49 50	563	10.7717/peerj.5935 [published Online First: 20181115]
51 52 53	564	8. Choudhury N, Raihan MJ, Sultana S, et al. Determinants of age-specific undernutrition in
54	565	children aged less than 2 years-the Bangladesh context. Maternal & child nutrition 2017;13(3)
55 56	566	[published Online First: 2016/10/19]
57 58		23
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
- 3 4	567	9. Nisar YB, Dibley MJ, Aguayo VM. Iron-Folic Acid Supplementation During Pregnancy
5	568	Reduces the Risk of Stunting in Children Less Than 2 Years of Age: A Retrospective Cohort
6 7	569	Study from Nepal. Nutrients 2016;8(2):67. doi: 10.3390/nu8020067 [published Online First:
8 9 10	570	20160127]
10 11 12	571	10. Li Z, Kim R, Vollmer S, et al. Factors Associated With Child Stunting, Wasting, and
13 14	572	Underweight in 35 Low- and Middle-Income Countries. JAMA Network Open
15 16	573	2020;3(4):e203386. doi: 10.1001/jamanetworkopen.2020.3386 [published Online First:
17 18 19	574	20200401]
20	575	11. Katoch OR. Determinants of malnutrition among children: A systematic review. Nutrition
21 22 23	576	2022;96:111565. doi: 10.1016/j.nut.2021.111565 [published Online First: 20211211]
24 25	577	12. Huo S, Wang K, Liu Z, et al. Influence of Maternal Exposure to Mass Media on Growth
26 27 28 29 30 31 32 33 34	578	Stunting Among Children Under Five: Mediation Analysis Through the Water, Sanitation, and
	579	Hygiene Program. JMIR Public Health and Surveillance 2022;8(4):e33394. doi: 10.2196/33394
	580	[published Online First: 20220406]
	581	13. Win H, Shafique S, Mizan S, et al. Association between mother's work status and child
35	582	stunting in urban slums: a cross-sectional assessment of 346 child-mother dyads in Dhaka,
36 37	583	Bangladesh (2020). Archives of Public Health 2022;80(1):192. doi: 10.1186/s13690-022-00948-
38 39 40	584	6
41 42	585	14. Iannotti LL, Blackmore I, Cohn R, et al. Aquatic Animal Foods for Nutrition Security and
43 44	586	Child Health. Food and Nutrition Bulletin 2022;43(2):127-47. doi: 10.1177/03795721211061924
45 46 47	587	[published Online First: 20211214]
48 49	588	15. Prendergast AJ, Chasekwa B, Evans C, et al. Independent and combined effects of improved
50	589	water, sanitation, and hygiene, and improved complementary feeding, on stunting and anaemia
51 52	590	among HIV-exposed children in rural Zimbabwe: a cluster-randomised controlled trial. The
53 54	591	Lancet Child & Adolescent Health 2019;3(2):77-90. doi: 10.1016/s2352-4642(18)30340-7
55 56	592	[published Online First: 20181218]
57 58		24
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5 6 7 8	593	16. Anwar F, Khomsan A, Sukandar D, et al. High participation in the Posyandu nutrition
	594	program improved children nutritional status. Nutrition Research and Practice 2010;4(3):208-
	595	14. doi: 10.4162/nrp.2010.4.3.208 [published Online First: 20100628]
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	596	17. Orunmoluyi OS, Gayawan E, Manda S. Spatial Co-Morbidity of Childhood Acute
	597	Respiratory Infection, Diarrhoea and Stunting in Nigeria. International journal of environmental
	598	research and public health 2022;19(3) doi: 10.3390/ijerph19031838 [published Online First:
	599	20220206]
	600	18. Haque MA, Platts-Mills JA, Mduma E, et al. Determinants of Campylobacter infection and
	601	association with growth and enteric inflammation in children under 2 years of age in low-
	602	resource settings. <i>Scientific reports</i> 2019;9(1):17124. [published Online First: 2019/11/22]
	603	19. National Institute of Population Research and Training - NIPORT/Bangladesh, Mitra and
26 27	604	Associates, ICF International. Bangladesh Demographic and Health Survey 2014. NIPORT,
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 56	605	Mitra and Associates, and ICF International: Dhaka, Bangladesh and Rockville, Maryland, USA,
	606	2016.
	607	20. Helen Keller International (HKI) and James P. Grant School of Public Health (JPGSPH).
	608	State of food security and nutrition in Bangladesh 2013. HKI and JPGSPH, 2014.
	609	21. Yaya S, Bishwajit G, Ekholuenetale M, et al. Awareness and utilization of community clinic
	610	services among women in rural areas in Bangladesh: A cross-sectional study. PLOS ONE
	611	2017;12(10):e0187303. doi: 10.1371/journal.pone.0187303
	612	22. Choudhury N, Raihan MJ, Ahmed SMT, et al. The evaluation of Suchana, a large-scale
	613	development programme to prevent chronic undernutrition in north-eastern Bangladesh. BMC
	614	public health 2020;20(1):744. [published Online First: 2020/05/24]
	615	23. Haque MA, Choudhury N, Ahmed SMT, et al. The large-scale community-based programme
	616	'Suchana' improved maternal healthcare practices in north-eastern Bangladesh: Findings from a
	617	cluster randomized pre-post study. Maternal & child nutrition 2022;18(1):e13258.
57 58 59		25
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	618	24. Coates J, Swindale A, Bilinsky P. Household Food Insecurity Access Scale (HFIAS) for
	619	measurement of food access: indicator guide (v. 3). Washington, D.C.: Food and Nutrition
	620	Technical Assistance Project, Academy for Educational Development 2007.
	621	25. Therneau T, Atkinson B, Ripley B. rpart: Recursive partitioning and regression trees 2022
	622	[Available from: https://cran.r-project.org/package=rpart2023.
	623	26. Villa JM. Simplifying the estimation of difference-in-differences treatment effects. The Stata
	624	Journal 2016:52-71.
	625	27. Bursac Z, Gauss CH, Williams DK, et al. Purposeful selection of variables in logistic
	626	regression. Source code for biology and medicine 2008;3:17.
	627	28. Tardini E, Zhang X, Canahuate G, et al. Optimal Treatment Selection in Sequential Systemic
26 27	628	and Locoregional Therapy of Oropharyngeal Squamous Carcinomas: Deep Q-Learning With a
28 29	629	Patient-Physician Digital Twin Dyad. Journal of Medical Internet Research 2022;24(4):e29455.
30 31 32	630	doi: 10.2196/29455 [published Online First: 20220420]
33	631	29. Adamker G, Holzer T, Karakis I, et al. Prediction of Shigellosis outcomes in Israel using
34 35	632	machine learning classifiers. Epidemiology and Infection 2018;146(11):1445-51. doi:
36 37 38	633	10.1017/s0950268818001498 [published Online First: 20180608]
39 40 41 42	634	30. Weatherspoon DD, Miller S, Ngabitsinze JC, et al. Stunting, food security, markets and food
	635	policy in Rwanda. BMC public health 2019;19(1):882. doi: 10.1186/s12889-019-7208-0
43 44 45	636	[published Online First: 2019/07/06]
46 47	637	31. Agho KE, Mukabutera C, Mukazi M, et al. Moderate and severe household food insecurity
48 49	638	predicts stunting and severe stunting among Rwanda children aged 6-59 months residing in
50 51	639	Gicumbi district. Maternal & child nutrition 2019;15(3):e12767.
52 53 54 55 56	640	32. Chowdhury D. Flood situation worsens in Sylhet. <i>The Daily Star</i> 2017.
57 58		26
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

33. ACAPS. ACAPS Briefing Note: Bangladesh - Floods in Moulvibazar and Sylhet (20 June 2018): reliefweb; 2018 [Available from: https://reliefweb.int/report/bangladesh/acaps-briefing-note-bangladesh-floods-moulvibazar-and-sylhet-20-june-20182023. 34. Lin A, Arnold BF, Afreen S, et al. Household environmental conditions are associated with enteropathy and impaired growth in rural Bangladesh. American Journal of Tropical Medicine and Hygiene 2013;89(1):130-37. doi: 10.4269/ajtmh.12-0629 [published Online First: 20130429] 35. Amour C, Gratz J, Mduma E, et al. Epidemiology and Impact of Campylobacter Infection in Children in 8 Low-Resource Settings: Results From the MAL-ED Study. Clinical Infectious Diseases 2016;63(9):1171-79. doi: 10.1093/cid/ciw542 [published Online First: 08/07] 36. Smith S, Meade J, Gibbons J, et al. The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter. Infect Ecol Epidemiol 2016;6:31685-85. doi: 10.3402/iee.v6.31685 37. Chen RY, Kung VL, Das S, et al. Duodenal Microbiota in Stunted Undernourished Children with Enteropathy. The New England Journal of Medicine 2020;383(4):321-33. doi: 10.1056/NEJMoa1916004 38. George CM, Oldja L, Biswas SK, et al. Fecal Markers of Environmental Enteropathy are Associated with Animal Exposure and Caregiver Hygiene in Bangladesh. American Journal of Tropical Medicine and Hygiene 2015;93(2):269-75. doi: 10.4269/ajtmh.14-0694 [published Online First: 20150608] 39. Perin J, Burrowes V, Almeida M, et al. A Retrospective Case-Control Study of the Relationship between the Gut Microbiota, Enteropathy, and Child Growth. American Journal of Tropical Medicine and Hygiene 2020;103(1):520-27. doi: 10.4269/ajtmh.19-0761 [published Online First: 20200514] 40. Helen Keller International (HKI) and James P. Grant School of Public Health (JPGSPH). State of food security and nutrition in Bangladesh 2014. HKI and JPGSPH: Dhaka, BD, 2016.

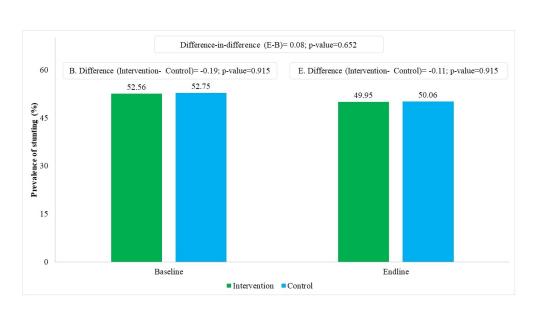
1 2 3 666 4 667 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 56		
58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	28

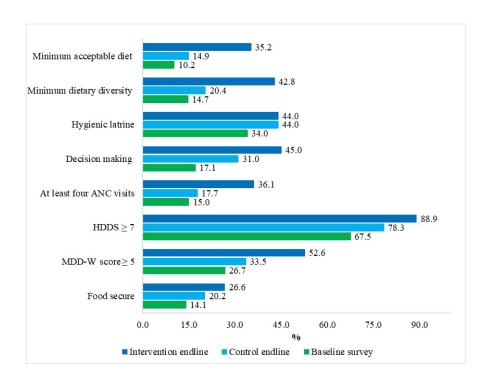
Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline compared to endline. The p-value of the *difference-in-difference* was estimated using interaction analysis in the multiple logistic regression model.

Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS:

household dietary diversity score, MDD-w: minimum dietary diversity for women.

Figure 3. Factors correlating with stunting in children aged 12-23 months, computed using decision tree analysis. (X₁: Less than four ANC visits by a skilled service provider, X₂: Unskilled birth attendant/facility, X₃: Mother involved in income-generating activities, X₄: Maternal BMI <18.5, X_5 : Maternal education: no schooling, X_6 : Household severe food insecurity, X_7 : Monthly income <15000 BDT, X₈: Did not involve with aquaculture, X₉: Having unhygienic latrine, X₁₀: Soap was unavailable in hand washing place, X_{11} : HH size>7, X_{12} : HH dietary diversity score <7, X_{13} : Child's age>18, X_{14} : Child's sex was male, X_{15} : Childhood illness in the last 15 days, and X_{16} : Lacked access to mass media)




Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline compared to endline. The p-value of the difference-in-difference was estimated using interaction analysis in the multiple logistic regression model.

108x60mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Page 32 of 40

BMJ Open

Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS: household dietary diversity score, MDD-w: minimum dietary diversity for women.

