

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Intestinal microbiota is affected by Helicobacter pylori infection in Japanese adolescents aged 14 or 15 years: a cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047941
Article Type:	Original research
Date Submitted by the Author:	12-Dec-2020
Complete List of Authors:	kakiuchi, Toshihiko; Saga University, Department of Pediatrics Tanaka, Yoshiki; Biofermin Pharmaceutical Co Ltd Ohno, Hiroshi; Biofermin Pharmaceutical Co Ltd Matsuo, Muneaki; Saga University, Department of Pediatrics Fujimoto, Kazuma; International University of Health and Welfare, Department of Gastroenterology
Keywords:	Paediatric gastroenterology < PAEDIATRICS, Gastrointestinal infections < GASTROENTEROLOGY, Diagnostic microbiology < INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

Title: Intestinal microbiota is affected by *Helicobacter pylori* infection in Japanese adolescents aged 14 or 15 years: a cross-sectional study

Short title: Microbiota and H. pylori in adolescents

Toshihiko Kakiuchi¹*, Yoshiki Tanaka², Hiroshi Ohno², Muneaki Matsuo¹ and Kazuma

Fujimoto³

¹Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan

² R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Japan

³ Department of Gastroenterology, International University of Health and Welfare,

Fukuoka, Japan.

*Corresponding author:

Toshihiko Kakiuchi, M.D., Ph. D.

Department of Pediatrics, faculty of Medicine, Saga University, Saga, Japan

E-mail: kakiucht@cc.saga-u.ac.jp

ABSTRACT

Objective: The relationship between *Helicobacter pylori* and the intestinal microbiota has not been clearly demonstrated in children and/or adolescents. The present study aimed to evaluate the effects of *H. pylori* infection on the intestinal microbiota in adolescents using genetic analysis.

Design: a cross-sectional study

Setting and participants: We included subjects from a longitudinal project involving *H. pylori* screening and treatment of junior high school third-grade students (aged 14 or 15 years) in Saga Prefecture. The study included a control group (n = 79) who were negative for anti-*H. pylori* antibody in urine and a *H. pylori* group (n = 80) who were positive for anti-*H. pylori* antibody in urine and *H. pylori* antigen in stool specimens. Interventions: The intestinal microbiota was evaluated in stool specimens using 16S rRNA gene/DNA/amplicon sequencing with next generation sequencing.

Primary and secondary outcome measures: Alpha, beta diversity and relative abundances within the bacterial composition at the genus level in the control and *H*. *pylori* groups

Results: As shown by the alpha diversity of the 16S rRNA gene/DNA/amplicon sequence data, the control group had lower microbial species richness with lower alpha diversity compared with the *H. pylori* group (P < 0.001). Beta diversity of the intestinal microbiota profile also differed between the two groups (P < 0.01). The relative

BMJ Open

abundance of the *Prevotella* genus was higher in the *H. pylori* group (P < 0.01) concomitant with a gain in body mass index in the *H. pylori* group (P < 0.01) compared with the control group.

Conclusions: The intestinal microbiota is significantly affected by *H. pylori* infection in Japanese adolescents. Additionally, the prevalence of the *Prevotella* genus is concomitantly increased along with the body mass index in *H. pylori*-infected students. **Trial registration number:** This study was registered with the University Hospital Medical Information Network (UMIN) Clinical Trials Registry (No. UMIN000028721). Strengths and limitations of this study

>The most strength of this study is that the effect of *Helicobacter pylori* (*H. pylori*) infection on the intestinal microbiota had been clearly demonstrated in children. > Because the participants were Japanese adolescents of almost the same age living in a single prefecture, it is presumed that there would be no major difference the two groups. >This study evaluated the intestinal microbiota using feces specimens, of which may be different from the mucosal-associated microbiota.

>The effect of eradication of *H. pylori* on the intestinal microbiota could not be analyzed, because the eradication therapy is important for intestinal microbiota changes.

Keywords: Prevotella genus, 16S rRNA, body mass index, screening and treatment

 Abbreviations: *Helicobacter pylori* = *H. pylori*, OTUs = operational taxonomic units, ANOVA = analysis of variance, PERMDISP = permutational analysis of multivariate

dispersions

Word count: 2,765words

to oper teries only

INTRODUCTION

Newborns are exposed to various bacteria that are present in the mother's resident microbiota and the external environment. Bacterial species that comprise the intestinal microbiota change in an age-dependent manner ¹². Development of the intestinal microbiota during infancy is affected by several factors, including the maternal resident microbiota ³⁴, the method of nutrition for infants ⁵⁻⁷, delivery style ⁵⁸⁹, and the administration of antibiotics ³¹⁰¹¹.

Sustained infection of *Helicobacter pylori* decreases and/or increases gastric acid secretion, which might affect the gastric microbiota in adults ¹²⁻¹⁴ and children ^{12 13}. Several reports have suggested that the intestinal microbiota is significantly affected by *H. pylori* infection ^{14 15}. The effect of *H. pylori* infection on the intestinal microbiota has been investigated in adults ^{15 16}, but has not been clearly demonstrated in children.

Therefore, the present study aimed to examine junior high school students in Japan aged from 14 to 15 years to determine whether *H. pylori* infection changes the intestinal microbiota. We also examined how body mass index (BMI) affects the intestinal microbiota, in addition to *H. pylori* infection.

METHODS

2.1. Study design and subjects

The longitudinal project for *H. pylori* screening and treatment among junior high school third-grade students in Saga Prefecture started in 2016 with the aim of primary

Page 7 of 40

BMJ Open

prevention of stomach cancer¹⁷. Figure 1 shows a flowchart of the junior high school third-grade students in Saga Prefecture in 2017. Among 8519 junior high school students aged 14 or 15 years old, 7230 received a screening urinary test (RAPIRAN; Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan) to detect anti-H. pylori immunoglobulin-G antibody by immunochromatography. The diagnostic sensitivity, specificity, negative predictive value, and positive predictive value of the urinary test have been reported to be 78.4%, 100%, 90.1%, and 100%, respectively ¹⁸. A total of 6874 students tested negative for *H. pylori* with the urinary test and 79 of these students were randomly selected as the *H. pylori*-negative group (control group). Students who tested positive in the screening urinary test received an *H. pylori* stool antigen detection test (TESTMATE RAPID PYLORI ANTIGEN; Wakamoto Pharmaceutical Co., Ltd. Tokyo, Japan). Among 290 students who received the stool antigen test, 234 students were positive for *H. pylori* infection. Finally, 80 of these students were randomly selected as the *H. pylori*-positive group (*H. pylori* group). The exclusion criteria for the present study were as follows: i) students who had taken medications, including proton-pump inhibitors, H₂ receptor antagonists, antacids, probiotics, mucosal protective agents, and/or antibiotics within the 6 months prior to enrollment, ii) students who were in the outpatient hospital because of sickness, and iii) students who had undergone eradication therapy for *H. pylori*.

The microbiota distribution was compared between the control and *H. pylori* groups regarding alpha diversity, beta diversity, and the relative abundance of the intestinal microbiota. The effect of BMI (low: < 15, middle: 15 to 25, high: > 25) on the microbiota distribution in the two groups was examined.

2.2. Stool sample collection and bacterial DNA extraction from feces

Each participant collected a stool sample at home for the present study using a paper stool collector and tube that was pre-filled with 5 ml of stool DNA stabilizer. Samples were immediately stored at -20°C and then delivered to the project center within 1 day. Extraction of bacterial DNA was performed as described previously ¹⁹. A total of 20 mg of feces were washed three times in 1.0 ml of PBS and centrifuged (14,000 × g). The pellets were resuspended in a solution containing 450 μ l of extraction buffer (100 mM Tris-HCl, 40 mM EDTA; pH 9.0) and 50 μ l of 10% sodium dodecyl sulfate. A total of 300 mg of glass beads (diameter, 0.1 mm) and 500 μ l of buffer-saturated phenol were added to the suspension and vortexed vigorously. After centrifugation at 14,000 × g for 5 min, 400 μ l of the supernatant was extracted by phenol–chloroform, and 250 μ l of the supernatant was subjected to isopropanol precipitation. Finally, the DNA was suspended in 1.0 ml of Tris-EDTA buffer.

2.3. DNA sequence analysis

Page 9 of 40

BMJ Open

Meta-analysis of the bacterial 16S rDNA sequences in the feces was performed in accordance with a previously described method ²⁰ with minor modifications. In brief, the V3–V4 region of 16S rDNA was amplified on a Veriti thermal cycler (Thermo Fisher Scientific, Waltham, MA, USA). The amplicon was purified using AMPure XP magnetic beads (Beckman Coulter, Brea, CA, USA). For multiplex sequencing, a polymerase chain reaction was performed with dual eight-base indices (Nextera XT Index kit, Illumina, CA, USA). After purification by AMPure XP beads, the purified barcoded library was quantified fluorometrically using a QuantiT PicoGreen ds DNA Assay Kit (Invitrogen, Paisley, UK) and pooled at the same volume. The library pool (10 pM) was spiked with 40% PhiX control DNA (10 pM). Sequencing was conducted on a MiSeq platform with MiSeq Reagent Kit v2 chemistry (Illumina).

2.4. Microbiota analysis

Removal of low-quality sequences and chimera sequences, construction of operational taxonomic units (OTUs), and taxonomy assignment were conducted using the Quantitative Insights Into Microbial Ecology pipeline (http://qiime.org/) ²¹. In brief, 50,000 raw reads were randomly obtained from the sequence files for each sample and merged by fastq-join with the default setting. Consequently, sequence reads with an average quality value of < 25 were removed and then chimera-checked. Five thousand reliable sequence reads were randomly obtained for each sample and OTUs were

BMJ Open

> constructed by clustering with a 97% identity threshold. The representative reads of each OTU were then assigned to the 16S rRNA gene database using UCLUST with \geq 97% identity ²². Comparison of each taxon in the gut microbiota was conducted at the genus level. Beta diversity was estimated by computing the weighted and unweighted UniFrac distances between samples ²³. To compare the differences in the overall bacterial gut microbiota structure, principal co-ordinates analysis was applied to reduce the dimensionality of the resulting distance matrix. The Shannon index, observed OTUs, chao 1, and the abundance-based coverage estimator index were calculated to investigate the alpha diversity of the microbiota in the samples.

2.5. Statistical analysis

All statistical analyses were conducted with R statistical software (R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/). Data are shown as mean \pm SE. Statistical significance was set at P < 0.05. During the analyses of the gut microbiotas, statistical significance was determined by a Welch's t test with Benjamini– Hochberg correlation. The relative abundance data were non-normally distributed; however, we applied Welch's T-test because the Mann–Whitney U-test is reported to be less robust ²⁴. Beta diversity was analyzed using permutational analysis of multivariate dispersions (PERMDISP) for comparisons of gene similarity.