254x190mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

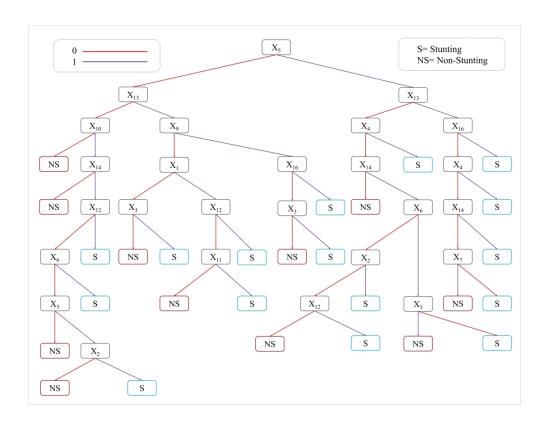
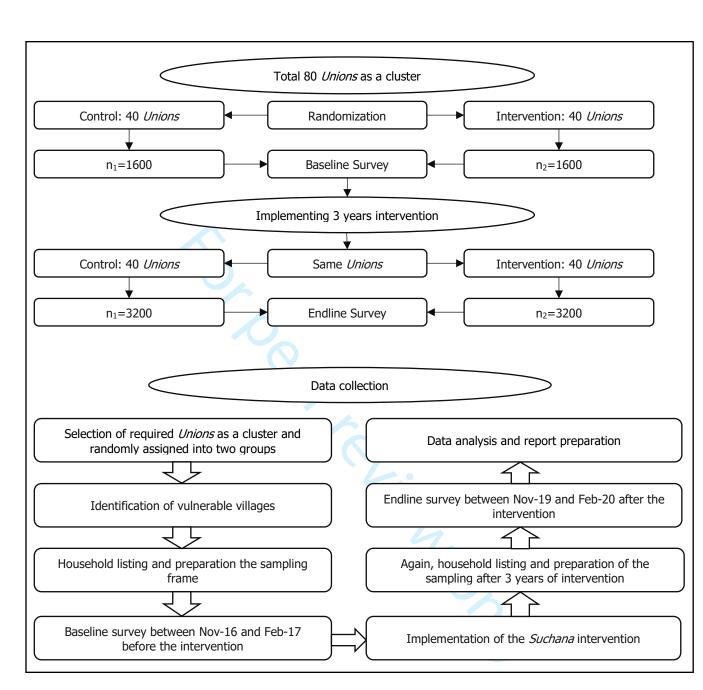


Figure 3. Factors correlating with stunting in children aged 12-23 months, computed using decision tree analysis. (X1: Less than four ANC visits by a skilled service provider, X2: Unskilled birth attendant/facility, X3: Mother involved in income-generating activities, X4: Maternal BMI <18.5, X5: Maternal education: no schooling, X6: Household severe food insecurity, X7: Monthly income <15000 BDT, X8: Did not involve with aquaculture, X9: Having unhygienic latrine, X10: Soap was unavailable in hand washing place, X11: HH size>7, X12: HH dietary diversity score <7, X13: Child's age>18, X14: Child's sex was male, X15: Childhood illness in the last 15 days, and X16: Lacked access to mass media)

325x254mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright


Appendix 1. Sample size calculation

clustersampsi, binomial samplesize p1(0.47) p2(0.41) k40) rho0.01)alpha(0.05) beta(0.8)

Output of the STATA command for sample size calculation

Sample size calculation to determine number of observations required per cluster, for a twosample comparison of proportions (using normal approximations) without continuity correction.

```
For the user specified parameters:
     p1: 0.4700
     p2: 0.4100
     significance level: 0.05
     power: 0.80
              number of clusters available: 40
     intra cluster correlation (ICC): 0.0100
clustersampsi estimated parameters:
     Firstly, assuming individual randomisation: sample size per arm: 1071
     Then, allowing for cluster randomisation: average cluster size required: 38
     sample size per arm: 1520
```


Supplementary Figure 1. The evaluation diagram of Suchana programme

Appendix 2. Data collection

The Suchana data collection software contained built-in validation rules. As the data were entered at the interviewer level and the records were uploaded to a server at the icddr,b using the built-in internet connectivity of the devices, maximum validation rules were set in the data system to prevent errors during data entry, which reduced the data entry burden. This allowed the data analysis team to review the

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

consistency of the data every day. Data were synchronized to the central server "Web Service" developed in Asp.Net based on the C# (C Sharp) code. Activities such as editing (after receiving any feedback from field staff members), updating, range checks, duplication checks, consistency checks, frequency checks and cross tabulation were regularly performed during the data entry period. In case of any unusual observations, the issues were discussed and resolved.

Appendix 3. Equation of logistic and probit regression

 $logit(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{12} X_{12} + \beta_{13} X_{13} + \beta_{14} X_{14} + \beta_{15} X_{15} + \beta_{16} X_{16}$

 $probit(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{12} X_{12} + \beta_{13} X_{13} + \beta_{14} X_{14} + \beta_{15} X_{15} + \beta_{16} X_{16} +$

Where,

- x1: Less than four ANC visits by a skilled service provider
- x2: Unskilled birth attendant/facility
- x3: Mother involved in income-generating activities
- x4: Maternal BMI <18.5
- x5: Maternal education: no schooling
- x6: HH severe food insecurity
- x7: Monthly income <15000 BDT
- x8: Did not involve with aquaculture

and

logit(y) = log[y/(1-y)]

- x9: Having unhygienic latrine x10: Soap was unavailable in hand washing place x11: HH size≥7 x12: HH dietary diversity score <7
- x13: Child's age>18
- x14: Child's sex was male
- x15: Childhood illness in the last 15 days
- x16: Lacked access to mass media

	Vulnerable household verification questions	Inclusion criteria
Step	1	
•	Households currently participating/member of any livelihood, food	If "NO" go ahead for nex
	security or asset transfer program	questions
Step	2	
•	Ability to afford three (3) full meals per day for all family members	
	round the year	
•	Households monthly income BDT 7,500 or more	If
•	Household productive asset value worth BDT 15,000 or more	If anyone is "NO" go
	(excluding land, pond and homestead)	ahead for next questions
•	Ownership of homestead land 10 decimals or more	
•	Ownership of cultivable land 50 decimals or more (excluding	
	homestead or pond)	
Step	o 3	
•	Households have married women with in child bearing age (15 to	16
	45 years)	If anyone is 'Yes' go
•	Households have pregnant women (including abandoned or	ahead for registration of
	widowed woman)	enrolling as vulnerable Household
•	Households have 0-23 months old children	nousenoia
•	Households have adolescent girls (15-19 years)	
Sam	pling frame was prepared for collecting data from mother-child pair if	the households had 0-23
mon	ths old children	

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	Prediction of adjusted stunting [% (95% CI)]	Prediction of adjusted prevalence difference as effect size [*]	p-value
At least four ANC vi	isits by a skilled service provider		
Yes	51.64 (50.05, 53.23)	Reference	
No	47.99 (45.46, 50.53)	3.65 (1.07, 6.22)	0.006
Birth attendant/facil			
Skilled	51.87 (50.23, 53.51)	Reference	
Unskilled	49.42 (47.48, 51.36)	2.45 (0.55, 4.35)	0.012
	income-generating activities	2.16 (0.55, 1.55)	0.012
No	54.55 (50.90, 58.19)	Reference	
Yes	50.59 (49.08, 52.11)	3.95 (0.40, 7.51)	0.029
Maternal BMI	50.55 (49.00, 52.11)	5.55 (0.40, 7.51)	0.027
BMI ≥18.5	54.04 (52.01, 56.07)	Reference	
BMI ≤18.5 BMI <18.5	49.01 (47.21, 50.81)	5.03 (2.66, 7.41)	< 0.001
	was primary completed	5.05 (2.00, 7.41)	<0.001
	54.66 (52.58, 56.74)	Reference	
Yes No			-0.001
	48.21 (46.67, 49.75)	6.45 (4.49, 8.40)	< 0.001
HH food insecurity	52 02 (50 01 55 15)	D -£	
Below severe	53.03 (50.91, 55.15)	Reference	0.041
Severe	50.36 (48.63, 52.09)	2.66 (0.11, 5.22)	0.041
HH monthly income			
Yes	51.31 (49.79, 52.84)	Reference	
No	48.58 (45.86, 51.30)	2.73 (0.17, 5.30)	0.037
Involved with aquac			
Yes	51.22 (49.72, 52.72)	Reference	
No	46.99 (43.30, 50.69)	4.23 (0.73, 7.73)	0.018
Hygienic latrine			
Yes	52.67 (50.94, 54.4)	Reference	
No	48.36 (46.5, 50.23)	4.31 (2.34, 6.28)	< 0.001
Water and soap avai	ilable in handwashing place		
Yes	52.64 (50.71, 54.58)	Reference	
No	48.54 (46.74, 50.33)	4.10 (1.83, 6.38)	< 0.001
HH size			
Below seven	53.86 (51.98, 55.74)	Reference	
Seven or above	49.41 (47.70, 51.13)	4.44 (2.43, 6.46)	< 0.001
HH dietary diversity	ý l		
HDDS <u>></u> 7	53.92 (51.25, 56.60)	Reference	
HDDS <7	50.10 (48.70, 51.50)	3.83 (1.63, 6.02)	< 0.001
Child's age			
Age ≤ 18 months	56.72 (54.77, 58.67)	Reference	
Age >18 months	46.59 (44.82, 48.35)	10.1 (7.94, 12.32)	< 0.001
Child's sex			
Female	53.25 (51.17, 55.34)	Reference	
Male	48.40 (46.78, 50.03)	4.85 (2.59, 7.10)	< 0.001
Childhood illness in		(2.0), (.0.001
No	54.90 (52.04, 57.77)	Reference	
Yes	50.49 (48.94, 52.05)	4.41 (1.48, 7.34)	0.003
Access of mass medi		T.TI (1.70, /.J7)	0.005
Yes		Reference	
	51.51 (49.88, 53.15)		0.020
No	48.13 (45.39, 50.88) 1 values of stunting between the two groups were a	3.38 (0.42, 6.34)	0.028

*Differences in the predicted values of stunting between the two groups were calculated using the Stata "adjrr" package

	Prediction of adjusted stunting	Prediction of adjusted prevalence	p-valu
	[% (95% CI)]	difference as effect size*	-
	sits by a skilled service provider		
Yes	51.64 (50.05, 53.23)	Reference	
No	47.99 (45.46, 50.53)	3.65 (1.08, 6.22)	0.007
Birth attendant/facil			
Skilled	51.87 (50.23, 53.51)	Reference	
Unskilled	49.42 (47.48, 51.36)	2.45 (0.54, 4.35)	0.011
Mother involved in i	ncome-generating activities		
No	54.55 (50.90, 58.16)	Reference	
Yes	50.59 (49.08, 52.11)	3.93 (0.39, 7.48)	0.024
Maternal BMI			
BMI≥18.5	54.04 (52.01, 56.07)	Reference	
BMI <18.5	49.01 (47.21, 50.81)	5.03 (2.66, 7.40)	< 0.00
Maternal education	was primary completed		
Yes	54.66 (52.58, 56.74)	Reference	
No	48.21 (46.67, 49.75)	6.45 (4.49, 8.41)	< 0.00
HH food insecurity			
Below severe	53.01 (50.89, 55.12)	Reference	
Severe	50.37 (48.64, 52.10)	2.64 (0.09, 5.19)	0.042
HH monthly income		2.04 (0.0), 5.1))	0.042
Yes	51.32 (49.79, 52.84)	Reference	
No	48.56 (45.84, 51.28)	2.75 (0.19, 5.32)	0.035
		2.75 (0.19, 5.52)	0.055
Involved with aquac		D. C.	
Yes	51.22 (49.73, 52.71)	Reference	0.010
No	46.99 (43.28, 50.69)	4.24 (0.73, 7.74)	0.018
Hygienic latrine			
Yes	52.67 (50.94, 54.4)	Reference	
No	48.36 (46.5, 50.23)	4.31 (2.34, 6.28)	< 0.00
Water and soap avai	lable in handwashing place		
Yes	52.64 (50.71, 54.58)	Reference	
No	48.53 (46.74, 50.33)	4.11 (1.83, 6.39)	$<\!0.00$
HH size			
Below seven	53.86 (51.98, 55.73)	Reference	
Seven or above	49.41 (47.70, 51.13)	4.44 (2.43, 6.46)	< 0.00
HH dietary diversity			
HDDS ≥ 7	53.90 (51.23, 56.57)	Reference	
HDDS <7	50.10 (48.71, 51.50)	3.79 (1.60, 5.98)	< 0.00
Child's age	20110 (10.71, 21.20)	5.17 (1.00, 5.90)	10.00
Age ≤ 18 months	56.72 (54.76, 58.67)	Reference	
Age >18 months	46.59 (44.83, 48.35)	10.1 (7.93, 12.3)	< 0.00
Child's sex	TU.J/ (TU.J), TU.JJ)	10.1 (7.75, 12.5)	~0.00
Female	53 25 (51 17 55 22)	Reference	
	53.25 (51.17, 55.33)		<u>_0 00</u>
Male Childhood illnoog in a	48.41 (46.78, 50.03)	4.85 (2.60, 7.10)	< 0.00
Childhood illness in	•	D. C	
No	54.90 (52.04, 57.75)	Reference	0.000
Yes	50.50 (48.94, 52.05)	4.40 (1.47, 7.33)	0.003
Access of mass media			
Yes	51.51 (49.88, 53.15)	Reference	
No	48.13 (45.40, 50.86)	3.38 (0.42, 6.34)	0.028

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
50
57
58
59
60

STROBE Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>	

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or	1-2
		the abstract	1.2
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2
		was done and what was found	
Introduction	2		2.6
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	6
-		of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6-7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-7
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	20
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for	8-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, describe analytical methods taking account of sampling	8-9
		strategy	
		(<u>e</u>) Describe any sensitivity analyses	
Results			1
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	11
i ui tioipuilto	15	potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	11
Descriptive dutu	11	social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	1
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	11
Main results	15	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted	11-
muni results	10	estimates and their precision (eg, 95% confidence interval). Make clear	14
		commutes and then precision (eg, 7570 connuctive interval). Wake cital	1 1 4

		(b) Report category boundaries when continuous variables were	
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	1
		risk for a meaningful time period	1
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	1
Limitations	19	Discuss limitations of the study, taking into account sources of potential	2
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	1
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	1
			1
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	2
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

A predictive modelling approach to illustrate factors correlating with stunting among children aged 12-23 months: a cluster randomized pre-post study

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-067961.R5
Article Type:	Original research
Date Submitted by the Author:	30-Mar-2023
Complete List of Authors:	Haque, Md; ICDDRB Choudhury, Nuzhat; ICDDRB Wahid, Barbie Zaman; ICDDRB Ahmed, SM Tanvir ; Save the Children Bangladesh Farzana, Fahmida Dil; ICDDRB Ali, Mohammad; ICDDRB Naz, Farina; ICDDRB Siddiqua, Towfida Jahan ; Johns Hopkins University, Bangladesh Rahman, Shahed ; Save the Children Bangladesh Faruque, ASG; ICDDRB Ahmed, Tahmeed; ICDDRB
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	Nutrition < TROPICAL MEDICINE, EPIDEMIOLOGY, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

1 2		
3 4	1	A predictive modelling approach to illustrate factors correlating with stunting among
5	2	children aged 12-23 months: a cluster randomized pre-post study
6 7	3	
8 9	4	Md Ahshanul Haque ^{1*} , Nuzhat Choudhury ¹ , Barbie Zaman Wahid ¹ , SM Tanvir Ahmed ² ,
10 11	5	Fahmida Dil Farzana ¹ , Mohammad Ali ¹ , Farina Naz ¹ , Towfida Jahan Siddiqua ¹ , Sheikh Shahed
12	6	Rahman ² , ASG Faruque ¹ , Tahmeed Ahmed ¹
13 14	7	
15 16	8	¹ Nutrition and Clinical Services Division, icddr,b, Dhaka, 1212, Bangladesh
17 18	9	² Child Poverty Sector, Save the Children Bangladesh, Dhaka, Bangladesh
19	10	
20 21	11	* Correspondence: Md Ahshanul Haque, Assistant Scientist, Nutrition and Clinical Services
22 23	12	Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh,
24 25	13	Email: <u>ahshanul.haque@icddrb.org</u>
26	14	
27 28	15	Word count: 4977
29 30	16	Word count: 4977
31 32	17	Abstract
33	18	Objective The aim of this study was to construct a predictive model in order to develop an
34 35	19	intervention study to reduce the prevalence of stunting among children aged 12-23 months.
36 37	20	
38	21	Design The study followed a cluster randomized pre-post design and measured the impacts on
39 40	22	various indicators of livelihood, health, and nutrition. The study was based on a large dataset
41 42	23	collected from two cross-sectional studies (baseline and endline).
43 44	24	
45	25	Setting The study was conducted in the north-eastern region of Bangladesh under the Sylhet
46 47	26	division, which is vulnerable to both natural disasters and poverty. The study specifically targeted
48 49	27	children between the ages of 12 and 23 months.
50 51	28	
52	29	Main outcome measures Childhood stunting, defined as a length-for-age z-score (LAZ)<-2, was
53 54	30	the outcome variable in this study. Logistic and probit regression models and a decision tree were
55 56	31	constructed to predict the factors associated with childhood stunting. The predictive performance
57 58		1
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		

BMJ Open

of the models was evaluated by computing the area under the receiver operating characteristic
(ROC) curve analysis.
Results The baseline survey showed a prevalence of 52.7% stunting, while 50.0% were stunted at
endline. Several factors were found to be associated with childhood stunting. The model's
sensitivity was 61% and specificity was 56%, with a correctly classified rate of 59% and an area
under the ROC curve of 0.615.
Conclusion The study found that childhood stunting in the study area was correlated with several
factors, including maternal nutrition and education, food insecurity, and hygiene practices. Despite
efforts to address these factors, they remain largely unchanged. The study suggests that a more
effective approach may be developed in future to target adolescent mothers, as maternal nutrition
and education are age-dependent variables. Policymakers and programme planners need to
consider incorporating both nutrition-sensitive and specific activities and enhancing collaboration
in their efforts to improve the health of vulnerable rural populations.
Study registration: RIDIE-STUDY-ID-5d5678361809b
Keywords: Childhood stunting, Chronic malnutrition, Global public health, Logistic regression,
Probit regression, Decision tree
Strengths and limitations of this study
• The study used a combination of parametric and non-parametric predictive models to
estimate the effect size of the independent variables and identify significant correlates of
childhood stunting
• The study was designed to mitigate the potential impact of seasonal factors by conducting
the baseline and endline surveys at the same time of the year
• A binary indicator of stunting based on a single LAZ cut-off point (<-2) may not provide
a complete evaluation of the severity of malnutrition among children as it does not
consider micronutrient deficiencies
2
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

• Use of recall data from the previous 24 hours for dietary diversity, household food insecurity, domestic violence, and maternal healthcare may be subject to recall bias

Biological data has not been collected such as enteropathogen and environmental enteric • dysfunction, which could have been related to childhood stunting

Introduction

Childhood stunting, which is defined as length-for-age z-score (LAZ)<-2, is a major concern for public health and has been widely used as an indicator of chronic malnutrition in children.^{1 2} Although childhood stunting scenarios have much improved globally, the prevalence of childhood stunting is still very high in low-resource settings, including countries such as Bangladesh. According to the 2018 Global Nutrition Report, 150.8 million children (22.2%) under five years-of-age are stunted globally, compared to 198.4 million (32.6%) and 165 million children in 2000 and 2011, respectively.^{3 4} Between 2000 and 2018, Asian countries have experienced a decrease in the rate of stunting among children under five from 38.1% to 23.2%. However, South Asia still has the highest prevalence of stunting in the region, with a rate of 38.9% in 2018.³ In Bangladesh, about 5.5 million (36%) children under five were stunted in 2014,⁵ however by 2018, childhood stunting has reduced to about 31%.² As the World Health Organization (WHO) considers a childhood stunting rate of 15% to be an emergency situation, the current prevalence of childhood stunting in Bangladesh reflects an alarming situation of chronic undernutrition.⁶

Literature suggests that children are at a higher prevalence of stunting if their mothers do not receive adequate antenatal care, fail to rest sufficiently, do not consume additional food, and neglect to take iron-folic acid (IFA) tablets during pregnancy.⁷⁻⁹ Additionally, maternal and child health are correlated with mass media exposure, receiving a vitamin A capsule, having a skilled birth attendant, and maternal education.⁶⁸¹⁰⁻¹² Children in poor households in Bangladesh are more likely to experience stunted growth if their mothers are employed, as there are inadequate day-care centres available for the children, leading to insufficient breastfeeding.¹³ Moreover, evidence suggests that a number of characteristics at the household level, which relate to both children and mothers, can influence childhood stunting. The characteristics of the household head, household food insecurity and lower dietary diversity, household lower-income, household involvement in several earning activities, availability of sanitation facility at home, hand-washing status, family

BMJ Open

size, religion, and receive several types of allowance from government are most often reported to be associated with stunting in the literature.⁶⁸¹¹¹⁴⁻¹⁶

Based on child characteristics, several indicators are associated with stunting. This status is associated with two basic characteristics: a child's gender and age.⁸ Children are commonly affected by the co-occurrence of illness in low- and middle-income countries, which is one of the most common causes of stunting.¹⁷ Inadequate infant and young child feeding (IYCF) practices also reduce child growth.⁸¹⁵ However, these findings are mostly based on nationally representative cross-sectional and cohort studies, or studies conducted in urban settings.¹⁸ ¹⁹ Therefore, a knowledge gap exists on whether similar results would be obtained when nationwide data are compared with data for study populations from poor or very poor rural households in specific vulnerable regions.

Sylhet is one such vulnerable region of north-east Bangladesh, comprising diverse terrains such as plain land, hilly land, *Haor* (wetland), and flash flood-prone areas. This region is reported to perform poorly for all important maternal healthcare indicators,²⁰ despite the fact that Bangladesh has made substantial progress in improving the overall health of the population.²¹ Moreover, the socio-economic profile of the inhabitants in Sylhet region includes both very rich and extremely poor people. This scenario may worsen without the implementation of appropriate strategies in the near future. Sylhet region is also performing poorly compared to the national averages for a number of health and nutritional indicators. Critical indicators such as the infant mortality rate and unemployment status of women are high.¹⁹ In comparison to the overall situation of Bangladesh, where stunting among children under five has decreased, the Bangladesh Demographic and Health Survey (BDHS) 2014 indicates the prevalence of childhood stunting in Sylhet is astonishingly high, at 50%.¹⁹ This alarming figure provided the rationale for implementation of a comprehensive intervention programme in this region. A large-scale nutrition programme, Suchana: Ending the Cycle of Undernutrition in Bangladesh; a multi-sectoral nutrition programme, was undertaken with the aim to prevent chronic malnutrition in Sylhet.

In general, Suchana nutrition interventions can be divided into two types: nutrition-sensitive and nutrition-specific.²² The concept of nutrition-sensitive intervention refers to an intervention that

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

benefits the beneficiaries in terms of food and nutrition security, and also influences the underlying determinants of nutrition. This type of intervention is largely delivered through the agricultural sector (homestead vegetable and fruit production, pro-poor nutrition-sensitive aquaculture), improved technology (mono-sex tilapia and carp-tilapia polyculture, subsistence fishing, fish drying), demonstrations (village model farms and demo ponds, livestock, food security, promotion of climate-smart technologies), and supported income-generating activities (skill development in business management, engagement with the private sector and other sectors). As nutrition-specific interventions were delivered through nutrition-sensitive interventions, their coverage, effectiveness, and scale can be increased. It can meet the targets by lowering them and implementing nutrition-specific interventions. A nutrition-specific intervention addresses the immediate cause of malnutrition. Direct determinants of nutrition are the focus of this intervention. There is a strong focus on nutrition-specific interventions in the health sector. Whether implemented alone or jointly, nutrition-specific interventions improve health outcomes. Some examples of nutrition-specific interventions are: counselling for mothers at the household level, community-based nutrition education for spouses and in-laws, growth monitoring and promotion sessions integrated with Expanded Programme on Immunization in communities, Government of Bangladesh health facilities equipped with severe acute malnutrition service delivery, and support for National Nutrition Services service delivery through community clinics, Union Health and Family Welfare Centers, and Upazila health complexes.

- The primary objective of the *Suchana* programme was to reduce the prevalence of childhood stunting in the intervention areas. The secondary objectives were to assess the changes in *Suchana* beneficiaries' households, in terms of an increase and diversification of household income, food security status, optimal IYCF practices, haemoglobin status of children, the empowerment of women, and adolescents' nutritional knowledge and practices.²²

The Suchana programme substantially improved nutritional behaviour, maternal healthcare practices, women's empowerment, household income, and household food security in the intervention area compared to the control area.²³ Contrary to predictions, however, Suchana did not result in any significant reduction in the prevalence of childhood stunting. Therefore, although most other factors related to childhood stunting improved, this raises the question of why the

Page 7 of 40

1

BMJ Open

2	
_	
3	
4	
5	
6	
/	
8	
9	
2	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
~~	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
~ ~	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

prevalence of stunting did not reduce after the intervention. An important observation from the *Suchana* survey was that the proportion of households in this study population using hygienic latrines was quite low. This factor was associated with stunting in children,⁸ and did not significantly improve by endline in the intervention areas compared to the control areas.

160 In this study, we aimed to construct a predictive model to attempt to explain whether any 161 improvements in associated factors may promote a significant reduction in stunting among 162 children aged 12-23 months from poor and extremely poor households in the Sylhet region.