RESULTS

3.1. Student characteristics

A total of 159 students participated in this study. The students' characteristics are shown in Table 1. There were no significant differences in sex, age, BMI, birth delivery style, method of infant nutrition, or the prevalence of allergic disease between the groups. The ratio of nursery school graduates to kindergarten graduates was significantly higher in the *H. pylori* group than in the control group (P < 0.001).

3.2. Alpha and beta diversity in the control and *H. pylori* groups

Figure 2 shows the alpha diversity of the 16S rRNA gene/DNA/amplicon sequence data. The control group showed lower microbial species richness with lower alpha diversity compared with the *H. pylori* group. The observed species index, chao 1 index, and ACE index all showed significantly higher diversity in the *H. pylori* group compared with the control group (P < 0.001). The Shannon index was not significantly different between the two groups (P = 0.054).

Figure 3 shows the beta diversity of the 16S rRNA gene/DNA/amplicon sequence data. Two-dimensional principle coordinate analysis of the weighted and unweighted UniFrac distances of the 16S rRNA gene/DNA/amplicon sequence data showed that the majority of samples were clustered dependent on the *H. pylori* infection status. The analysis of similarity showed that the differences were significant for the weighted UniFrac distance (P < 0.001), but no significant for the unweighted UniFrac distance (P = 0.643) using PERMDISP.

3.3. Relative abundances within the bacterial composition at the genus level for the two groups

Figure 4 shows the 13 main types of bacteria present in the intestinal microbiota at the genus level as follows: *Bacteroides*, *Blautia*, *Bifidobacterium*, *Faecalibacterium*, *Prevotella*, *Fusicatenibacter*, *Eubacterium*, *Anaerostipes*, *Subdoligranulum*, *Streptococcus*, *Megamonas*, *Collinsella*, and *Clostridium*. The relative abundances of the *Prevotella* genus (P < 0.01) and *Collinsella* genus (P < 0.05) were significantly higher in the *H. pylori* group than in the control group. The relative abundance of the *Subdoligranulum* genus was significantly higher in the control group than in the *H. pylori* group (P < 0.01).

3.4. BMI and the relative abundances within the bacterial composition at the genus level

In the control and *H. pylori* groups, the intestinal microbiota was evaluated in association with BMI. Figure 5 shows the seven main types of bacteria in the intestinal microbiota at the genus level for the control group and the *H. pylori* group, categorized

BMJ Open

by BMI. For the control group, these included Bacteroides, Blautia, Bifidobacterium, Prevotella, Faecalibacterium, Fusicatenibacter, and Megamonas. For the H. pylori group, these included Prevotella, Bacteroides, Blautia, Bifidobacterium, Faecalibacterium, Megamonas, and Fusicatenibacter. In the H. pylori group, the relative abundance of the *Prevotella* genus was significantly higher in the high BMI group compared with the middle and low BMI groups (both P < 0.01). Furthermore, the relative abundance of the *Prevotella* genus in the middle BMI group was higher than that in the low BMI group (P < 0.05). The relative abundances of *Bacteroides* and *Bifidobacterium* were significantly lower in the high BMI group compared with the other two groups (both P < 0.05). In the *H. pylori* group, BMI had no effect on the relative abundances of Blautia, Faecalibacterium, Magamonas, and Fusicatenibacter. In the control group, the relative abundance of the *Prevotella* genus was not significantly higher in the high BMI group compared with the middle and low BMI groups, whereas the relative abundance of the Prevotella genus significantly increased in proportion to an increase in BMI in the *H. pylori* group (low BMI vs high BMI: *P* < 0.001, middle BMI vs high BMI: P < 0.001) (Figure 6). The Subdoligranulum genus had a lower relative abundance in the high BMI category than in the low BMI group, but this trend was observed not only in the *H. pylori* group but also in the control group (Figure 7). The Collinsella genus was not associated with BMI regardless of H. pylori infection status (Figure 8).

DISCUSSION

The present study revealed two clinically important results: i) *H. pylori* infection significantly affected the intestinal microbiota of adolescents aged 14 or 15 years, as determined for Japanese junior high school students; ii) An increase in the relative abundance of the *Prevotella* genus in *H. pylori*-infected adolescents was concomitant with a gain in BMI.

Most reports of the effects of *H. pylori* on the intestinal microbiota based on the analysis of feces samples were in adults and data were lacking for children ^{25 26}. The present study showed a difference in the intestinal microbiota between *H. pylori*-infected and non-infected adolescents based on feces specimens. Alpha diversity, bacterial richness, and variance all showed greater diversity in *H. pylori*-infected students than in controls (Figure 2). A previous study showed that the diversity of the gastric microbiota in adolescents was enhanced by *H. pylori* infection ¹². Studies of the relationship between the intestinal microbiota and *H. pylori* infection are limited. One study reported a decrease in the *Firmicutes* genus in the human duodenal mucosa during *H. pylori* infection ²⁷. In the *H. pylori* infection model of Mongolian gerbils, the abundances of the *Bacteroides* and *Enterococcus* genera were increased in the duodenal mucosa ²⁸. In adults, the intestinal microbiota has been shown to be reduced in diversity during *H. pylori* infection ¹⁶ and our results were similar to those reported in adults

BMJ Open

previously (Figure 2, 3). The human gut microbiota has been reported to form by the age of 3 years ²⁹, so it may be that there is no difference in the effects of *H. pylori* infection on the intestinal microbiota between adolescents and adults.

It is known that infection with *H. pylori* reduces gastric acid secretion in children ^{30 31}. It was further suggested that a decrease in gastric acid secretion due to *H. pylori* infection may affect the intestinal flora of adolescents with *H. pylori* infection. In addition, a decrease in gastric acid secretion caused by *H. pylori* infection may allow a wide variety of bacteria in the oral cavity to more easily pass through the stomach and reach the lower gastrointestinal tract, thereby affecting the intestinal flora in feces. This might explain the result of the present study that alpha diversity of the fecal intestinal microbiota was increased in students with *H. pylori* infection. As suggested by the present study, *H. pylori* infection might be a factor that disturbs the intestinal microbiota in adolescents. The mechanisms and clinical importance of the effect of *H. pylori* warrant further investigation.

The *Prevotella* genus increased in abundance during *H. pylori* infection, and this increase was found to be concomitant with a rise in BMI in the present study. A previous report indicated that the *Prevotella* genus was elevated in abundance in school-age children infected with *H. pylori* ³². The *Bacteroides* and *Bifidobacterium* genera are dominant among the intestinal microbiota in Japanese children ³³. A previous study showed that the prevalence rate of the *Prevotella* genus in the intestinal

Page 16 of 40

BMJ Open

> microbiota was higher in subjects who consumed carbohydrates more frequently ³⁴. which suggests that the *Prevotella* genus is closely related to eating habits. A correlation between *H. pylori* infection and the onset of diabetes has been reported in epidemiology studies ^{35 36}, but the reason for this remains unknown. Meanwhile, the prevalence of the *Prevotella* genus increased in patients with obesity ^{37 38}, nonalcoholic steatohepatitis ³⁹, hyperlipidemia ⁴⁰, and even in gestational diabetes, which is considered as a diabetes mellitus preliminary group ⁴¹. The *Prevotella* genus is considered to contribute to hyperglycemia and insulin resistance ^{38 42 43}. In the present study, an increase in the relative abundance of *Prevotella* genus was observed in H. pylori-infected children with an increased BMI (Figure 5, 6). H. pylori infection in children with an elevated BMI without diabetes mellitus, caused an increase in the prevalence of the *Prevotella* genus (Figure 5, 6) and, as a result, insulin resistance increased, which may predispose individuals to diabetes mellitus. In fact, it is thought that the increase in *Prevotella* genus may be involved in the process of developing abnormal glucose metabolism as a result of obesity 44 45.

The *Subdoligranulum* genus showed a lower relative abundance in the high BMI category than in the low BMI group, but this trend was seen not only in the *H. pylori* group but also in the control group (Figure 7). The *Collinsella* genus was not associated with BMI regardless of *H. pylori* infection status (Figure 8). It has been reported that the *Subdoligranulum* genus is less prevalent among type 2 diabetes

BMJ Open

patients compared with their non-diabetic counterparts ⁴⁶, and a negative correlation with insulin resistance has been shown ⁴⁷. It has been reported that an increase in *Collinsella* genus is associated with an increase in insulin, triglyceride, and very low density lipoprotein levels ⁴⁸, and is associated with type 2 diabetes ⁴⁹. In our study, of the three genera (*Prevotella, Subdoligranylum*, and *Collinsella*) that showed significant differences in relative abundance between the *H. pylori* and control groups, the *Prevotella* genus showed the most significant correlation between *H. pylori* infection status and BMI. The *Prevotella* genus was the only genus that showed an association with BMI in the *H. pylori* group but not the control group.

There are several limitations to the present study. i) The present study evaluated feces specimens, the microbiota of which may be different from the mucosal-associated microbiota. ii) The effect of eradication of *H. pylori* on the intestinal microbiota could be important ⁵⁰, and we plan to investigate this in the future. iii) There was a difference in preschool status between the two groups (Table 1), and it could not be completely ruled out that this could have affected the intestinal microbiota.

CONCLUSION

The present study shows that the intestinal microbiota is significantly affected by *H*. *pylori* infection in junior high school third-grade students in Saga Prefecture, Japan.

Furthermore, the relative abundance of the *Prevotella* genus was increased concomitantly with a rise in BMI in *H. pylori*-infected students.

Acknowledgments

We would like to thank Mr. Daisuke Takami of R&D Center, Biofermin Pharmaceutical Co., Ltd. for his co-operation. We thank Ms. Kozue Kakiuchi, Ms. Tomomi Ito, and Ms. Hiromi Beppu for project support.

Author contributors

This study was supported by Biofermin Pharmaceutical Co., Ltd. (Kobe, Japan), who performed intestinal microbiota analysis and statistical evaluation. However, their contribution did not influence the analysis or interpretation of the data in this study. The authors (YT and HO) did not play any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Study concept and design: TK and KF. Acquisition of data: TK. Analysis and interpretation of data: TK. Drafting of the manuscript: TK. Critical revision of the manuscript for important intellectual content: MM and KF. Statistical analysis: YT and HO. Administrative, technical, or material support: YT and HO. Study supervision: MM and KF. Writing, reviewing, and editing: MM and KF.

BMJ Open

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests: The authors declare that they have no conflict of interest.

Patients consent for publication: Informed consent was obtained from all individual participants included in the study. Signed informed consent was obtained from each study participant prior to participation in the study.

Ethical approval: The ethical aspects of this study were reviewed and approved by the institutional review board of Saga University Hospital (approval number: 2016-11-03). Written informed consent was obtained from all of the students and their guardians. All methods were carried out in accordance with relevant guidelines and regulations or Helsinki guidelines.

Provenance and peer review: Not commissioned; externally peer-reviewed.

Date availability statement: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES

- 1 Matsuki T, Yahagi K, Mori H, *et al.* A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. *Nat Commun* 2016;7:11939.
- 2 Yatsunenko T, Rey FE, Manary MJ, *et al.* Human gut microbiome viewed across age and geography. *Nature* 2012;486:222-7.
- 3 Romero R, Hassan SS, Gajer P, *et al.* The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. *Microbiome* 2014;2:4.
- 4 Aagaard K, Riehle K, Ma J, *et al.* A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. *PLoS One* 2012;7:e36466.
- 5 Backhed F, Roswall J, Peng Y, *et al.* Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. *Cell Host Microbe* 2015;17:690-703.
- 6 Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breastand formula-fed newborns by using fluorescence in situ hybridization (FISH). *Anaerobe* 2011;17:478-82.
- Penders J, Vink C, Driessen C, *et al.* Quantification of Bifidobacterium spp.,
 Escherichia coli and Clostridium difficile in faecal samples of breast-fed and
 formula-fed infants by real-time PCR. *FEMS Microbiol Lett* 2005;243:141-7.

Page 21 of 40

BMJ Open

8	Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet
	shape microbiome maturation during early life. Sci Transl Med 2016;8:343ra82.
9	Mueller NT, Bakacs E, Combellick J, et al. The infant microbiome
	development: mom matters. Trends Mol Med 2015;21:109-17.
10	Fouhy F, Guinane CM, Hussey S, et al. High-throughput sequencing reveals the
	incomplete, short-term recovery of infant gut microbiota following parenteral
	antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents
	Chemother 2012;56:5811-20.
11	Tanaka S, Kobayashi T, Songjinda P, et al. Influence of antibiotic exposure in
	the early postnatal period on the development of intestinal microbiota. FEMS
	Immunol Med Microbiol 2009;56:80-7.
12	Brawner KM, Kumar R, Serrano CA, et al. Helicobacter pylori infection is
	associated with an altered gastric microbiota in children. Mucosal Immunol
	2017;10:1169-77.
13	Llorca L, Perez-Perez G, Urruzuno P, et al. Characterization of the Gastric
	Microbiota in a Pediatric Population According to Helicobacter pylori Status.
	<i>Pediatr Infect Dis J</i> 2017;36:173-8.
14	Oh B, Kim BS, Kim JW, et al. The Effect of Probiotics on Gut Microbiota
	during the Helicobacter pylori Eradication: Randomized Controlled Trial.
	<i>Helicobacter</i> 2016;21:165-74.

BMJ Open

- 15 Buhling A, Radun D, Muller WA, *et al.* Influence of anti-Helicobacter triple-therapy with metronidazole, omeprazole and clarithromycin on intestinal microflora. *Aliment Pharmacol Ther* 2001;15:1445-52.
- 16 Kakiuchi T, Matsuo M, Endo H, *et al.* A Helicobacter pylori screening and treatment program to eliminate gastric cancer among junior high school students in Saga Prefecture: a preliminary report. *J Gastroenterol* 2019;54:699-707.
- 17 Kakiuchi T, Matsuo M, Endo H, *et al.* A Helicobacter pylori screening and treatment program to eliminate gastric cancer among junior high school students in Saga Prefecture: a preliminary report. *J Gastroenterol* 2019.
- 18 Okuda M, Kamiya S, Booka M, *et al.* Diagnostic accuracy of urine-based kits for detection of Helicobacter pylori antibody in children. *Pediatrics international : official journal of the Japan Pediatric Society* 2013;55:337-41.
- 19 Matsuki T, Watanabe K, Fujimoto J, et al. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. *Appl Environ Microbiol* 2004;70:167-73.
- 20 Fadrosh DW, Ma B, Gajer P, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. *Microbiome* 2014;2:6.
- 21 Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. *Nat Methods* 2010;7:335-6.

BMJ Open

3		
7	22	Edgar RC. Search and clustering orders of magnitude faster than BLAST.
8 9 10		Bioinformatics 2010;26:2460-1.
11 12 13	23	Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing
14 15		microbial communities. Appl Environ Microbiol 2005;71:8228-35.
16 17 18	24	Asaka M. A new approach for elimination of gastric cancer deaths in Japan. Int
19 20 21		J Cancer 2013;132:1272-6.
22	25	Dash NR, Khoder G, Nada AM, et al. Exploring the impact of Helicobacter
25 26		pylori on gut microbiome composition. PLoS One 2019;14:e0218274.
27 28 29	26	Yang YJ, Sheu BS. Metabolic Interaction of Helicobacter pylori Infection and
30 31 32		Gut Microbiota. Microorganisms 2016;4.
33 34	27	Schulz C, Schutte K, Koch N, et al. The active bacterial assemblages of the
35 36 37		upper GI tract in individuals with and without Helicobacter infection. Gut
38 39 40		2018;67:216-25.
41 42 43	28	Yin YN, Wang CL, Liu XW, et al. Gastric and duodenum microflora analysis
44 45		after long-term Helicobacter pylori infection in Mongolian Gerbils. Helicobacter
46 47 48		2011;16:389-97.
49 50 51	29	Mitsuoka T, Hayakawa K, Kimura N. [The faecal flora of man. II. The
52 53 54		composition of bifidobacterium flora of different age groups (author's transl)].
55 56		Zentralbl Bakteriol Orig A 1974;226:469-78.
57 58 59 60	30	Boukthir S, Aouididi F, Mazigh Mrad S, et al. [Chronic gastritis in children].

Tunis Med 2007;85:756-60.

- 31 Yu Y, Su L, Wang X, *et al.* Association between Helicobacter pylori infection and pathological changes in the gastric mucosa in Chinese children. *Intern Med* 2014;53:83-8.
- 32 Benavides-Ward A, Vasquez-Achaya F, Silva-Caso W, *et al.* Helicobacter pylori and its relationship with variations of gut microbiota in asymptomatic children between 6 and 12 years. *BMC Res Notes* 2018;11:468.
- 33 Nakayama J, Watanabe K, Jiang J, *et al.* Diversity in gut bacterial community of school-age children in Asia. *Sci Rep* 2015;5:8397.
- Lim MY, Rho M, Song YM, *et al.* Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet. *Sci Rep* 2014;4:7348.
- 35 Jeon CY, Haan MN, Cheng C, *et al.* Helicobacter pylori infection is associated with an increased rate of diabetes. *Diabetes Care* 2012;35:520-5.
- 36 Marietti M, Gasbarrini A, Saracco G, *et al.* Helicobacter pylori infection and diabetes mellitus: the 2013 state of art. *Panminerva Med* 2013;55:277-81.
- 37 Furet JP, Kong LC, Tap J, *et al.* Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. *Diabetes* 2010;59:3049-57.
- 38 Moreno-Indias I, Sanchez-Alcoholado L, Garcia-Fuentes E, et al. Insulin

BMJ Open

resistance is associated with specific gut microbiota in appendix samples from					
morbidly obese patients. Am J Transl Res 2016;8:5672-84.					
Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients					
with nonalcoholic fatty liver disease. <i>Hepatology</i> 2013;58:120-7.					
Roager HM, Licht TR, Poulsen SK, et al. Microbial enterotypes, inferred by the					
prevotella-to-bacteroides ratio, remained stable during a 6-month randomized					
controlled diet intervention with the new nordic diet. Appl Environ Microbiol					
2014;80:1142-9.					
Fugmann M, Breier M, Rottenkolber M, et al. The stool microbiota of insulin					
resistant women with recent gestational diabetes, a high risk group for type 2					
diabetes. Sci Rep 2015;5:13212.					
Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes					
impact host serum metabolome and insulin sensitivity. <i>Nature</i> 2016;535:376-81.					
Lin L, Wen ZB, Lin DJ, et al. Correlations between microbial communities in					
stool and clinical indicators in patients with metabolic syndrome. World J Clin					
Cases 2018;6:54-63.					
Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with					
type 1 diabetes differs from that in healthy children: a case-control study. BMC					
<i>Med</i> 2013;11:46.					
Leiva-Gea I, Sanchez-Alcoholado L, Martin-Tejedor B, et al. Gut Microbiota					
24					
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

Differs in Composition and Functionality Between Children With Type 1 Diabetes and MODY2 and Healthy Control Subjects: A Case-Control Study. *Diabetes Care* 2018;41:2385-95.

- 46 Khorraminezhad L, Leclercq M, O'Connor S, *et al.* Dairy product intake modifies gut microbiota composition among hyperinsulinemic individuals. *Eur J Nutr* 2020.
- 47 Lv Y, Zhao X, Guo W, et al. The Relationship between Frequently Used Glucose-Lowering Agents and Gut Microbiota in Type 2 Diabetes Mellitus. J Diabetes Res 2018;2018:1890978.
- 48 Gomez-Arango LF, Barrett HL, McIntyre HD, *et al.* Connections Between the Gut Microbiome and Metabolic Hormones in Early Pregnancy in Overweight and Obese Women. *Diabetes* 2016;65:2214-23.
- 49 Lambeth SM, Carson T, Lowe J, *et al.* Composition, Diversity and Abundance of Gut Microbiome in Prediabetes and Type 2 Diabetes. *J Diabetes Obes* 2015;2:1-7.
- 50 Takara Y, Endo H, Nakano R, *et al.* Smoking and Drinking Did Not Increase the Failure of Therapeutic Helicobacter pylori Eradication by Vonoprazan, Clarithromycin, and Amoxicillin. *Digestion* 2019;99:172-8.

groups

		Control group	H. pylori group	P value
		(n = 79)	(n = 80)	
Sex	(male/female)	42/37	46/34	0.80
Age	(years)	14.73 ± 0.33	14.76 ± 0.32	0.71
BMI	(kg/m ²)	19.69 ± 3.48	19.67 ± 2.41	0.97
Delivery	(vaginal/C-section)	68/11	60/11	0.79
Nutrition	(breast/formula/mix)	37/6/36	27/15/36	0.07
School	(nursery/kindergarten/none)	25/54/0	53/25/2	< 0.001
Allergies	(+/-)	5/75	7/73	0.55

Delivery: birth delivery style; C-section: cesarean section; nutrition: method of infant

nutrition; school: pre-school situation; BMI: body mass index.

Figure legends

Figure 1. Flowchart for *Helicobacter pylori* screening and treatment of junior high school students in Saga Prefecture and the selection method used to obtain the two groups.

The *H. pylori* group comprised 80 students who tested positive for urinary anti-*H. pylori* immunoglobulin-G antibody, gave a positive stool antigen test, and consented to the study. The control group (n = 79) comprised those who tested negative for both tests.