9 164) 165 **Methods**

163

159

² 166 **Study design and setting**

The Suchana programme was implemented in 157 Unions over 20 sub-districts in the Sylhet region 167 in the north-east of rural Bangladesh. The Suchana programme's protocol has been thoroughly 168 explained elsewhere.²² Union, the smallest local government and administrative entity in rural 169 170 Bangladesh, was considered as a cluster and divided into four phases at random. Phase-1 was designated as the intervention group, while Phase-4 was the control group, and the other phases 171 were treated as learning phases.²² For implementation purposes, vulnerable villages were selected 172 within Phase-1 and Phase-4 areas. The staff of the programme chose vulnerable villages in each 173 174 Union based on their vulnerability (e.g., frequent floods or submerging, little or no intervention from other development programmes, poverty or household living circumstances, remoteness and 175 176 accessibility issues, a high prevalence of superstitions and social taboos). After consultation with the local government representatives, elected officials, and local elites as well as field visits, this 177 178 selection method was decided upon. The impacts of the intervention on livelihood, health, and 179 nutrition were measured using a pre-post design. A large dataset was collected from two crosssectional surveys (baseline and endline) under this study. The baseline survey was conducted in 180 November 2016 and February 2017, followed by the endline survey in the same months three years 181 182 later among the same population and different participants (Supplementary Figure 1).

184 **Outcome variable**

183

The outcome variable in this study was childhood stunting, which was defined as a length-for-age z-score $(LAZ) < -2.^2$

188 Independent variables

Initially, a list of independent variables was finalized through results obtained from descriptive and bi-variate analyses, as well as a comprehensive literature review (Table 1). These included at least four antenatal care (ANC) visits by a skilled service provider, additional resting during pregnancy, additional food consumption during pregnancy, consumption of at least 100 IFA tablets during pregnancy, receiving vitamin A capsule after last delivery, birth attendant/facility, mother involved in income-generating activities, maternal BMI, maternal education, household food insecurity, household monthly income >15000 BDT, involved with aquaculture, hygienic latrine, water and soap available in handwashing place, household size, household dietary diversity, sex of household head, religion, received any grant/allowance/stipend from the government, access of mass media, child's age, child's sex, childhood illness in the last 15 days, minimum dietary diversity, early initiation of breastfeeding, and received colostrum. Household food insecurity access scale was measured using the Food and Nutrition Technical Assistance's Guideline, which categorizes household food insecurity into four levels: a) food secure, b) mildly food insecure, c) moderately food insecure, and d) severely food insecure.²⁴ In the analysis herein, this indicator was redefined as a binary indicator: severely food insecure or not severely food insecure.

36 204

205 Sample size

The sample size for this study was calculated with the STATA "*clustersampsi*" command module, considering the number of clusters in the surveys and considering the expected prevalence of childhood stunting in the control group (Supplemental Appendix 1). It was estimated that the expected prevalence of stunting was 47%, which was hypothesized to be reduced to 41% after three years of intervention. A sample size of 1520 per arm was calculated based on a 5% level of significance, 80% power, 40 clusters per arm, and an intra-cluster correlation coefficient (ICC) of 0.01. After rounding, the estimated sample size per arm was 1620, and the total sample size was 3200 at baseline, with an equal number of participants in the control and intervention groups. For evaluation purposes, the sample size at endline was doubled to ensure a stratified intervention

BMJ Open

component, resulting in a total sample size of 9600 mother-child pairs (baseline: 3200 and endline:
6400).²²

⁸₉ 218 **Sampling**

The baseline and endline surveys were conducted in a total of eight and twelve villages respectively, which were randomly selected from each Union using a list of vulnerable villages provided by Save the Children. The most vulnerable households were identified and verified using the inclusion criteria of the Suchana programme (Supplementary Table 1). These households were then given an identification number to prepare the sampling frame and required households were systematically selected for the surveys from the frame. The method of data collection is explained in detail in the Supplemental Appendix 2.

24 227 Statistical analysis25

General characteristics: Stata-14 software (StataCorp LP, College Station, TX, USA) and R 4.2.2 (*rpart*)²⁵ were used to analyse the data. Bar diagram was used for data visualization. Descriptive statistics, such as frequency and proportions for categorical variables and mean and standard deviations for quantitative variables, were used to summarize the data at baseline and endline. Cross-tabulation was used to present that outcome variable segregated by intervention and control group at baseline survey as well as the endline survey. The *difference in difference* method was used to estimate the contrast of an intervention by comparing the difference in the outcomes between an intervention group and a control group before and after the intervention.²⁶

Predictive model: Three statistical models were used as predictive models. Two parametric models, such as Logistic and Probit regression models, and Decision Tree as a non-parametric model. Logistic and Probit regression models were used as predictive models as well as classifier models. The models were also used to investigate which factors were significantly associated with childhood stunting, and estimate their effect size, in order to predict whether changes in behavioural practices might potentially help to achieve targeted reductions in stunting. Using those variables, a decision tree was applied, and the predictive performance was compared to other models.

 BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

For the parametric models, first, Chi-Square test was used to examine the bivariate associations between stunting and all possible explanatory variables. In the second step, variables with p-values <0.25 in the simple model were included in the multiple regression models.²⁷ In the final step, any independent variables thought to be likely predictors were added to the multiple regression model using the stepwise forward selection method. Some indicators, e.g., age, sex, and maternal nutritional status were added regardless of their *p*-value due to their scientific plausibility. The mathematical equation of logistic and probit regression models were given in the Supplemental Appendix 3. As a cluster variable, *Union* was used to adjust the standard errors. Furthermore, for the explanation of the regression model, a *p*-value <0.05 was considered as statistically significant, and the confidence interval (CI) of 95% was also reviewed. From the fitted model, the adjusted effect size (adjusted prevalence difference) against all predictors was estimated using the "adjrr" package in Stata. The list of independent variables with the value labels used in the model is given in Table 1. riables

260 Table 1. List of all independent variabl
--

Indicators	Code	Stunting Status*	Selection in the model	
At least four ANC visits by a skilled service provider				
At least four ANC visits by a skilled service provider	0		Selected	
Less than four ANC visits by a skilled service provider	1	Higher prevalence ⁸		
Additional resting during pregnancy				
Took more rest	0		Not selected	
Did not take more rest	1	Higher prevalence ⁸		
Additional food consumption during pregnancy				
Consumed more food	0		Not selected	
Did not consumed more food	1	Higher prevalence ^{7 8}		
Consumption of at least 100 IFA tablets during pregnan	cy			
Consumed at least 100 IFA tablets	0		Not selected	
Did not consumed at least 100 IFA tablets	1	Higher prevalence9		
Received vitamin A capsule after last delivery				
Received	0		Not selected	
Did not receive	1	Higher prevalence ⁸		
Birth attendant/facility				
Skilled	0		Selected	
Unskilled	1	Higher prevalence ¹⁰		
Mother involved in income-generating activities				
No	0		Selected	
Yes	1	Higher prevalence ⁶ ¹³		
Maternal BMI				
BMI ≥18.5	0		Selected	
BMI <18.5	1	Higher prevalence ^{6 11}		
Maternal education			Selected	

At least one-year formal education	0		
No schooling	1	Higher prevalence ^{6 11}	
Access of mass media			
Access	0		Select
No access	1	Higher prevalence ¹²	
Household food insecurity			
Below severe	0		Select
Severe	1	Higher prevalence ⁸	
Household monthly income ≥15000 BDT			
≥15000 BDT	0		Selecte
<15000 BDT	1	Higher prevalence ¹¹	
Involved with aquaculture			
Involved	0		Selecte
Did not involved	1	Higher prevalence ¹⁴	
Hygienic latrine			
Hygienic latrine	0		Selecte
Unhygienic latrine	1	Higher prevalence ^{6 11 15}	
Water and soap available in handwashing place			
Available	0		Selecte
Unavailable	1	Higher prevalence ¹⁵	
Household size			
Below seven	0		Select
Seven or above	1	Higher prevalence ¹¹	
Household dietary diversity (HDDS)	-		
HDDS ≥7	0		Selecte
HDDS <7	1	Higher prevalence ⁸	Server
Sex of household head	-		
Female	0		Not sele
Male	1	Higher prevalence ⁸	
Household head education	1		
At least one-year formal education	0		Not sele
No schooling	1	Higher prevalence ⁶	
Religion	1		
Muslim	0		Not sele
Non-Muslim	1	Lower prevalence ⁶	
Received any grant/allowance/stipend from the governm	-	Lower prevalence	
Received any grant/anowance/supend nom the governm	0		Not sele
Did not receive	1	Higher prevalence ¹⁶	Not sele
Child's age	1		
Age ≤ 18 months	0		Select
		Lligher provolon as	Selecti
Age >18 months Child's sex	1	Higher prevalence ⁸	
Female	0		
		Higher provelances	
Male Childhood illness in the last 15 days	1	Higher prevalence ⁸	
Childhood illness in the last 15 days	0		0.1
No	0	TT' 1 1 17	Selecte
Yes	1	Higher prevalence ¹⁷	
Minimum dietary diversity	0		
Received	0	TT: 1 015	Not sele
Did not receive	1	Higher prevalence ^{8 15}	
Early initiation of breastfeeding			
	0		Not sele
Received Did not receive	0	Higher prevalence ⁸	1.00.0010

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

Received colostrum			
Received	0		Not selected
Did not receive	1	Higher prevalence ⁸	

¹Expected effects based on findings of the literature

Model evaluation: The predictive performance of the three statistical models was evaluated by computing model sensitivity and specificity, and calculating the area under the receiver operating curve (ROC) analysis. To ensure accurate results, the data was randomly split into a training set (75%) and a test set (25%) using a random-number seed 113843. The same training and test datasets were used for evaluating the performance of all algorithms to ensure consistency in the results. The sensitivity and specificity values, as well as the area under the ROC curve, were used to determine the overall accuracy of the algorithms in predicting childhood stunting.^{28 29}

271 Patient and public involvement

Patients and public were not actively involved in formulating the research question and or protocol
development, including the outcome measures. To expedite the field implementation, however,
local elites e.g. teachers, religious persons, and local government council members were informed
about the study.

2 276

277 Results

General characteristics: Out of 9600 cases, 9501 cases were found to be available. The refusal rate was around 1%. With respect to the outcome indicator, stunting in children aged 12-23 months, 52.7% of children were stunted at the baseline survey (intervention group: 52.6%; control group: 52.8%), whereas the proportion of children exhibiting stunting at endline was 50.0% (intervention: 49.9%; control: 50.1%; Figure 1). At both the baseline and endline surveys, there was no significant difference in proportion between intervention and control areas. The *difference-indifference* in outcomes over time was also insignificant.

48 285

Figure 2 describes several other indicators related to maternal and child health, including the status of consuming a minimum acceptable diet (intervention: 35.2%; control: 14.9%), minimum dietary diversity (intervention: 42.8%; control: 20.4%), maternal decision-making (intervention: 45.0%; control: 31.0%), at least four maternal ANC visits by a skilled service provider (intervention: 36.1%; control: 17.7%), minimum dietary diversity for women (intervention: 52.6%; control:

33.5%), a household dietary diversity score of at least seven (intervention: 88.9%; control: 78.3%),
and household food security status (intervention: 26.6%; control: 20.2%). Results from the endline
survey showed that these indicators were significantly improved in the intervention group
compared to the control group. However, the availability of hygienic latrines did not increase in
the intervention group (intervention: 44.0%; control: 44.0%). Table 2 shows the
households' socio-demographic characteristics, women's general characteristics, and children's
characteristics at baseline and endline.