Figure 2. Alpha diversity of the 16S rRNA sequences in the control and *H. pylori* groups

The control group showed lower microbial species richness compared with the *H. pylori* group. The observed species index (S. obs), chao 1 index, and abundance-based coverage estimator index all showed significantly higher diversity in the *H. pylori* group than in the control group (*P < 0.001). The Shannon index was not significantly different between the two groups (P = 0.054). OTUs: operational taxonomic units.

Figure 3. Beta diversity of the 16S rRNA/DNA/amplicon sequence data (control group vs *H. pylori* group)

 PCO: principal coordinate analysis; PERMDISP: permutational analysis of multivariate dispersions.

Figure 4. The main 13 types of bacteria present in the intestinal microbiota at the genus level, comparing the *H. pylori* and control groups.

*P < 0.05; **P < 0.01.

Figure 5. The seven main types of bacteria present in the intestinal microbiota at the genus level for the control group (A) and the *H. pylori* group (B) in association with body mass index (BMI)

P* < 0.05; *P* < 0.01. Low: BMI < 15; Mid: BMI of 15 to 25; High: BMI > 25.

Figure 6. Relative abundance of the Prevotella genus in relation to BMI category in

the *H. pylori* and control groups

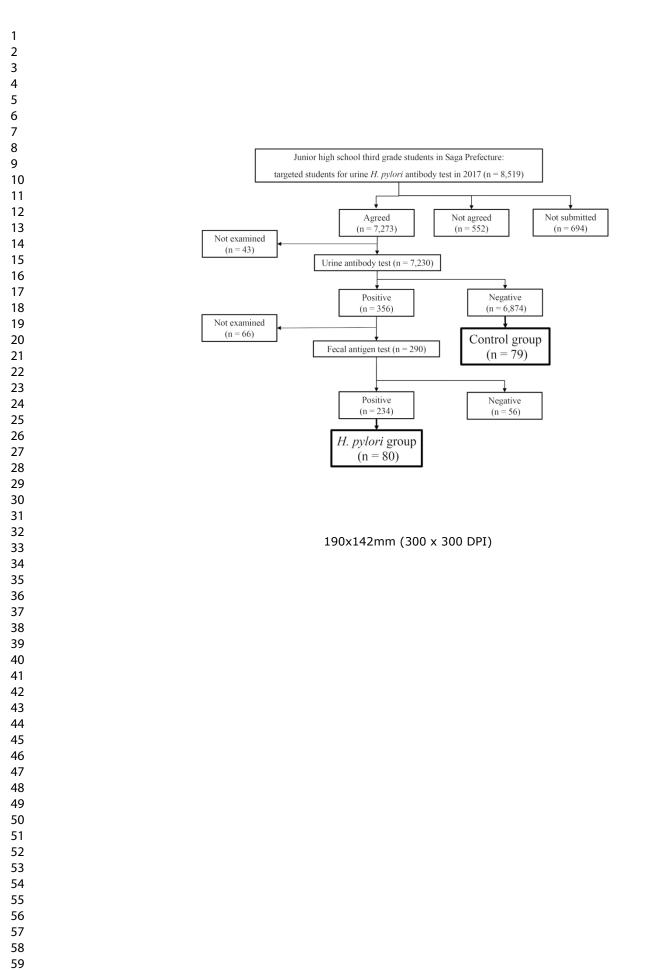
Low: BMI < 15; Mid: BMI of 15 to 25; High: BMI > 25.

P* < 0.05; *P* < 0.01; ****P* < 0.001.

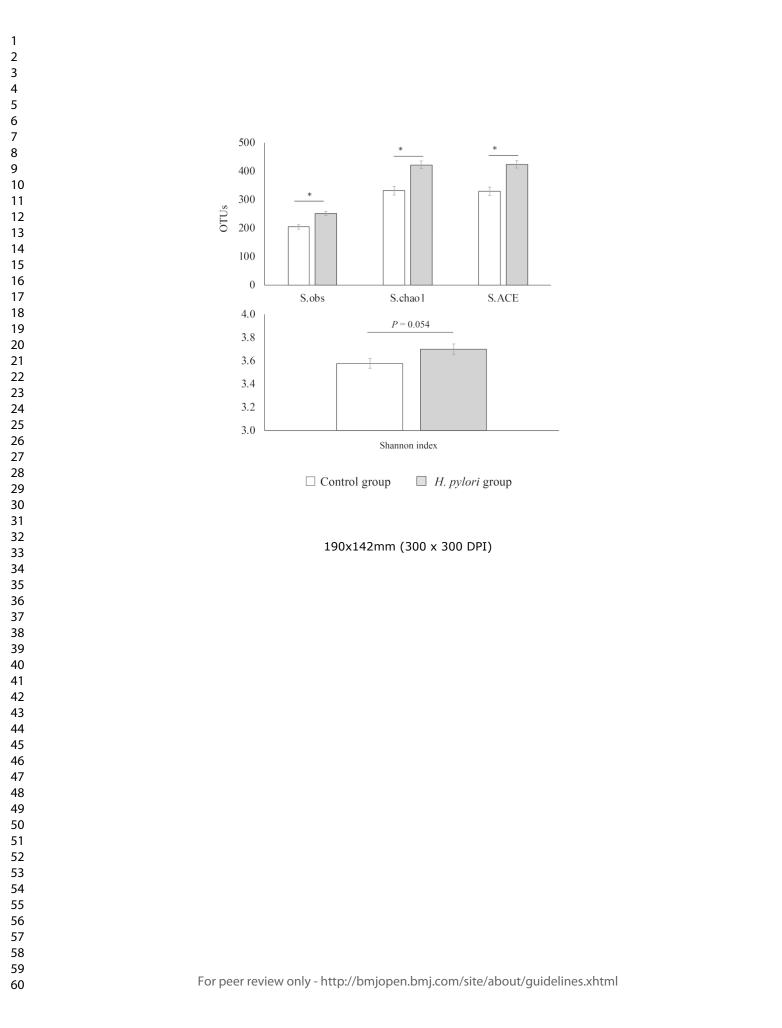
Figure 7. Relative abundance of the *Subdoligranulum* genus in relation to BMI category in the *H. pylori* and control groups

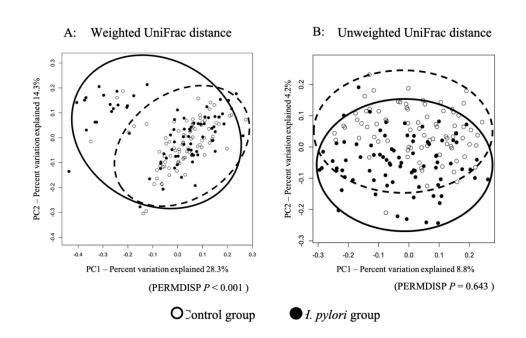
Low: BMI < 15; Mid: BMI of 15 to 25; High: BMI > 25.

P* < 0.05; *P* < 0.01.

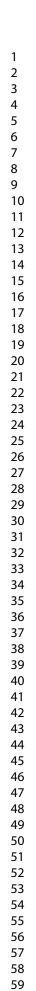

Figure 8. Relative abundance of the Collinsella genus in relation to BMI category

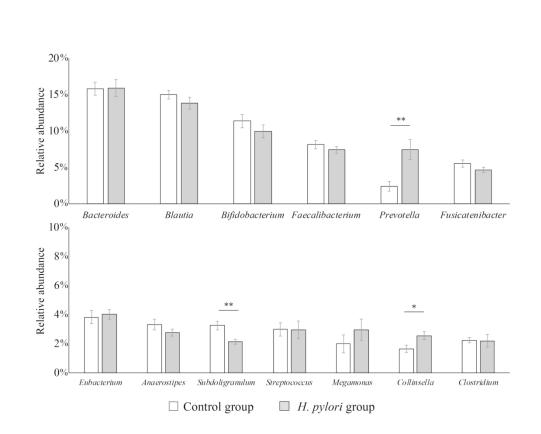
or open terrer only


in the H. pylori and control groups

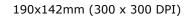

Low: BMI < 15; Mid: BMI of 15 to 25; High: BMI > 25.

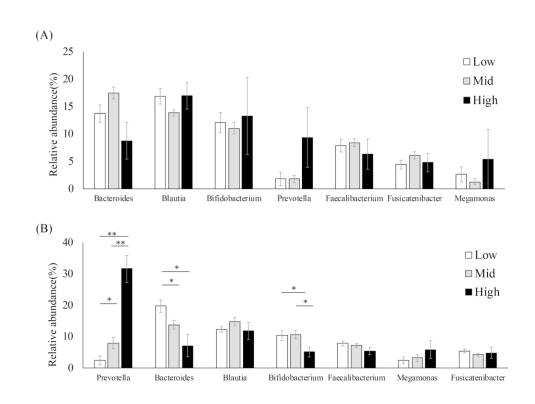
BMJ Open


BMJ Open



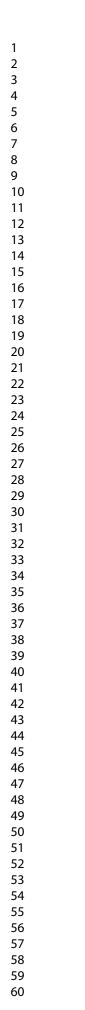
246x178mm (144 x 144 DPI)

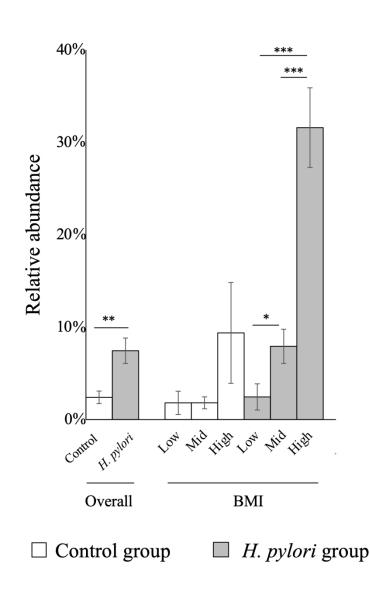

BMJ Open: first published as 10.1136/bmjopen-2020-047941 on 2 July 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.



60

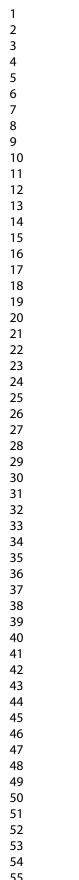
BMJ Open

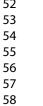




190x142mm (300 x 300 DPI)

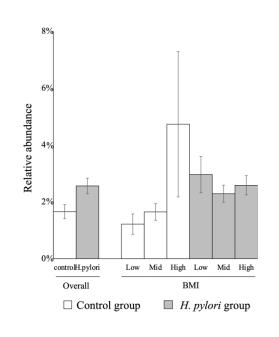
BMJ Open: first published as 10.1136/bmjopen-2020-047941 on 2 July 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.