299	Table 2. General	characteristics	s of the Suchana beneficiaries	
-----	------------------	-----------------	--------------------------------	--

Indicators, n (%)	Baseline N=3200	Endline <i>N</i> =6301	Total <i>N</i> =9501
At least four ANC visits by a skilled service prov	ider		
Yes	408 (12.8)	1530 (24.3)	1938 (20.4)
No	2792 (87.2)	4771 (75.7)	7563 (79.6)
Delivery at skilled birth attendant/facility			
Yes	1000 (31.2)	2769 (44.0)	3769 (39.7)
No	2200 (68.8)	3532 (56.0)	5732 (60.3)
Access of mass media			
Access	563 (17.59)	1169 (18.55)	1732 (18.23)
No access	2637 (82.41)	5132 (81.45)	7769 (81.77)
Mother involved in income-generating activities			
No	3102 (96.9)	5665 (89.9)	8767 (92.2)
Yes	98 (3.1)	639 (10.1)	737 (7.8)
Maternal BMI			
BMI ≥18.5	1859 (58.1)	4073 (64.6)	5932 (62.4)
BMI <18.5	1341 (41.9)	2231 (35.4)	3572 (37.6)
Mother completed primary education			
Yes	1721 (53.8)	3808 (60.4)	5529 (58.2)
No	1479 (46.2)	2496 (39.6)	3975 (41.8)
Maternal age			
Age <30 years	2145 (67.0)	3559 (56.5)	5704 (60.0)
Age \geq 30 years	1055 (33.0)	2745 (43.5)	3800 (40.0)
Type of delivery			
Normal	2879 (90.0)	5529 (87.8)	8408 (88.5)
Caesarean	321 (10.0)	772 (12.3)	1093 (11.5)
PNC			
No	2152 (67.3)	4128 (65.5)	6280 (66.1)
Yes	1048 (32.8)	2173 (34.5)	3221 (33.9)
Household severely food insecure			
Yes	912 (28.5)	1016 (16.1)	1928 (20.3)
No	2288 (71.5)	5285 (83.9)	7573 (79.7)
Household monthly income ≥15000 BDT			
Yes	424 (13.2)	1015 (16.1)	1439 (15.1)
No	2776 (86.8)	5289 (83.9)	8065 (84.9)

Household involved with aquaculture			
Yes	161 (5.0)	561 (8.9)	722 (7.6)
No	3039 (95.0)	5740 (91.1)	8779 (92.4
Hygienic latrine			
Yes	1121 (35.0)	2782 (44.1)	3903 (41.1
No	2079 (65.0)	3519 (55.9)	5598 (58.9
Water and soap available in handwashing place			
Yes	862 (26.9)	3170 (50.3)	4032 (42.4
No	2338 (73.1)	3131 (49.7)	5469 (57.6
Household savings			
No	1080 (33.8)	2876 (45.6)	3956 (41.6
Yes	2120 (66.2)	3425 (54.4)	5545 (58.4
Sex of household head			
Female	110 (3.4)	501 (8.0)	611 (6.4)
Male	3090 (96.6)	5799 (92.0)	8889 (93.6
Source of drinking water			
Tube well	2748 (85.9)	5713 (90.7)	8461 (89.0
Others	452 (14.1)	588 (9.3)	1040 (11.0
Household dietary diversity score	, ,	`, ,	,
HDDS ≥7	2182 (68.2)	5322 (84.5)	7504 (79.0
HDDS <7	1018 (31.8)	979 (15.5)	1997 (21.0
Household monthly income (Thousand BDT) ¹	6.7 (5, 10)	7.5 (5.1, 10.8)	7.1 (5, 10.4
Per capita income (Thousand) ¹	2.6 (1.8, 3.7)	2.9 (2, 4.1)	2.8 (2, 4)
Household size ¹	6.2±2.4	5.9±2.1	6±2.2
Child's age in months ²	17.9±3.5	17.3±3.6	17.5±3.6
Length-for-age z-score ²	-2.1±1.2	-2±1.1	-2±1.1
Weight-for-age z-score ²	-1.7±1.1	-1.5±1.0	-1.5 ± 1.0
Weight-for-length z-score ²	-0.9±1.0	-0.7±0.9	-0.7 ± 1.0
Child's age			
Age <18 months	1745 (54.5)	3710 (58.9)	5455 (57.4
Age ≥ 18 months	1455 (45.5)	2594 (41.1)	4049 (42.6
Child's sex	()	()	(
Female	1567 (49.0)	3044 (48.3)	4611 (48.5
Male	1633 (51.0)	3257 (51.7)	4890 (51.5
Childhood illness in the last 15 days			
Yes	2867 (89.6)	5763 (91.5)	8630 (90.8
No	333 (10.4)	538 (8.5)	871 (9.2)

Correlated factors: The study used two parametric predictive models to determine the correlates of childhood stunting. The results, presented in Table 3, showed the adjusted odds ratios (aOR) computed from multiple logistic regression and the adjusted coefficients computed from multiple probit regression. These results provide important insights into the factors that increase the odds of stunting in childhood, and can inform public health interventions aimed at reducing stunting and improving child health. The aORs provide a quantitative measure of the relationship between Page 15 of 40

BMJ Open

different factors and childhood stunting, adjusting for *Union* as cluster variable. Understanding the correlates of childhood stunting is critical for addressing this important public health issue and improving the health and well-being of children globally. The results of this study show that a number of maternal, household and children factors were correlated with an increased prevalence of stunting in children. Children of mothers who did not receive at least four ANC visits from a skilled service provider had 1.16 times higher odds of stunting (95% CI: 1.05, 1.30; p-value=0.005). Children of mothers who gave birth with an unskilled birth attendant or facility had 1.11 times higher odds of stunting (95% CI: 1.02, 1.20; p-value=0.012). The odds of stunting were 1.18 times higher in children whose mothers were involved in income-generating activities (95%) CI: 1.02, 1.37; p-value=0.030), 1.23 times higher in children of underweight mothers (95% CI: 1.12, 1.36; p-value<0.001), and 1.31 times higher in children of low-educated mothers (95% CI: 1.20, 1.42; p-value<0.001). Furthermore, the lack of exposure to mass media was also found to be associated with stunting, with odds of 1.15 (95% CI: 1.02, 1.30; p-value=0.025) times higher. Children from households with severe food insecurity, lower-income households, households not involved in aquaculture, and households with low dietary diversity, were more likely to be stunted, with odds increasing by 1.12 (95% CI: 1.00, 1.24; p-value=0.041), 1.12 (95% CI: 1.01, 1.25; p-value=0.037), 1.19 (95% CI: 1.03, 1.38; p-value=0.018), and 1.17 (95% CI: 1.07, 1.29; p-value=0.001) times, respectively. The results also showed that the odds of stunting increased with increasing household size (95% CI: 1.11, 1.31; p-value<0.001), the absence of a hygienic latrine (95% CI: 1.10, 1.30; p-value<0.001), the absence of water and soap in the handwashing place (95% CI: 1.08, 1.30; p-value<0.001), increasing child age (95% CI: 1.39, 1.67; p-value<0.001), and being male (95% CI: 1.11, 1.34; p-value<0.001). The odds of stunting were also 1.20 times higher in children with acute illness (95% CI: 1.06, 1.36; p-value=0.003). The logistic and probit regression models were employed to predict stunting in a sample of 9501 individuals. Both models were found to be significant, with log-likelihoods of -6387.94 and -6388.02, respectively, and significant Wald chi-square statistics (p-value < 0.001). Predictive ability of various indicators for the adjusted prevalence of stunting and adjusted prevalence difference (effect size) are given in Supplementary Table 2a and 2b. The Factors correlating with childhood stunting, as determined by using a decision tree as a non-parametric predictive model, are also presented in Figure 3. The decision tree result suggests that maternal education was the most important variable in predicting childhood stunting, as it was the main root node. The other variables, such as maternal nutrition,

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

339	hand washing indica	ators, and	hygienic	latrine,	were also	o important,	as they	were next root node

variables. This tree model can be used to predict the childhood stunting status with relative ease.

Table 3. Factors correlating with stunting in children aged 12-23 months, computed using

logistic and probit regression analyses

Indicators	Logistic		Probit	
	Adjusted OR (95% CI)	p-value	Adjusted Coef. (95% CI)	p-value
At least four ANC visits by a skil	led service provider			
Yes	Reference		Reference	
No	1.16 (1.05, 1.30)	0.005	0.09 (0.03, 0.16)	0.005
Birth attendant/facility				
Skilled	Reference		Reference	
Unskilled	1.11 (1.02, 1.20)	0.012	0.06 (0.01, 0.11)	0.012
Mother involved in income-gener				
No	Reference		Reference	
Yes	1.18 (1.02, 1.37)	0.030	0.10 (0.01, 0.19)	0.030
Maternal BMI				
BMI≥18.5				
BMI <18.5	1.23 (1.12, 1.36)	0.000	0.13 (0.07, 0.19)	0.000
Maternal education was primary				
Yes	Reference		Reference	
No	1.31 (1.20, 1.42)	0.000	0.17 (0.12, 0.22)	0.000
Access of mass media				
Yes	Reference	•	Reference	
No	1.15 (1.02, 1.30)	0.025	0.09 (0.01, 0.16)	0.025
Household food insecurity				
Below severe				
Severe	1.12 (1.00, 1.24)	0.041	0.07 (0.00, 0.13)	0.042
Household monthly income ≥ 150	00 BDT			
Yes	Reference		Reference	
No	1.12 (1.01, 1.25)	0.037	0.07 (0.00, 0.14)	0.035
Involved with aquaculture				
Yes	Reference		Reference	
No	1.19 (1.03, 1.38)	0.018	0.11 (0.02, 0.20)	0.018
Household size				
Below seven	Reference		Reference	
Seven or above	1.20 (1.11, 1.31)	0.000	0.12 (0.06, 0.17)	0.000
Hygienic latrine				
Yes	Reference		Reference	
No	1.20 (1.10, 1.30)	0.000	0.11 (0.06, 0.16)	0.000
Water and soap available in han	dwashing place			
Yes	Reference		Reference	
No	1.19 (1.08, 1.30)	0.000	0.11 (0.05, 0.16)	0.000
Household dietary diversity				
HDDS ≥7	Reference		Reference	
HDDS <7	1.17 (1.07, 1.29)	0.001	0.10 (0.04, 0.16)	0.001
Child's age				
Age ≤ 18 months	Reference		Reference	
Age >18 months	1.52 (1.39, 1.67)	0.000	0.26 (0.2, 0.32)	0.000

Child's sex				
Female	Reference		Reference	
Male	1.22 (1.11, 1.34)	0.000	0.13 (0.07, 0.18)	0.000
Childhood illness in the last 15 days	· · · · · · · · · · · · · · · · · · ·			
No	Reference		Reference	
Yes	1.20 (1.06, 1.36)	0.003	0.11 (0.04, 0.19)	0.003
Sample size and regression	n = 9501		n = 9501	
diagnostic values for logistic and	Log-likelihood = -6387	7.94	Log-likelihood =	-6388.02
probit regression analyses	Wald $chi2(17) = 427.79$	9	Wald $chi2(17) =$	441.18
	p-value<0.001		p-value<0.001	
	Pseudo $R^2 = 0.0298$		Pseudo $R^2 = 0.02$	298

Unions were adjusted as clusters. Baseline and endline were adjusted as time variables

Predictive performance: Table 4 describes the model validation based on sensitivity, specificity, and whether the model was correctly classified for the overall dataset, as well as the training and test datasets. The sensitivity and specificity of the model were around 60% and 55%, respectively for all models. The correctly classified rate was 59%, and the area under the ROC curve was around 61%. We found that these values were approximately equal among the three datasets (main, training, and test datasets); however, the predictive performance of the model was low.

Table 4. Predictive performance of the model for stunting based on classification, sensitivity,
and specificity in the full, training and test datasets with area under the receiver operating
characteristic curve analysis

	Logistic regression	Probit regression	Decision tree
full dataset			
Overall accuracy	58.46	58.38	56.51
Sensitivity	61.21	61.25	61.15
Specificity	55.61	55.41	51.70
Area under the curve	61.54	61.54	56.72
raining Dataset			
Overall accuracy	58.83	58.62	57.66
Sensitivity	61.59	61.70	63.93
Specificity	55.36	55.42	51.61
Area under the curve	61.37	61.37	58.44
'est Dataset			
Overall accuracy	58.11	58.19	56.67
Sensitivity	60.23	60.23	61.58
Specificity	55.90	56.07	51.94
Area under the curve	61.76	61.77	58.01

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

358 Discussion

In an effort to understand why the Suchana programme was not effective in reducing the prevalence of childhood stunting, this study analyzed data from both the baseline and endline surveys of the programme. The analysis aimed to identify the factors that were significantly correlated with stunting and to evaluate the model's predictive performance. After controlling for the Union as a cluster variable, the study found several indicators that were significantly related to stunting. These included the number of ANC visits by a skilled service provider, household dietary diversity, household food security, and household monthly income, all of which improved after the intervention. However, it was noted that the household food security status did not reach the target value of 50%, despite being an important factor associated with childhood stunting.^{8 30 31} On the other hand, other outcome indicators of the Suchana programme, such as the dietary diversity of children, maternal dietary diversity, and maternal empowerment, despite reaching their target values, were not found to be associated with stunting in this study.

The study found that while the Suchana programme showed improvement in certain programme indicators, it did not lead to a significant reduction in childhood stunting. Despite efforts to address key factors such as maternal nutrition and education, household food security, and hygiene practices, these factors remained largely unchanged. However, the study suggests that interventions aimed at adolescent mothers may be more effective in improving maternal nutrition and education, since these are age-dependent variables. Additionally, the results of the study were also impacted by natural disasters in 2017, including heavy rains and flooding in the Sylhet region, which resulted in widespread damage to agriculture, aquaculture, and homes in the study population.32 33

45 381

The study found a contradictory relationship between stunting and maternal involvement in income-generating activities, with a higher prevalence of stunting observed among children whose mothers were engaged in various earning activities. Although there was a slight increase in the proportion of mothers involved in income-generating activities after the intervention, the lack of childcare support for working mothers resulted in a marked rise in childhood stunting among low-income households. It is important to address this issue by providing adequate childcare support

Page 19 of 40

BMJ Open

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

measures for working mothers from poor families to ensure that the child's essential needs are not impacted by the mother's employment status.¹³ Additionally, efforts should be made to increase awareness among working mothers regarding the importance of child health and nutrition. This can be achieved through targeted education and outreach programmes that provide information on proper child feeding practices, hygiene, and health-seeking behaviours.