159x197mm (300 x 300 DPI)

6% 4% 4% 2% 2% 0% controlH.pylori Overall Control group H. pylori group

8%


190x134mm (300 x 300 DPI)

59

190x134mm (300 x 300 DPI)

1 2 3 4	Reportin	g ch	ecklist for cross sectional study.		
5 6 7	Based on the STROBE cross sectional guidelines.				
, 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 50 50 50 50 50 50 50 50 50	Instructions	to aut	hors		
	Complete this che items listed below	5	entering the page numbers from your manuscript where readers will find ea	ch of the	
	missing informati explanation.	on. If yo	ntly address all the items on the checklist. Please modify your text to includ u are certain that an item does not apply, please write "n/a" and provide a sh ecklist as an extra file when you submit to a journal.		
		_	ay that you used the STROBE cross sectional reporting guidelines, and cite t	hem as:	
	von Elm E, Altma	an DG, E ervationa	gger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the 1 Studies in Epidemiology (STROBE) Statement: guidelines for reporting		
			Reporting Item	Page Number	
	Title and abstract		C2		
	Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1	
	Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	2-3	
	Introduction				
	Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	5	
50 51 52	Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	5	
53 54	Methods				
55 56 57	Study design	<u>#4</u>	Present key elements of study design early in the paper	5-6	
58 59 60	Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods of peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5-6	

BMJ Open: first published as 10.1136/bmjopen-2020-047941 on 2 July 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1			recruitment, exposure, follow-up, and data collection	
2 3 4 5 6 7 8 9 10 11 12 13 14 15	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants.	6
		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-9
	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	6-9
16 17 18	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	6-9
19 20	Study size	<u>#10</u>	Explain how the study size was arrived at	6-9
21 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	6-9
	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	9
	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	9
	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	9
	Statistical methods	<u>#12d</u>	If applicable, describe analytical methods taking account of sampling strategy	9
	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	9
	Results			
	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	10
55 56	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	10
57 58	Participants	<u>#13c</u>	Consider use of a flow diagram	10
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 41 of 40

1 2 3 4 5	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	10
6 7 8 9	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	10
10 11 12 13	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable.	10-12
13 14 15 16 17 18	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10-12
19 20	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	10-12
21 22 23 24	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	10-12
25 26 27 28	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	10-12
29 30	Discussion			
31 32	Key results	<u>#18</u>	Summarise key results with reference to study objectives	13
33 34 35 36 37 38	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	16
 39 40 41 42 43 	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	13-16
44 45	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	13-16
46 47	Other			
48 49	Information			
50 51 52 53 54	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	18
55 56 57	The STROBE chec	eklist is o	distributed under the terms of the Creative Commons Attribution License CO	C-BY.
58	This checklist was completed on 12. December 2020 using <u>https://www.goodreports.org/</u> , a tool made by the			
59 60	EQUATOR Network in collaboration with Penelope.ai For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

Helicobacter pylori infection-induced changes in the intestinal microbiota of 14 or 15 year-old Japanese adolescents: A cross-sectional study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047941.R1
Article Type:	Original research
Date Submitted by the Author:	30-Apr-2021
Complete List of Authors:	kakiuchi, Toshihiko; Saga University, Department of Pediatrics Tanaka, Yoshiki; Biofermin Pharmaceutical Co Ltd Ohno, Hiroshi; Biofermin Pharmaceutical Co Ltd Matsuo, Muneaki; Saga University, Department of Pediatrics Fujimoto, Kazuma; International University of Health and Welfare, Department of Gastroenterology
Primary Subject Heading :	Gastroenterology and hepatology
Secondary Subject Heading:	Infectious diseases
Keywords:	Paediatric gastroenterology < PAEDIATRICS, Gastrointestinal infections < GASTROENTEROLOGY, Diagnostic microbiology < INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez on

of

1	Title: Helicobacter pylori infection-induced changes in the intestinal microbiota
2	14 or 15 year-old Japanese adolescents: A cross-sectional study
3	
4	Toshihiko Kakiuchi ^{1*} , Yoshiki Tanaka ² , Hiroshi Ohno ² , Muneaki Matsuo ¹ , and
5	Kazuma Fujimoto ³
6	¹ Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
7	² R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Japan
8	³ Department of Gastroenterology, International University of Health and Welfare,
9	Fukuoka, Japan.
10	
11	*Corresponding author:
12	Toshihiko Kakiuchi, M.D., Ph. D.
13	Department of Pediatrics, faculty of Medicine, Saga University, Saga, Japan
14	E-mail: kakiucht@cc.saga-u.ac.jp
15	Word count: 3,581
16	
	1

	17	ABSTRACT
I	18	Objective: The relationship between Helicobacter pylori and the intestinal microbiota
	19	has not yet been clearly demonstrated in children and adolescents. The present study
	20	aimed at evaluating how <i>H. pylori</i> infection could affect the intestinal microbiota in
	21	adolescents using genetic analysis.
	22	Design: cross-sectional study
	23	Setting and participants: We included subjects from a longitudinal project involving
	24	H. pylori screening and treatment of junior high school third-grade students (aged 14 or
	25	15 years) in Saga Prefecture. The study included a control group $(n = 79)$ and an
	26	<i>H. pylori</i> group ($n = 80$) tested negative and positive for the anti- <i>H. pylori</i> antibody in
	27	the urine and <i>H. pylori</i> antigen in stool specimens, respectively.
	28	Interventions: The intestinal microbiota was evaluated in stool specimens using 16S
	29	rRNA gene/DNA/amplicon sequencing with next-generation sequencing.
	30	Primary and secondary outcome measures: We assessed alpha and beta diversity,
	31	just as well as relative abundances within the bacterial composition at the genus level in
	32	both groups.
	33	Results: As shown by the alpha diversity of the 16S rRNA gene/DNA/amplicon
	34	sequence data, the control group exhibited lower microbial species richness with lower

2	
3	
1	
4	
5	
6	
7	
8	
0	
9	
10	
11 12 13 14 15 16 17	
12	
12	
13	
14 15	
15	
16	
17	
17	
18	
19 20	
20	
21	
21 22	
22	
22 23 24	
24 25	
25	
26	
20	
27	
28	
29	
30	
20	
31	
32	
33	
3/	
34 35	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
53	
54	
55	
56	
57	
58	
59	
60	

35	alpha diversity compared with the <i>H. pylori</i> group ($P < 0.001$). The beta diversity of the
36	intestinal microbiota profile also differed between the two groups ($P < 0.01$). The
37	relative abundance of the <i>Prevotella</i> genus was higher in the <i>H. pylori</i> group ($P < 0.01$)
38	concomitant with a gain in body mass index in the <i>H. pylori</i> group ($P < 0.01$) compared
39	with the control group.
40	Conclusions: H. pylori infection significantly affected the intestinal microbiota in
41	Japanese adolescents. In addition, the prevalence of the Prevotella genus is
42	concomitantly increased along with the body mass index in <i>H. pylori</i> -infected students.
43	Trial registration number: This study was registered in the University Hospital
44	Medical Information Network (UMIN) Clinical Trials Registry (No. UMIN000028721).
45	Strengths and limitations of this study
46	• The most significant strength of this study is that it clearly demonstrated the effect
46 47	• The most significant strength of this study is that it clearly demonstrated the effect of <i>Helicobacter pylori</i> (<i>H. pylori</i>) infection on the intestinal microbiota of children.
47	of Helicobacter pylori (H. pylori) infection on the intestinal microbiota of children.
47 48	 of <i>Helicobacter pylori</i> (<i>H. pylori</i>) infection on the intestinal microbiota of children. As the participants were Japanese adolescents of almost the same age living in a
47 48 49	 of <i>Helicobacter pylori</i> (<i>H. pylori</i>) infection on the intestinal microbiota of children. As the participants were Japanese adolescents of almost the same age living in a single prefecture, no major difference would presumably exist between the two

BMJ Open

1 2		
3 4 5		
5 6 7	53	• The effect of <i>H. pylori</i> eradication on the intestinal microbiota could not be
8 9 10	54	analyzed, as the eradication therapy is important for intestinal microbiota changes.
11 12 13	55	
14 15 16	56	Keywords: Prevotella genus, 16S rRNA, body mass index, screening and treatment
17 18 19	57	
20 21 22	58	Abbreviations: <i>Helicobacter pylori = H. pylori</i> , proton-pump inhibitors = PPIs, OTUs
23 24 25	59	= operational taxonomic units, ANOVA = analysis of variance, PERMDISP =
26 27 28	60	permutational analysis of multivariate dispersions, F/B ration = ratio of <i>Firmicutes</i>
29 30 31 32	61	phylum to Bacteroides phylum
33 34 35		phylum to <i>Bacteroides</i> phylum
36 37 38		
39 40		
41 42 43		
44 45 46		
47 48 49		
50 51 52		
53 54 55		
56 57 58		
59 60		

62 INTRODUCTION

63	Newborns are exposed to various bacteria that are present in the mother's resident
64	microbiota and the external environment. Bacterial species that comprise the intestinal
65	microbiota change in an age-dependent manner [1, 2]. The development of the intestinal
66	microbiota during infancy is affected by several factors, including the maternal resident
67	microbiota [3, 4], the method of nutrition for infants [5-7], delivery style [5, 8, 9], and
68	the administration of antibiotics [3, 10, 11].
69	The global <i>H. pylori</i> prevalence in children varies significantly, from 2.5% in Japan
70	to 34.6% in Ethiopia [12]. Sustained infection of Helicobacter pylori decreases or
71	increases gastric acid secretion, which might affect the gastric microbiota in adults
72	[13-15] and children [13, 14]. Several previous reports have suggested that the intestinal
73	microbiota is significantly affected by <i>H. pylori</i> infection [15, 16]. The effect of <i>H</i> .
74	pylori infection on the intestinal microbiota has been demonstrated in adults [16, 17] but
75	has not been fully investigated in children.
76	Therefore, the present study aimed at examining junior high school students in
77	Japan aged 14–15 years to determine whether <i>H. pylori</i> infection changes the intestinal
78	microbiota. Moreover, we also examined how body mass index (BMI) affects the
79	intestinal microbiota, in addition to <i>H. pylori</i> infection.