The literature suggests that environmental enteropathy may contribute to poor growth among children in rural Bangladesh and may represent an important factor affecting the study population in the Suchana programme.³⁴ Although it was not specifically assessed in this study, indicators such as unsanitary latrines, unimproved floors, a lack of handwashing practices, and low education levels were available.¹⁸ ³⁵ Improving Water, Sanitation and Hygiene (WaSH) variables, particularly latrine facilities and handwashing practices, may help reduce the burden of stunting in young children. One of the components of the intervention was poultry, but our qualitative findings revealed that many households shared living spaces with poultry, ducks, or other animals, which could increase the risk of infections with *Campylobacter* species, a leading food-borne pathogen.¹⁸ ³⁶ Previous studies have shown a strong association between stunting and enteropathy among children who do not respond to nutritional interventions, and findings from rural Bangladesh have linked environmental conditions and stunting in children.³⁷⁻³⁹ While assessing environmental enteropathy was beyond the scope of the Suchana evaluation, collecting data on indicators of enteropathy in the intervention and control areas could help evaluate the impact of appropriate interventions in the future. The failure to achieve the desired outcome may have been due to several factors, including food insecurity and a lack of aquaculture involvement due to natural disasters, poor WaSH status, a lack of focus on maternal education and nutrition, and a lack of focus on the risk of enteropathogen burden.

Another important finding based on the post-estimation findings as well as the value of the area under the ROC curve was that the predictive performance of the model was low. Thus, we need to identify other indicators from similar research contexts that correlated with childhood stunting but were not included in our model. Future research in the field of childhood stunting should give priority to the development of more suitable methods for monitoring and identifying effective interventions. It is also essential to collect data that considers biological and environmental factors

related to childhood stunting, following the literature. By considering these diverse factors, we can improve the accuracy and predictive performance of statistical models. This, in turn, can help draw more reliable conclusions about the effectiveness of interventions aimed at reducing childhood stunting in similar contexts. Additionally, evaluating the model on an independent dataset or conducting external validation could help to determine the generalizability of the model to new data.

This study will aid programme managers in prioritizing their focus and designing effective interventions to reduce childhood stunting. Sustainable solutions should be based on the needs of the beneficiaries. Implementing short-term initiatives such as attendance at healthcare-led workshops and campaigns can increase ANC visits, skilled birth attendance, and handwashing practices. Establishing women's healthcare services that focus on maternal and child health and nutrition will also help reduce the incidence of stunting.²³ Improved access to media can help vulnerable communities benefit from government welfare programmes. Food security, income, sanitation, aquaculture, and illness are all time-sensitive factors. Increasing food production through self-production or purchasing can improve household food security and nutrition. However, household wealth and access to nearby markets can impact their ability to buy nutritious food. Climate change adaptation in agriculture is crucial to minimize current risks and prepare for future uncertainties. Using organic fertilizers instead of chemicals in agriculture has environmental benefits, reducing the need for pesticides and protecting human health and biodiversity. Aquaculture can provide a source of protein and improve nutrition, but establishing these facilities takes time. Improving sanitation requires improving socioeconomic status, which is also a timeintensive process. It takes time to improve stunting, as shown by national surveys such as the BDHS and the Food Security and National Surveillance Project (FSNSP).²⁴⁰ Improving maternal nutrition and education is crucial for promoting the optimal growth and development of children. Adequate food, good environmental conditions, and access to schooling facilities during adolescence are necessary for women to maintain their own health and to positively impact the health of their children. Emphasizing the education of female children can break the cycle of poverty and stunting, as it can lead to improved knowledge and decision-making skills related to nutrition and health.^{6 11} To reduce childhood stunting in developing countries, comprehensive interventions that include nutritional support, food security, maternal education, income-

Page 21 of 40

BMJ Open

generating activities for women with childcare support, and addressing domestic violence against women should be implemented. These interventions should be tailored to the specific needs and cultural context of the community in which they are implemented, and community participation and engagement are essential for their success. By addressing the underlying factors contributing to childhood stunting, we can make significant progress towards reducing its prevalence and improving the health and well-being of children in developing countries. Furthermore, continued monitoring and evaluation of these interventions is essential to ensure their effectiveness and to identify areas for improvement.

Recommendation: The Suchana model offers a holistic and integrated approach to addressing food and nutrition security, recognizing undernutrition as a complex problem caused by multiple factors. The endline survey of *Suchana* showed significant improvement in programme indicators. The multi-sector approach of *Suchana* is a meaningful solution to addressing undernutrition. However, policy makers should consider implementing additional nutrition-sensitive and specific activities, such as promoting climate-resilient agriculture and increasing water and sanitation coverage. It is also important to have a sustainable mechanism for improving food security and to promote awareness of seasonal diseases associated with livestock and poultry. To further improve the programme, indicators such as child sex, maternal education, and nutrition could be adjusted during the design stage. The Suchana programme is one of the largest global nutrition interventions, leading to positive changes in critical indicators, with long-term benefits expected for the health and livelihoods of the beneficiaries.

Strength and limitation: The study had several strengths, including a large sample size, randomization, and appropriate sampling techniques. A dedicated quality control team was involved in checking the data, and the use of precise anthropometry instruments and separate training for the measurement team helped ensure accurate data collection. The study was also designed to avoid seasonality by conducting the baseline and endline surveys at the same time of the year. However, the study results may have been impacted by a lack of selection effect in the implementation of the programme, as well as by the short time horizon of the study. The short duration of the study may not have been enough to see a significant impact on stunting. Additionally, changes in the study population between the baseline and endline surveys could also

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

have contributed to the lack of differences observed in the results. Another limitation of this study is that we did not collect food intake data but only recall data from the previous 24 hours. These data may be subject to recall bias; thus, caution is necessary when drawing conclusions, especially for indicators such as dietary diversity, household food insecurity, domestic violence, and maternal healthcare. Finally, using a binary indicator of stunting based on a single LAZ cut-off point, which was defined as <-2, may not provide a comprehensive assessment of the severity of malnutrition among children, as it fails to account for micronutrient deficiencies

Conclusion

Our study revealed that childhood stunting was significantly correlated with a multitude of factors, and majority of the factors were found in poor status in our study area. Despite the implementation of an intervention programme, the situation remained unchanged due to factors such as food insecurity, lack of involvement in aquaculture, poor access to WaSH facilities, and a lack of focus on maternal education and nutrition. The study did not include important indicators such as enteropathogen and environmental enteric dysfunction, which might have contributed to the failure to achieve the desired outcome. The results suggest that policy makers and programme planners should consider enhancing collaboration and coordination between nutrition-sensitive and specific activities to address nutritional deficiencies and family health programmes in vulnerable rural populations.

8 501

Acknowledgments: The study analyzed baseline survey data of Suchana; this intervention has been implemented by a consortium led by Save the Children, with support from the Foreign, Commonwealth and Development Office (FCDO) and European Union (EU). icddr,b acknowledges with gratitude the commitment of Save the Children, FCDO and EU to its research efforts. We also acknowledge with gratitude the commitment of the Government of the People's Republic of Bangladesh to icddr,b's research activities. We also acknowledge the following donors for providing unrestricted support to icddr,b's efforts and advancement of its strategic plan: Canada, Sweden and the United Kingdom. We gratefully acknowledge our core donors for their support and commitment to icddr,b's research efforts. We would like to acknowledge the invaluable contributions of Save the Children as lead agency, our technical partners Helen Keller

Page 23 of 40

BMJ Open

1 2	
2 3 4	512
4 5	513
6 7	514
8	515
9 10	516
11	
12 13	517
14	518
15 16	519
17 18	520
19	521
20 21	522
22 23	523
24	524
25 26	525
27 28	526
29	527
30 31	528
32	529
33 34	530
35 36	
37	531
38 39	532
40	533
41 42	534
43 44	535
44 45	536
46 47	537
48	538
49 50	539
51	540
52 53	541
54 55	
56	
57 58	
58 59	

60

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

International, World Fish, and International Development Enterprises, and the implementing
partners Friends In Village Development Bangladesh (FIVDB), Rangpur Dinajpur Rural Services
(RDRS), and the Center for Natural Resource Studies (CNRS) who played critical roles in
generating and refining the data-collection tools. We would also like to acknowledge Tasnia Alam,
Research Assistant and Md. Maniruzzaman, Assistant Professor, Khulna University, Khulna-9208,
Bangladesh as the internal reviewers, and Andrea Devlin of Science Editing Experts for editing
and linguistic revision of the manuscript.

Funding: (i) This study was made possible by the committed contribution of Foreign,
Commonwealth and Development Office (Grant number: 204131-103), and (ii) icddr,b (N/A).

523 **Conflicts of Interest:** The authors declare no conflict of interest.

Author Contributions: TA and NC originated the idea for the study and led the protocol design.
MAH conceptualized the manuscript. SMTA, SSR, MAH, NC, FDF, and TA contributed to the
survey design. MAH performed statistical analysis and drafted the manuscript. NC and ASGF
supervised the work, and critically reviewed and provided feedback for revising the manuscript.
MAH, NC, MA, FDF, FN, BZW, TJS, ASGF, TA, and SSR contributed to the revision of the final
draft for submission. All authors are responsible for the final content of the manuscript.

532 Ethics approval: This study was approved by the Research Review Committee and Ethical
533 Review Committee, the two obligatory components of the Institutional Review Board (IRB) of
534 icddr,b. Ethics Committee's approval ID# 00001822. Informed written consent was obtained from
535 study participants.

Data availability statement: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy and ethical restrictions.

1 2		
2 3 4	542	Reference
5 6	543 544	1. Bari A, Nazar M, Iftikhar A, et al. Comparison of Weight-for-Height Z-score and Mid-Upper
7 8	545	Arm Circumference to Diagnose Moderate and Severe Acute Malnutrition in children aged 6-59
9	546	months. Pakistan journal of medical sciences 2019;35(2):337-41. doi: 10.12669/pjms.35.2.45
10 11 12	547	[published Online First: 2019/05/16]
13 14	548	2. National Institute of Population Research and Training (NIPORT), ICF. Bangladesh
15 16	549	Demographic and Health Survey 2017-18: Key Indicators. NIPORT and ICF: Dhaka,
17 18	550	Bangladesh and Rockville, Maryland, USA, 2019.
19		
20 21	551	3. Development Initiatives. 2018 Global Nutrition Report: Shining a light to spur action on
22 23	552	nutrition. Bristol, UK: Development Initiatives, 2018.
24		
25 26	553	4. United Nations Children's Fund (UNICEF), World Health Organization, International Bank
27 28	554	for Reconstruction and Development/The World Bank. Levels and trends in child malnutrition:
29 30	555	Key Findings of the 2020 Edition of the Joint Child Malnutrition Estimates. Geneva: World
31	556	Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO., 2020.
32 33 34 35 36	557	5. USAID. Bangladesh: Nutrition Profile, 2018.
37 38	558	6. Kumar P, Rashmi R, Muhammad T, et al. Factors contributing to the reduction in childhood
39	559	stunting in Bangladesh: a pooled data analysis from the Bangladesh demographic and health
40 41	560	surveys of 2004 and 2017–18. BMC public health 2021;21(1):2101. doi: 10.1186/s12889-021-
42 43	561	12178-6
44		
45 46	562	7. Yaya S, Wang R, Tang S, et al. Intake of supplementary food during pregnancy and lactation
47 48	563	and its association with child nutrition in Timor Leste. PeerJ 2018;6:e5935. doi:
49 50 51	564	10.7717/peerj.5935 [published Online First: 20181115]
52 53	565	8. Choudhury N, Raihan MJ, Sultana S, et al. Determinants of age-specific undernutrition in
54	566	children aged less than 2 years-the Bangladesh context. Maternal & child nutrition 2017;13(3)
55 56	567	[published Online First: 2016/10/19]
57 58		23
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 25 of 40

BMJ Open

1 2		
3 4	568	9. Nisar YB, Dibley MJ, Aguayo VM. Iron-Folic Acid Supplementation During Pregnancy
5	569	Reduces the Risk of Stunting in Children Less Than 2 Years of Age: A Retrospective Cohort
6 7	570	Study from Nepal. Nutrients 2016;8(2):67. doi: 10.3390/nu8020067 [published Online First:
8 9 10	571	20160127]
11 12	572	10. Li Z, Kim R, Vollmer S, et al. Factors Associated With Child Stunting, Wasting, and
13 14	573	Underweight in 35 Low- and Middle-Income Countries. JAMA Network Open
15 16	574	2020;3(4):e203386. doi: 10.1001/jamanetworkopen.2020.3386 [published Online First:
17 18 19	575	20200401]
20	576	11. Katoch OR. Determinants of malnutrition among children: A systematic review. Nutrition
21 22 23	577	2022;96:111565. doi: 10.1016/j.nut.2021.111565 [published Online First: 20211211]
24 25	578	12. Huo S, Wang K, Liu Z, et al. Influence of Maternal Exposure to Mass Media on Growth
26 27	579	Stunting Among Children Under Five: Mediation Analysis Through the Water, Sanitation, and
28 29	580	Hygiene Program. JMIR Public Health and Surveillance 2022;8(4):e33394. doi: 10.2196/33394
30 31 32	581	[published Online First: 20220406]
33	582	13. Win H, Shafique S, Mizan S, et al. Association between mother's work status and child
34 35	583	stunting in urban slums: a cross-sectional assessment of 346 child-mother dyads in Dhaka,
36 37	584	Bangladesh (2020). Archives of Public Health 2022;80(1):192. doi: 10.1186/s13690-022-00948-
38 39 40	585	6
41 42	586	14. Iannotti LL, Blackmore I, Cohn R, et al. Aquatic Animal Foods for Nutrition Security and
43 44	587	Child Health. Food and Nutrition Bulletin 2022;43(2):127-47. doi: 10.1177/03795721211061924
45 46 47	588	[published Online First: 20211214]
48 49	589	15. Prendergast AJ, Chasekwa B, Evans C, et al. Independent and combined effects of improved
50	590	water, sanitation, and hygiene, and improved complementary feeding, on stunting and anaemia
51 52	591	among HIV-exposed children in rural Zimbabwe: a cluster-randomised controlled trial. The
53 54	592	Lancet Child & Adolescent Health 2019;3(2):77-90. doi: 10.1016/s2352-4642(18)30340-7
55 56	593	[published Online First: 20181218]
57		
58 59		24
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	594	16. Anwar F, Khomsan A, Sukandar D, et al. High participation in the Posyandu nutrition
5 6	595	program improved children nutritional status. Nutrition Research and Practice 2010;4(3):208-
7 8 9	596	14. doi: 10.4162/nrp.2010.4.3.208 [published Online First: 20100628]
10	597	17. Orunmoluyi OS, Gayawan E, Manda S. Spatial Co-Morbidity of Childhood Acute
11 12	598	Respiratory Infection, Diarrhoea and Stunting in Nigeria. International journal of environmental
13 14	599	research and public health 2022;19(3) doi: 10.3390/ijerph19031838 [published Online First:
15 16 17	600	20220206]
18	601	18. Haque MA, Platts-Mills JA, Mduma E, et al. Determinants of Campylobacter infection and
19 20	602	association with growth and enteric inflammation in children under 2 years of age in low-
21 22 23	603	resource settings. <i>Scientific reports</i> 2019;9(1):17124. [published Online First: 2019/11/22]
24 25	604	19. National Institute of Population Research and Training - NIPORT/Bangladesh, Mitra and
26 27	605	Associates, ICF International. Bangladesh Demographic and Health Survey 2014. NIPORT,
28 29	606	Mitra and Associates, and ICF International: Dhaka, Bangladesh and Rockville, Maryland, USA
30 31 32	607	2016.
33 34	608	20. Helen Keller International (HKI) and James P. Grant School of Public Health (JPGSPH).
35 36 37	609	State of food security and nutrition in Bangladesh 2013. HKI and JPGSPH, 2014.
38	610	21. Yaya S, Bishwajit G, Ekholuenetale M, et al. Awareness and utilization of community clinic
39 40	611	services among women in rural areas in Bangladesh: A cross-sectional study. PLOS ONE
41 42 43	612	2017;12(10):e0187303. doi: 10.1371/journal.pone.0187303
44 45	613	22. Choudhury N, Raihan MJ, Ahmed SMT, et al. The evaluation of Suchana, a large-scale
46 47	614	development programme to prevent chronic undernutrition in north-eastern Bangladesh. BMC
48 49 50	615	public health 2020;20(1):744. [published Online First: 2020/05/24]
51 52	616	23. Haque MA, Choudhury N, Ahmed SMT, et al. The large-scale community-based programme
53 54	617	'Suchana' improved maternal healthcare practices in north-eastern Bangladesh: Findings from a
55 56	618	cluster randomized pre-post study. Maternal & child nutrition 2022;18(1):e13258.
57 58 59		2!
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
2 3 4	619	24. Coates J, Swindale A, Bilinsky P. Household Food Insecurity Access Scale (HFIAS) for
5	620	measurement of food access: indicator guide (v. 3). Washington, D.C.: Food and Nutrition
6 7 8	621	Technical Assistance Project, Academy for Educational Development 2007.
9 10 11	622	25. Therneau T, Atkinson B, Ripley B. rpart: Recursive partitioning and regression trees 2022
11 12 13	623	[Available from: <u>https://cran.r-project.org/package=rpart2023</u> .
14 15	624	26. Villa JM. Simplifying the estimation of difference-in-differences treatment effects. The Stata
16 17 18	625	Journal 2016:52-71.
19 20	626	27. Bursac Z, Gauss CH, Williams DK, et al. Purposeful selection of variables in logistic
21 22 23	627	regression. Source code for biology and medicine 2008;3:17.
24 25	628	28. Tardini E, Zhang X, Canahuate G, et al. Optimal Treatment Selection in Sequential Systemic
26 27	629	and Locoregional Therapy of Oropharyngeal Squamous Carcinomas: Deep Q-Learning With a
28	630	Patient-Physician Digital Twin Dyad. Journal of Medical Internet Research 2022;24(4):e29455.
29 30 31	631	doi: 10.2196/29455 [published Online First: 20220420]
32 33 34	632	29. Adamker G, Holzer T, Karakis I, et al. Prediction of Shigellosis outcomes in Israel using
35	633	machine learning classifiers. Epidemiology and Infection 2018;146(11):1445-51. doi:
36 37 38	634	10.1017/s0950268818001498 [published Online First: 20180608]
39 40	635	30. Weatherspoon DD, Miller S, Ngabitsinze JC, et al. Stunting, food security, markets and food
41 42	636	policy in Rwanda. BMC public health 2019;19(1):882. doi: 10.1186/s12889-019-7208-0
43 44 45	637	[published Online First: 2019/07/06]
46 47	638	31. Agho KE, Mukabutera C, Mukazi M, et al. Moderate and severe household food insecurity
48	639	predicts stunting and severe stunting among Rwanda children aged 6-59 months residing in
49 50 51	640	Gicumbi district. Maternal & child nutrition 2019;15(3):e12767.
52 53 54 55 56	641	32. Chowdhury D. Flood situation worsens in Sylhet. <i>The Daily Star</i> 2017.
57 58		26
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

BMJ Open

33. ACAPS. ACAPS Briefing Note: Bangladesh - Floods in Moulvibazar and Sylhet (20 June 2018): reliefweb; 2018 [Available from: https://reliefweb.int/report/bangladesh/acaps-briefing-note-bangladesh-floods-moulvibazar-and-sylhet-20-june-20182023. 34. Lin A, Arnold BF, Afreen S, et al. Household environmental conditions are associated with enteropathy and impaired growth in rural Bangladesh. American Journal of Tropical Medicine and Hygiene 2013;89(1):130-37. doi: 10.4269/ajtmh.12-0629 [published Online First: 20130429] 35. Amour C, Gratz J, Mduma E, et al. Epidemiology and Impact of Campylobacter Infection in Children in 8 Low-Resource Settings: Results From the MAL-ED Study. Clinical Infectious Diseases 2016;63(9):1171-79. doi: 10.1093/cid/ciw542 [published Online First: 08/07] 36. Smith S, Meade J, Gibbons J, et al. The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter. Infect Ecol Epidemiol 2016;6:31685-85. doi: 10.3402/iee.v6.31685 37. Chen RY, Kung VL, Das S, et al. Duodenal Microbiota in Stunted Undernourished Children with Enteropathy. The New England Journal of Medicine 2020;383(4):321-33. doi: 10.1056/NEJMoa1916004 38. George CM, Oldja L, Biswas SK, et al. Fecal Markers of Environmental Enteropathy are Associated with Animal Exposure and Caregiver Hygiene in Bangladesh. American Journal of Tropical Medicine and Hygiene 2015;93(2):269-75. doi: 10.4269/ajtmh.14-0694 [published Online First: 20150608] 39. Perin J, Burrowes V, Almeida M, et al. A Retrospective Case-Control Study of the Relationship between the Gut Microbiota, Enteropathy, and Child Growth. American Journal of Tropical Medicine and Hygiene 2020;103(1):520-27. doi: 10.4269/ajtmh.19-0761 [published Online First: 20200514] 40. Helen Keller International (HKI) and James P. Grant School of Public Health (JPGSPH). State of food security and nutrition in Bangladesh 2014. HKI and JPGSPH: Dhaka, BD, 2016.

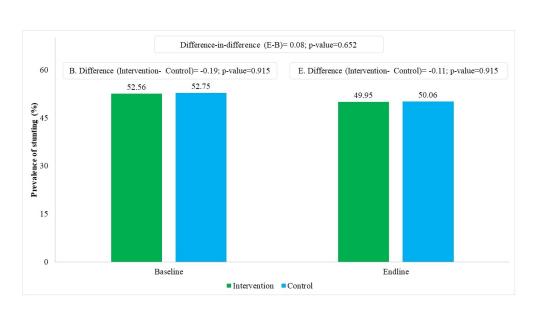
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 7 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 7 \end{array} $		
58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	28

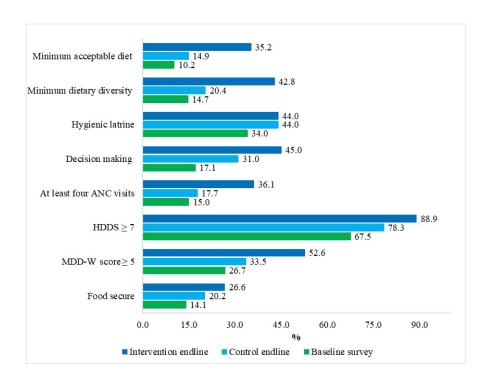
Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline compared to endline. The p-value of the *difference-in-difference* was estimated using interaction analysis in the multiple logistic regression model.

Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS:

household dietary diversity score, MDD-w: minimum dietary diversity for women.

Figure 3. Factors correlating with stunting in children aged 12-23 months, computed using decision tree analysis. (X₁: Less than four ANC visits by a skilled service provider, X₂: Unskilled birth attendant/facility, X₃: Mother involved in income-generating activities, X₄: Maternal BMI <18.5, X_5 : Maternal education: no schooling, X_6 : Household severe food insecurity, X_7 : Monthly income <15000 BDT, X₈: Did not involve with aquaculture, X₉: Having unhygienic latrine, X₁₀: Soap was unavailable in hand washing place, X_{11} : HH size>7, X_{12} : HH dietary diversity score <7, X_{13} : Child's age>18, X_{14} : Child's sex was male, X_{15} : Childhood illness in the last 15 days, and X_{16} : Lacked access to mass media)




Figure 1. Prevalence of childhood stunting in the intervention and control areas at baseline compared to endline. The p-value of the difference-in-difference was estimated using interaction analysis in the multiple logistic regression model.

108x60mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Page 32 of 40

BMJ Open

Figure 2. Results framework and Suchana log frame indicators. ANC: antenatal care, HDDS: household dietary diversity score, MDD-w: minimum dietary diversity for women.