80	
81	METHODS
82	2.1. Study design and subjects
83	The longitudinal project for <i>H. pylori</i> screening and treatment among junior high school
84	third-grade students in Saga Prefecture started in 2016 with the aim of primary
85	prevention of stomach cancer [17]. Figure 1 shows a flowchart of the junior high school
86	third-grade students in Saga Prefecture in 2017. Among 8519 junior high school
87	students aged 14 or 15 years, 7230 received a screening urinary test (RAPIRAN; Otsuka
88	Pharmaceutical Co., Ltd., Tokyo, Japan) to detect anti-H. pylori immunoglobulin-G
89	antibody by immunochromatography. There is an established screening program for
90	kidney diseases in Saga Prefecture, targeting third-grade students in junior high schools.
91	Given the full inclusivity of student during this test through simple urine examination,
92	we used the established system to obtain urine samples to screen for <i>H. pylori</i> infection
93	[17]. The diagnostic sensitivity, specificity, negative predictive value, and positive
94	predictive value of the urinary test was reportedly 78.4, 100, 90.1, and 100%,
95	respectively [18]. A total of 6874 students tested negative for <i>H. pylori</i> with the urinary
96	test and 79 of these students were randomly selected as the H. pylori-negative group
97	(control group). Students who tested positive in the screening urinary test received an

1 2	
2	
4	
5	
6 7	
7 8	
9	
10	
11 12	
12	
14	
15	
16 17	
18	
19	
20	
21 22	
22	
24	
25	
26 27	
28	
29	
30	
31 32	
33	
34	
35	
36 37	
38	
39	
40	
41 42	
43	
44	
45 46	
46 47	
48	
49	
50 51	
51 52	
53	
54	
55 56	
56 57	
58	
59	
60	

98	H. pylori stool antigen detection test (TESTMATE RAPID PYLORI ANTIGEN;
99	Wakamoto Pharmaceutical Co., Ltd. Tokyo, Japan). Among 290 students who received
100	the stool antigen test, 234 students tested positive for <i>H. pylori</i> infection. Finally, 80 of
101	these students were randomly selected as the <i>H. pylori</i> -positive group (<i>H. pylori</i> group).
102	The exclusion criteria for the present study were as follows: i) students who had taken
103	medications, including proton-pump inhibitors (PPIs), H ₂ receptor antagonists, antacids,
104	probiotics, mucosal protective agents, and antibiotics within the 6 months prior to
105	enrollment, ii) students who were in the outpatient hospital because of sickness, and iii)
106	students who had undergone eradication therapy for <i>H. pylori</i> .
107	The microbiota distribution was compared between the control and H. pylori
108	groups regarding alpha diversity, beta diversity, and the relative abundance of the
109	intestinal microbiota. The effect of BMI (low: <15, middle: 15–25, high: >25) on the
110	microbiota distribution in the two groups was examined.
111	
112	2.2. Stool sample collection and bacterial DNA extraction from feces
113	Each participant collected a stool sample at home for the present study using a paper
114	stool collector and tube that was pre-filled with 5 ml of a stool DNA stabilizer. The
115	stool collection method was performed according to the attached document of the stool

116	collection kit. Samples were immediately stored at -20 °C and delivered to the project
117	center within a day. Extraction of bacterial DNA was performed as described previously
118	[19]. A total of 20 mg of feces was washed three times in 1.0 ml of PBS and centrifuged
119	(14,000 × g). The pellets were resuspended in a solution containing 450 μ l of extraction
120	buffer (100 mM Tris-HCl, 40 mM EDTA; pH 9.0) and 50 μ l of 10% sodium dodecyl
121	sulfate. A total of 300 mg of glass beads (diameter, 0.1 mm) and 500 μ l of
122	buffer-saturated phenol were added to the suspension and vortexed vigorously. After
123	centrifugation at 14,000 × g for 5 min, 400 μ l of the supernatant was extracted by
124	phenol-chloroform, and 250 μ l of the supernatant was subjected to isopropanol
125	precipitation. Finally, the DNA was suspended in 1.0 ml of Tris-EDTA buffer.
126	
127	2.3. DNA sequence analysis
128	We performed the meta-analysis of the bacterial 16S rDNA sequences in the feces in
129	accordance with a previously described method [20] with minor modifications. Briefly,
130	the V3–V4 region of 16S rDNA were amplified on a Veriti thermal cycler (Thermo
131	Fisher Scientific, Waltham, MA, USA). The amplicon was purified using AMPure XP
132	magnetic beads (Beckman Coulter, Brea, CA, USA). For multiplex sequencing, a
133	polymerase chain reaction was performed with dual eight-base indices (Nextera XT

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
55 54
54 55
56
57
58
59
60

134	Index kit, Illumina, CA, USA). After purification by AMPure XP beads, the purified
135	barcoded library was quantified fluorometrically using a QuantiT PicoGreen ds DNA
136	Assay Kit (Invitrogen, Paisley, UK) and pooled at the same volume. The library pool
137	(10 pM) was spiked with 40% PhiX control DNA (10 pM). Sequencing was conducted
138	on a MiSeq platform with MiSeq Reagent Kit v2 chemistry (Illumina).
139	
140	2.4. Microbiota analysis
141	We conducted the removal of low-quality and chimera sequences, construction of
142	operational taxonomic units (OTUs), and taxonomy assignment using the Quantitative
143	Insights Into Microbial Ecology pipeline (http://qiime.org/) [21]. Briefly, 50,000 raw
144	reads were randomly obtained from the sequence files for each sample and merged by
145	fastq-join with the default setting. Consequently, sequence reads with an average quality
146	value of <25 were removed and then chimera-checked. Five thousand reliable sequence
147	reads were randomly obtained for each sample and OTUs were constructed by
148	clustering with a 97% identity threshold. The representative reads of each OTU were
149	then assigned to the 16S rRNA gene database using UCLUST with \geq 97% identity [22].
150	A comparison of each taxon in the gut microbiota was conducted at the genus level.
151	Beta diversity was estimated by computing the weighted and unweighted UniFrac

1	
2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13 14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31 22	
32 33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51	
52 53	
53 54	
55	
56	
57	
58	
59	
60	

152	distances between the samples [23]. In order to compare the differences in the overall
153	bacterial gut microbiota structure, principal coordinates analysis was applied to reduce
154	the dimensionality of the resulting distance matrix. We calculated the Shannon index,
155	observed OTUs, chao 1, and the abundance-based coverage estimator index to
156	investigate the alpha diversity of the microbiota in the samples.
157	
158	2.5. Statistical analysis
159	All statistical analyses were conducted with the R statistical software (R Core Team
160	(2018). R: A language and environment for statistical computing. R Foundation for
161	Statistical Computing, Vienna, Austria. URL https://www.R-project.org/). Data are
162	shown as the mean \pm SE. Statistical significance was set at $P < 0.05$. During the
163	analyses of the gut microbiotas, the statistical significance was determined by Welch's
164	t-test with Benjamini–Hochberg correlation. The relative abundance data were
165	non-normally distributed. However, we applied Welch's t-test as the Mann–Whitney
166	U-test is reportedly less robust [24]. Beta diversity was analyzed using permutational
167	analysis of multivariate dispersions (PERMDISP) for comparisons of gene similarity.
168	
169	2.6. Patient and Public Involvement

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

170 This study was performed without patient involvement. Patients were not invited to 171 comment on the study design and were not consulted to develop patient-relevant 172 outcomes or interpret the results. Patients were not invited to contribute to the writing or 173 editing of the manuscript for readability or accuracy. 174 175 RESULTS 176 3.1. Student characteristics A total of 159 students participated in this study. The student characteristics are shown 177 178 in Table 1. No significant differences could be observed in sex, age, BMI, birth delivery style, method of infant nutrition, or the prevalence of allergic disease between the 179 180 groups. The ratio of nursery school graduates to kindergarten graduates was significantly higher in the *H. pylori* group than in the control group (P < 0.001). The 181 subjects of this study did not include low-birth-weight infants (birth weight 2500 g or 182 183 less). In addition, we did not investigate whether symptoms associated with H. pylori infection, such as abdominal symptoms, were present in the H. pylori group. 184 185 186 3.2. Alpha and beta diversity in the control and the *H. pylori* groups

BMJ Open

187	Figure 2 shows the alpha diversity of the 16S rRNA gene/DNA/amplicon sequence data.
188	The control group showed lower microbial species richness with lower alpha diversity
189	compared with the <i>H. pylori</i> group. The observed species index, chao 1 index, and ACE
190	index all showed significantly higher diversity in the H. pylori group compared with the
191	control group ($P < 0.001$). The Shannon index was not significantly different between
192	the two groups ($P = 0.054$).
193	Figure 3 shows the beta diversity of the 16S rRNA gene/DNA/amplicon sequence
194	data. The two-dimensional principal coordinate analysis of the weighted and
195	unweighted UniFrac distances of the 16S rRNA gene/DNA/amplicon sequence data
196	showed that the majority of samples were clustered dependent on the H. pylori infection
197	status. The similarity analysis showed that the differences were significant for the
198	weighted UniFrac distance ($P < 0.001$), but not for the unweighted UniFrac distance (P
199	= 0.643) using PERMDISP.
200	
201	3.3. Relative abundances within the bacterial composition at the genus level for the
202	two groups
203	Figure 4 shows the 13 main bacterial types present in the intestinal microbiota at the
204	genus level as follows: Bacteroides, Blautia, Bifidobacterium, Faecalibacterium,

1	
2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 17 10 17 10 10 10 10 10 10 10 10 10 10 10 10 10	
20	
20 ⊃1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 33 34 35 36 37	
33	
34	
25	
26	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

205	Prevotella, Fusicatenibacter, Eubacterium, Anaerostipes, Subdoligranulum,
206	Streptococcus, Megamonas, Collinsella, and Clostridium. The relative abundances of
207	the <i>Prevotella</i> genus ($P < 0.01$) and <i>Collinsella</i> genus ($P < 0.05$) were significantly
208	higher in the <i>H. pylori</i> group than in the control group. The relative abundance of the
209	Subdoligranulum genus was significantly higher in the control group than in the H.
210	<i>pylori</i> group ($P < 0.01$). At the phylum level, the ratio of the <i>Firmicutes</i> to the
211	Bacteroides phyla (F/B ratio) showed no significant difference between the two groups
212	(the control group; 4.19 ± 3.27 vs. the <i>H. pylori</i> group; 4.87 ± 12.04 , $P = 0.63$).
213	
214	3.4. BMI and the relative abundances within the bacterial composition at the genus
214 215	3.4. BMI and the relative abundances within the bacterial composition at the genus level
215	level
215 216	level In the control and <i>H. pylori</i> groups, the intestinal microbiota was evaluated in
215 216 217	level In the control and <i>H. pylori</i> groups, the intestinal microbiota was evaluated in association with the BMI. Figure 5 shows the seven main bacterial types in the
215 216 217 218	level In the control and <i>H. pylori</i> groups, the intestinal microbiota was evaluated in association with the BMI. Figure 5 shows the seven main bacterial types in the intestinal microbiota at the genus level for the control and the <i>H. pylori</i> groups,
215 216 217 218 219	level In the control and <i>H. pylori</i> groups, the intestinal microbiota was evaluated in association with the BMI. Figure 5 shows the seven main bacterial types in the intestinal microbiota at the genus level for the control and the <i>H. pylori</i> groups, categorized by the BMI. For the control group, these included <i>Bacteroides, Blautia</i> ,