254x190mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

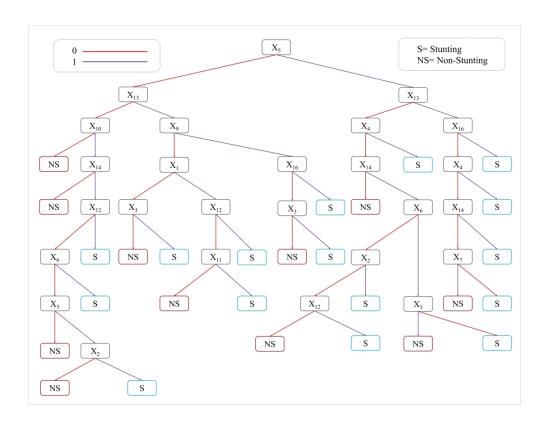
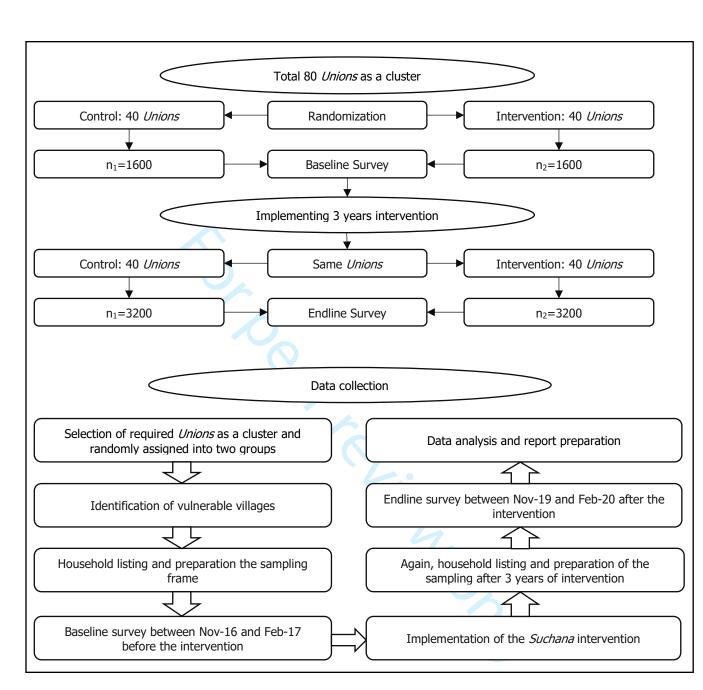


Figure 3. Factors correlating with stunting in children aged 12-23 months, computed using decision tree analysis. (X1: Less than four ANC visits by a skilled service provider, X2: Unskilled birth attendant/facility, X3: Mother involved in income-generating activities, X4: Maternal BMI <18.5, X5: Maternal education: no schooling, X6: Household severe food insecurity, X7: Monthly income <15000 BDT, X8: Did not involve with aquaculture, X9: Having unhygienic latrine, X10: Soap was unavailable in hand washing place, X11: HH size>7, X12: HH dietary diversity score <7, X13: Child's age>18, X14: Child's sex was male, X15: Childhood illness in the last 15 days, and X16: Lacked access to mass media)

325x254mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright


Appendix 1. Sample size calculation

clustersampsi, binomial samplesize p1(0.47) p2(0.41) k40) rho0.01)alpha(0.05) beta(0.8)

Output of the STATA command for sample size calculation

Sample size calculation to determine number of observations required per cluster, for a twosample comparison of proportions (using normal approximations) without continuity correction.

```
For the user specified parameters:
     p1: 0.4700
     p2: 0.4100
     significance level: 0.05
     power: 0.80
              number of clusters available: 40
     intra cluster correlation (ICC): 0.0100
clustersampsi estimated parameters:
     Firstly, assuming individual randomisation: sample size per arm: 1071
     Then, allowing for cluster randomisation: average cluster size required: 38
     sample size per arm: 1520
```


Supplementary Figure 1. The evaluation diagram of Suchana programme

Appendix 2. Data collection

The Suchana data collection software contained built-in validation rules. As the data were entered at the interviewer level and the records were uploaded to a server at the icddr,b using the built-in internet connectivity of the devices, maximum validation rules were set in the data system to prevent errors during data entry, which reduced the data entry burden. This allowed the data analysis team to review the

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright

consistency of the data every day. Data were synchronized to the central server "Web Service" developed in Asp.Net based on the C# (C Sharp) code. Activities such as editing (after receiving any feedback from field staff members), updating, range checks, duplication checks, consistency checks, frequency checks and cross tabulation were regularly performed during the data entry period. In case of any unusual observations, the issues were discussed and resolved.

Appendix 3. Equation of logistic and probit regression

 $logit(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{12} X_{12} + \beta_{13} X_{13} + \beta_{14} X_{14} + \beta_{15} X_{15} + \beta_{16} X_{16}$

 $probit(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9 + \beta_{10} X_{10} + \beta_{12} X_{12} + \beta_{13} X_{13} + \beta_{14} X_{14} + \beta_{15} X_{15} + \beta_{16} X_{16} +$

Where,

- x1: Less than four ANC visits by a skilled service provider
- x2: Unskilled birth attendant/facility
- x3: Mother involved in income-generating activities
- x4: Maternal BMI <18.5
- x5: Maternal education: no schooling
- x6: HH severe food insecurity
- x7: Monthly income <15000 BDT
- x8: Did not involve with aquaculture

and

logit(y) = log[y/(1-y)]

- x9: Having unhygienic latrine x10: Soap was unavailable in hand washing place x11: HH size≥7 x12: HH dietary diversity score <7
- x13: Child's age>18
- x14: Child's sex was male
- x15: Childhood illness in the last 15 days
- x16: Lacked access to mass media

	Vulnerable household verification questions	Inclusion criteria
Step	1	
•	Households currently participating/member of any livelihood, food	If "NO" go ahead for nex
	security or asset transfer program	questions
Step	2	
•	Ability to afford three (3) full meals per day for all family members	
	round the year	
•	Households monthly income BDT 7,500 or more	If
•	Household productive asset value worth BDT 15,000 or more	If anyone is "NO" go
 H Step 2 A F H (0) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (5) (6) (7) ((excluding land, pond and homestead)	ahead for next questions
•	Ownership of homestead land 10 decimals or more	
•	Ownership of cultivable land 50 decimals or more (excluding	
	homestead or pond)	
Step	o 3	
•	Households have married women with in child bearing age (15 to	16
	45 years)	If anyone is 'Yes' go
•	Households have pregnant women (including abandoned or	ahead for registration of
	widowed woman)	enrolling as vulnerable Household
•	Households have 0-23 months old children	nousenoia
•	Households have adolescent girls (15-19 years)	
Sam	pling frame was prepared for collecting data from mother-child pair if	the households had 0-23
mon	ths old children	

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

	Prediction of adjusted stunting [% (95% CI)]	Prediction of adjusted prevalence difference as effect size [*]	p-value
At least four ANC vi	isits by a skilled service provider		
Yes	51.64 (50.05, 53.23)	Reference	
No	47.99 (45.46, 50.53)	3.65 (1.07, 6.22)	0.006
Birth attendant/faci			
Skilled	51.87 (50.23, 53.51)	Reference	
Unskilled	49.42 (47.48, 51.36)	2.45 (0.55, 4.35)	0.012
	income-generating activities	2.10 (0.00, 1.00)	0.012
No	54.55 (50.90, 58.19)	Reference	
Yes	50.59 (49.08, 52.11)	3.95 (0.40, 7.51)	0.029
Maternal BMI	50.55 (47.00, 52.11)	5.55 (0.40, 7.51)	0.027
BMI ≥18.5	54.04 (52.01, 56.07)	Reference	
BMI ≤18.5 BMI <18.5	49.01 (47.21, 50.81)	5.03 (2.66, 7.41)	< 0.001
	was primary completed	5.05 (2.00, 7.41)	<0.001
	54.66 (52.58, 56.74)	Reference	
Yes No			<u>~0 001</u>
	48.21 (46.67, 49.75)	6.45 (4.49, 8.40)	< 0.001
HH food insecurity	52 02 (50 01 55 15)	Deferre	
Below severe	53.03 (50.91, 55.15)	Reference	0.041
Severe	50.36 (48.63, 52.09)	2.66 (0.11, 5.22)	0.041
HH monthly income			
Yes	51.31 (49.79, 52.84)	Reference	
No	48.58 (45.86, 51.30)	2.73 (0.17, 5.30)	0.037
Involved with aquac			
Yes	51.22 (49.72, 52.72)	Reference	
No	46.99 (43.30, 50.69)	4.23 (0.73, 7.73)	0.018
Hygienic latrine			
Yes	52.67 (50.94, 54.4)	Reference	
No	48.36 (46.5, 50.23)	4.31 (2.34, 6.28)	< 0.001
Water and soap avai	ilable in handwashing place		
Yes	52.64 (50.71, 54.58)	Reference	
No	48.54 (46.74, 50.33)	4.10 (1.83, 6.38)	< 0.001
HH size			
Below seven	53.86 (51.98, 55.74)	Reference	
Seven or above	49.41 (47.70, 51.13)	4.44 (2.43, 6.46)	< 0.001
HH dietary diversity			
HDDS ≥ 7	53.92 (51.25, 56.60)	Reference	
HDDS <7	50.10 (48.70, 51.50)	3.83 (1.63, 6.02)	< 0.001
Child's age			
Age ≤ 18 months	56.72 (54.77, 58.67)	Reference	
Age >18 months	46.59 (44.82, 48.35)	10.1 (7.94, 12.32)	< 0.001
Child's sex			.0.001
Female	53.25 (51.17, 55.34)	Reference	
Male	48.40 (46.78, 50.03)	4.85 (2.59, 7.10)	< 0.001
Childhood illness in		1.00 (2.07, 1.10)	<0.001
No	54.90 (52.04, 57.77)	Reference	
Yes	50.49 (48.94, 52.05)	4.41 (1.48, 7.34)	0.003
		4.41 (1.40, 7.34)	0.003
Access of mass medi		Deference	
Yes	51.51 (49.88, 53.15)	Reference	0.000
No	48.13 (45.39, 50.88) 1 values of stunting between the two groups were of	3.38 (0.42, 6.34)	0.028

*Differences in the predicted values of stunting between the two groups were calculated using the Stata "adjrr" package

	Prediction of adjusted stunting [% (95% CI)]	Prediction of adjusted prevalence difference as effect size [*]	p-valu
At least four ANC vi	sits by a skilled service provider		
Yes	51.64 (50.05, 53.23)	Reference	
No	47.99 (45.46, 50.53)	3.65 (1.08, 6.22)	0.007
Birth attendant/facil			
Skilled	51.87 (50.23, 53.51)	Reference	
Unskilled	49.42 (47.48, 51.36)	2.45 (0.54, 4.35)	0.011
	ncome-generating activities		
No	54.55 (50.90, 58.16)	Reference	
Yes	50.59 (49.08, 52.11)	3.93 (0.39, 7.48)	0.024
Maternal BMI			
BMI ≥18.5	54.04 (52.01, 56.07)	Reference	
BMI <18.5	49.01 (47.21, 50.81)	5.03 (2.66, 7.40)	< 0.00
	was primary completed	5.05 (2.00, 7.+0)	<0.00
Yes	54.66 (52.58, 56.74)	Reference	
No	48.21 (46.67, 49.75)	6.45 (4.49, 8.41)	< 0.00
HH food insecurity	48.21 (40.07, 49.75)	0.45 (4.49, 8.41)	<0.00
Below severe	53.01 (50.89, 55.12)	Reference	
Severe	50.37 (48.64, 52.10)	2.64 (0.09, 5.19)	0.042
		2.04 (0.09, 5.19)	0.042
HH monthly income		D. C.	
Yes	51.32 (49.79, 52.84)	Reference	0.025
No	48.56 (45.84, 51.28)	2.75 (0.19, 5.32)	0.035
Involved with aquac			
Yes	51.22 (49.73, 52.71)	Reference	0.010
No	46.99 (43.28, 50.69)	4.24 (0.73, 7.74)	0.018
Hygienic latrine			
Yes	52.67 (50.94, 54.4)	Reference	
No	48.36 (46.5, 50.23)	4.31 (2.34, 6.28)	< 0.00
-	lable in handwashing place		
Yes	52.64 (50.71, 54.58)	Reference	
No	48.53 (46.74, 50.33)	4.11 (1.83, 6.39)	$<\!0.00$
HH size			
Below seven	53.86 (51.98, 55.73)	Reference	
Seven or above	49.41 (47.70, 51.13)	4.44 (2.43, 6.46)	< 0.00
HH dietary diversity			
HDDS ≥ 7	53.90 (51.23, 56.57)	Reference	
HDDS $\overline{<7}$	50.10 (48.71, 51.50)	3.79 (1.60, 5.98)	< 0.00
Child's age			
Age ≤ 18 months	56.72 (54.76, 58.67)	Reference	
Age >18 months	46.59 (44.83, 48.35)	10.1 (7.93, 12.3)	< 0.00
Child's sex			.0.00
Female	53.25 (51.17, 55.33)	Reference	
Male	48.41 (46.78, 50.03)	4.85 (2.60, 7.10)	< 0.00
Childhood illness in		7.05 (2.00, 7.10)	\0.00
No	54.90 (52.04, 57.75)	Reference	
	50.50 (48.94, 52.05)		0.003
Yes		4.40 (1.47, 7.33)	0.003
Access of mass media		D-former	
Yes	51.51 (49.88, 53.15)	Reference	0.000
No	48.13 (45.40, 50.86)	3.38 (0.42, 6.34)	0.028

BMJ Open: first published as 10.1136/bmjopen-2022-067961 on 26 April 2023. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
25 24
25
26
27
28
29
30
31
32
33
34
35
36
30 37
38
39
40
41
42
43
44
45
46
47
48
49 50
50
51
52
53
54
55
56
57
58
59
60

STROBE Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i>	

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1-2
		(b) Provide in the abstract an informative and balanced summary of what	1-2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2
.		was done and what was found	
Introduction	2	Explain the scientific background and rationals for the investigation being	3-6
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-0
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			-
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
betting		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	6
		of participants	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	6-7
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	6-7
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	20
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	7
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	8-9
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling	8-9
		strategy	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	11
-		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	11
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	11
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	11-
		estimates and their precision (eg, 95% confidence interval). Make clear	14
		which confounders were adjusted for and why they were included	

		(b) Report category boundaries when continuous variables were	
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	1
		risk for a meaningful time period	1
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	1
Limitations	19	Discuss limitations of the study, taking into account sources of potential	2
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	1
		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	1
			1
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	2
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.