Page 15 of 47

BMJ Open

223	relative abundance of the Prevotella genus was significantly higher in the high-BMI
224	group compared with the middle- and low-BMI groups (both $P < 0.01$). Furthermore,
225	the relative abundance of the Prevotella genus in the middle-BMI group was higher
226	than that in the low-BMI group ($P < 0.05$). The relative abundances of <i>Bacteroides</i> and
227	Bifidobacterium were significantly lower in the high-BMI group compared with the
228	other two groups (both $P < 0.05$). In the <i>H. pylori</i> group, the BMI did not affect the
229	relative abundances of Blautia, Faecalibacterium, Magamonas, and Fusicatenibacter.
230	In the control group, the relative abundance of the Prevotella genus was not
231	significantly higher in the high-BMI group compared with the middle- and low-BMI
232	groups, whereas the relative abundance of the Prevotella genus significantly and
233	proportionately increased with an increasing BMI in the H. pylori group (low BMI vs
234	high BMI: $P < 0.001$, middle BMI vs high BMI: $P < 0.001$) (Figure 6). At the phylum
235	level, we observed no significant differences in the F/B ratio among the three BMI
236	categories in the control groups. However, a significant difference could be detected
237	between the high and middle BMI categories in the <i>H. pylori</i> group (Figure 7). The
238	Subdoligranulum genus had a lower relative abundance in the high-BMI category than
239	in the low-BMI group, although this trend was observed not only in the <i>H. pylori</i> group

4 5		
6 7 8	240	but also in the control group (Figure 8). The Collinsella genus was not associated with
9 10 11	241	the BMI regardless of <i>H. pylori</i> infection status (Figure 9).
12 13 14	242	
15 16 17	243	DISCUSSION
18 19 20	244	The present study revealed two clinically important results: i) <i>H. pylori</i> infection
21 22 23	245	significantly affected the intestinal microbiota of adolescents aged 14 or 15 years, as
24 25 26	246	determined for Japanese junior high school students; ii) An increase in the relative
27 28 29	247	abundance of the Prevotella genus in H. pylori-infected adolescents was concomitant
30 31	248	with a gain in BMI.
32 33 34	249	Most reports of the effects of <i>H. pylori</i> on the intestinal microbiota based on the
35 36 37 28	250	analysis of feces samples were in adults and data were lacking for children [25, 26]. The
38 39 40	251	present study showed a difference in the intestinal microbiota between H.
41 42 43	252	pylori-infected and non-infected adolescents based on feces specimens. Alpha diversity,
44 45 46	253	bacterial richness, and variance all showed greater diversity in <i>H. pylori</i> -infected
47 48 49	254	students than in controls (Figure 2). A previous study showed that the diversity of the
50 51 52	255	gastric microbiota in adolescents was enhanced by <i>H. pylori</i> infection [13]. Studies of
53 54 55	256	the relationship between the intestinal microbiota and <i>H. pylori</i> infection are limited.
56 57 58 59 60	257	One study reported a decrease in the <i>Firmicutes</i> genus in the human duodenal mucosa

258	during H. pylori infection [27]. In the H. pylori infection model of Mongolian gerbils,
259	the abundances of the Bacteroides and Enterococcus genera were increased in the
260	duodenal mucosa [28]. In adults, H. pylori infection [17] reportedly reduced intestinal
261	microbiota diversity and our results were in good agreement with these previous reports
262	(Figure 2, 3). The human gut microbiota has been reported to form by the age of 3 years
263	[29], so it may be that there is no difference in the effects of <i>H. pylori</i> infection on the
264	intestinal microbiota between adolescents and adults.
265	It is known that infection with <i>H. pylori</i> reduces gastric acid secretion in children
266	[30, 31]. It was further suggested that a decrease in gastric acid secretion due to <i>H</i> .
267	pylori infection may affect the intestinal flora of adolescents with H. pylori infection. In
268	addition, a decrease in gastric acid secretion caused by <i>H. pylori</i> infection may allow a
269	wide variety of bacteria in the oral cavity to more easily pass through the stomach and
270	reach the lower gastrointestinal tract, thereby affecting the intestinal flora in feces. The
271	inhibitory effect of PPIs on gastric acid secretion affects the composition of the
272	intestinal flora. PPIs administration causes an increase in the indigenous bacteria the
273	Streptococcus genus and the Lactobacillus genus in the intestine, which is thought to be
274	due to the oral bacteria reaching the intestine to suppress gastric acid secretion [32, 33].
275	This might explain the result of the present study that alpha diversity of the fecal

Page 18 of 47

BMJ Open

276	intestinal microbiota was increased in students with <i>H. pylori</i> infection. As suggested by
277	the present study, H. pylori infection might be a factor that disturbs the intestinal
278	microbiota in adolescents. H. pylori infection is involved in the alterations of gut
279	microbiota composition and diversity, which can lead to changes in production level
280	and physiologic regulation of the gut metabolic hormones released from the host
281	endocrine system [34]. The mechanisms and clinical importance of the effect of <i>H</i> .
282	pylori warrant further investigation.
283	The Prevotella genus increased in abundance during H. pylori infection, and
284	this increase was found to be concomitant with a rise in BMI in the present study. A
285	previous report indicated that the Prevotella genus was elevated in abundance in
286	school-age children infected with <i>H. pylori</i> [35]. This was an epidemiological study,
287	and unfortunately, it is completely unknown why at this time the Prevotella genus is
288	elevated in school-age children infected with <i>H. pylori</i> . The <i>Bacteroides</i> and
289	Bifidobacterium genera are dominant among the intestinal microbiota in Japanese
290	children [36]. A previous study showed that the prevalence rate of the Prevotella genus
291	in the intestinal microbiota was higher in subjects who consumed carbohydrates more
292	frequently [37], which suggests that the Prevotella genus is closely related to eating
293	habits. In the present study, it is not possible to determine whether infection with H .

Page 19 of 47

BMJ Open

294	pylori affected the diet and resulted in an increase in the Prevotella genus, or whether
295	infection with <i>H. pylori</i> increased the <i>Prevotella</i> genus and affected the diet, and caused
296	an increase in BMI. In general, the F/B ratio has been found to increase with obesity
297	[38]. The <i>Prevotella</i> genus belongs to the <i>Bacteroides</i> phylum, the present study thus
298	exhibited inconsistency. At the moment, it is currently difficult to associate the F/B
299	ratio with a determined health status and, more specifically, to consider it as a hallmark
300	of obesity [39]. In the future, regarding the relationship between <i>H. pylori</i> and the
301	Prevotella genus and BMI, it is necessary to analyze the intestinal flora in early
302	childhood, including the history of eating habits from early childhood.
303	A correlation between <i>H. pylori</i> infection and the onset of diabetes has been
303 304	A correlation between <i>H. pylori</i> infection and the onset of diabetes has been reported in epidemiology studies [40, 41], but the reason for this remains unknown.
304	reported in epidemiology studies [40, 41], but the reason for this remains unknown.
304 305	reported in epidemiology studies [40, 41], but the reason for this remains unknown. Meanwhile, the prevalence of the <i>Prevotella</i> genus increased in patients with obesity
304 305 306	reported in epidemiology studies [40, 41], but the reason for this remains unknown. Meanwhile, the prevalence of the <i>Prevotella</i> genus increased in patients with obesity [42, 43], nonalcoholic steatohepatitis [44], hyperlipidemia [45], and even in gestational
304 305 306 307	reported in epidemiology studies [40, 41], but the reason for this remains unknown. Meanwhile, the prevalence of the <i>Prevotella</i> genus increased in patients with obesity [42, 43], nonalcoholic steatohepatitis [44], hyperlipidemia [45], and even in gestational diabetes, which is considered as a diabetes mellitus preliminary group [46]. The
304 305 306 307 308	reported in epidemiology studies [40, 41], but the reason for this remains unknown. Meanwhile, the prevalence of the <i>Prevotella</i> genus increased in patients with obesity [42, 43], nonalcoholic steatohepatitis [44], hyperlipidemia [45], and even in gestational diabetes, which is considered as a diabetes mellitus preliminary group [46]. The <i>Prevotella</i> genus is considered to contribute to hyperglycemia and insulin resistance [43,
304 305 306 307 308 309	reported in epidemiology studies [40, 41], but the reason for this remains unknown. Meanwhile, the prevalence of the <i>Prevotella</i> genus increased in patients with obesity [42, 43], nonalcoholic steatohepatitis [44], hyperlipidemia [45], and even in gestational diabetes, which is considered as a diabetes mellitus preliminary group [46]. The <i>Prevotella</i> genus is considered to contribute to hyperglycemia and insulin resistance [43, 47, 48]. In the present study, an increase in the relative abundance of the <i>Prevotella</i>

Page 20 of 47

BMJ Open

3 4		
5		
6 7 8	312	an increase in the prevalence of the Prevotella genus (Figure 5, 6) and, as a result,
9 10 11	313	insulin resistance increased, which may predispose individuals to diabetes mellitus. In
12 13 14	314	fact, it is thought that the increase in <i>Prevotella</i> genus may be involved in the process of
15 16 17	315	developing abnormal glucose metabolism as a result of obesity [49, 50].
18 19 20	316	The Subdoligranulum genus showed a lower relative abundance in the high
21 22 23	317	BMI category than in the low BMI group, but this trend was seen not only in the <i>H</i> .
24 25 26	318	pylori group but also in the control group (Figure 7). The Collinsella genus was not
27 28 29	319	associated with BMI regardless of <i>H. pylori</i> infection status (Figure 8). It has been
30 31 32	320	reported that the Subdoligranulum genus is less prevalent among type 2 diabetes
33 34 35	321	patients compared with their non-diabetic counterparts [51], and a negative correlation
36 37 38	322	with insulin resistance has been shown [52]. An increase in the Collinsella genus is
39 40 41	323	reportedly associated with increased insulin, triglyceride, and very-low-density
42 43 44	324	lipoprotein levels [53] and is associated with type 2 diabetes [54]. In our study, of the
44 45 46 47	325	three genera (Prevotella, Subdoligranylum, and Collinsella) that showed significant
48 49 50	326	differences in relative abundance between the H. pylori and control groups, the
50 51 52 53	327	Prevotella genus showed the most significant correlation between H. pylori infection
55 54 55 56	328	status and BMI. The Prevotella genus was the only genus that showed an association
50 57 58 59	329	with BMI in the <i>H. pylori</i> group but not the control group.

BMJ Open

2 3
4
4 5
6
7 8
8 9
9 10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
30 37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

330 There are several limitations to the present study. i) In the selection of subjects 331 in both groups, false-negative results by using the urinary antibody in the control group 332 and false-positive results by using stool antigen in the *H. pylori* group could not be 333 completely eliminated. ii) The present study evaluated feces specimens, the microbiota of which may be different from the mucosal-associated microbiota. iii) The effect of 334 335 eradication of *H. pylori* on the intestinal microbiota could be important [55], and we 336 plan to investigate this in the future. iv) There was a difference in preschool status between the two groups (Table 1), and it could not be completely ruled out that this 337 338 could have affected the intestinal microbiota. Jier 339 340 **CONCLUSION** 341 The present study shows that the intestinal microbiota is significantly affected by H. 342 pylori infection in junior high school third-grade students in Saga Prefecture, Japan. 343 Furthermore, the relative abundance of the Prevotella genus was increased 344 concomitantly with a rise in BMI in *H. pylori*-infected students. 345 346 Acknowledgments

3	
4	
5	
6	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19 20	
20	
20	
22	
22 23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

347	We would like to thank Mr. Daisuke Takami of R&D Center, Biofermin Pharmaceutical
348	Co., Ltd. for his co-operation. We thank Ms. Kozue Kakiuchi, Ms. Tomomi Ito, and Ms.
349	Hiromi Beppu for project support.
350	
351	Competing interests: The authors declare that they have no conflict of interest.
352	
353	Funding: This research received no specific grant from any funding agency in the
354	public, commercial or not-for-profit sectors.
355	
356	Author contributors
357	This study was supported by the Biofermin Pharmaceutical Co., Ltd. (Kobe, Japan),
358	performing intestinal microbiota analysis and statistical evaluation. However, their
359	contribution did not influence data analysis or interpretation in this study. The authors
360	(YT and HO) did not play any additional role in the study design, data collection and
361	analysis, publishing decisions, or manuscript preparation.
362	Study concept and design: TK and KF. Acquisition of data: TK. Analysis and
363	interpretation of data: TK. Drafting of the manuscript: TK. Critical revision of the
364	manuscript for important intellectual content: MM and KF. Statistical analysis: YT and

3 4		
5 6 7	365	HO. Administrative, technical, or material support: YT and HO. Study supervision:
8 9 10	366	MM and KF. Writing, reviewing, and editing: MM and KF.
11 12 13 14	367	
15 16 17	368	Patients consent for publication: Informed consent was obtained from all individual
18 19 20	369	participants included in the study. Signed informed consent was obtained from each
21 22 23	370	study participant prior to participation in the study.
24 25 26	371	
27 28 29	372	Ethical approval: The ethical aspects of this study were reviewed and approved by the
30 31	373	institutional review board of Saga University Hospital (approval number: 2016-11-03).
32 33 34 25	374	Written informed consent was obtained from all of the students and their guardians. All
35 36 37	375	methods were carried out in accordance with relevant guidelines and regulations or
38 39 40	376	Helsinki guidelines.
41 42 43	377	
44 45 46	378	Provenance and peer review: Not commissioned; externally peer-reviewed.
47 48 49	379	
50 51 52	380	Date availability statement: The datasets used and analyzed during the current study
53 54 55	381	are available from the corresponding author on reasonable request.
56 57 58 59 60	382	

Matsuki T, Yahagi K, Mori H, et al. A key genetic factor for fucosyllactose

383 REFERENCES

385		utilization affects infant gut microbiota development. Nat Commun
386		2016;7:11939.
387	2	Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed
388		across age and geography. Nature 2012;486:222-7.
389	3	Romero R, Hassan SS, Gajer P, et al. The composition and stability of the
390		vaginal microbiota of normal pregnant women is different from that of
391		non-pregnant women. <i>Microbiome</i> 2014;2:4.
392	4	Aagaard K, Riehle K, Ma J, et al. A metagenomic approach to characterization
393		of the vaginal microbiome signature in pregnancy. PLoS One 2012;7:e36466.
394	5	Backhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human
395		gut microbiome during the first year of life. Cell Host Microbe 2015;17:690-
396		703.
397	6	Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast-
398		and formula-fed newborns by using fluorescence in situ hybridization (FISH).
399		Anaerobe 2011;17:478–82.

400 7 Penders J, Vink C, Driessen C, et al. Quantification of Bifidobacterium spp.,

Page 25 of 47

1 2

2 3 4			
5 6 7	401		Escherichia coli and Clostridium difficile in faecal samples of breast-fed and
8 9 10 11	402		formula-fed infants by real-time PCR. FEMS Microbiol Lett 2005;243:141-7.
12 13 14	403	8	Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape
15 16 17	404		microbiome maturation during early life. Sci Transl Med 2016;8:343ra82.
18 19 20 21 22 23	405	9	Mueller NT, Bakacs E, Combellick J, et al. The infant microbiome development:
	406		mom matters. Trends Mol Med 2015;21:109–17.
24 25	407	10	Fouhy F, Guinane CM, Hussey S, et al. High-throughput sequencing reveals the
26 27 28 29 30 31 32	408		incomplete, short-term recovery of infant gut microbiota following parenteral
	409		antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents
33 34	410		<i>Chemother</i> 2012;56:5811–20.
35 36 37	411	11	Tanaka S, Kobayashi T, Songjinda P, et al. Influence of antibiotic exposure in
38 39 40	412		the early postnatal period on the development of intestinal microbiota. FEMS
41 42 43	413		Immunol Med Microbiol 2009;56:80–7.
44 45 46	414	12	Mišak Z, Hojsak I, Homan M. Review: Helicobacter pylori in pediatrics.
47 48 49	415		Helicobacter 2019;24(Suppl 1):e12639.
50 51 52	416	13	Brawner KM, Kumar R, Serrano CA, et al. Helicobacter pylori infection is
53 54 55	417		associated with an altered gastric microbiota in children. Mucosal Immunol
56 57 58	418		2017;10:1169–77.
59 60			24
			24

Page 26 of 47

BMJ Open

419	14	Llorca L, Perez-Perez G, Urruzuno P, et al. Characterization of the gastric
420		microbiota in a pediatric population according to Helicobacter pylori status.
421		Pediatr Infect Dis J 2017;36:173–8.
422	15	Oh B, Kim BS, Kim JW, et al. The effect of probiotics on gut microbiota during
423		the Helicobacter pylori eradication: Randomized controlled trial. Helicobacter
424		2016;21:165–74.
425	16	Buhling A, Radun D, Muller WA, et al. Influence of anti-Helicobacter
426		triple-therapy with metronidazole, omeprazole and clarithromycin on intestinal
427		microflora. Aliment Pharmacol Ther 2001;15:1445–52.
428	17	Kakiuchi T, Matsuo M, Endo H, et al. A Helicobacter pylori screening and
429		treatment program to eliminate gastric cancer among junior high school students
430		in Saga Prefecture: a preliminary report. J Gastroenterol 2019;54:699–707.
431	18	Okuda M, Kamiya S, Booka M, et al. Diagnostic accuracy of urine-based kits
432		for detection of Helicobacter pylori antibody in children. Pediatrics Int
433		2013;55:337–41.
434	19	Matsuki T, Watanabe K, Fujimoto J, et al. Quantitative PCR with 16S
435		rRNA-gene-targeted species-specific primers for analysis of human intestinal
436		bifidobacteria. Appl Environ Microbiol 2004;70:167-73.

Page 27 of 47

1 2			
3 4			
$\begin{array}{c} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \end{array}$	437	20	Fadrosh DW, Ma B, Gajer P, et al. An improved dual-indexing approach for
	438		multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform.
	439		Microbiome 2014;2:6.
	440	21	Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of
	441		high-throughput community sequencing data. Nat Methods 2010;7:335-6.
	442	22	Edgar RC. Search and clustering orders of magnitude faster than BLAST.
	443		Bioinformatics 2010;26:2460–1.
	444	23	Lozupone C, Knight R. UniFrac: A new phylogenetic method for comparing
	445		microbial communities. Appl Environ Microbiol 2005;71:8228–35.
	446	24	Asaka M. A new approach for elimination of gastric cancer deaths in Japan. Int
	447		J Cancer 2013;132:1272–6.
	448	25	Dash NR, Khoder G, Nada AM, et al. Exploring the impact of Helicobacter
	449		pylori on gut microbiome composition. PLOS ONE 2019;14:e0218274.
44 45 46	450	26	Yang YJ, Sheu BS. Metabolic interaction of <i>Helicobacter pylori</i> infection and
47 48 49	451		gut microbiota. Microorganisms 2016;4.
50 51 52	452	27	Schulz C, Schutte K, Koch N, et al. The active bacterial assemblages of the
53 54 55	453		upper GI tract in individuals with and without Helicobacter infection. Gut
55 56 57 58 59	454		2018;67:216–25.
60			

2 3 4			
5 6 7	455	28	Yin YN, Wang CL, Liu XW, et al. Gastric and duodenum microflora analysis
8 9 10	456		after long-term Helicobacter pylori infection in Mongolian Gerbils. Helicobacter
11 12 13	457		2011;16:389–97.
14 15 16 17	458	29	Mitsuoka T, Hayakawa K, Kimura N. The faecal flora of man. II. The
17 18 19	459		composition of bifidobacterium flora of different age groups (author's transl).
20 21 22 22	460		Zentralbl Bakteriol Orig A 1974;226:469–78.
23 24 25 26	461	30	Boukthir S, Aouididi F, Mazigh Mrad S, et al. Chronic gastritis in children.
26 27 28 20	462		Tunis Med 2007;85:756–60.
29 30 31	463	31	Yu Y, Su L, Wang X, et al. Association between Helicobacter pylori infection
32 33 34	464		and pathological changes in the gastric mucosa in Chinese children. Intern Med
35 36 37	465		2014;53:83–8.
38 39 40	466	32	Hojo M, Asahara T, Nagahara A, et al. Gut microbiota composition before and
41 42 43	467		after use of proton pump inhibitors. <i>Dig Dis Sci</i> 2018;63:2940–9.
44 45 46	468	33	Kinoshita Y, Ishimura N, Ishihara S. Advantages and disadvantages of
47 48 49	469		long-term proton pump inhibitor use. J Neurogastroenterol Motil 2018;24:182-
50 51 52	470		96.
53 54 55	471	34	Mohammadi SO, Yadegar A, Kargar M, et al. The impact of Helicobacter pylori
56 57 58	472		infection on gut microbiota-endocrine system axis; modulation of metabolic
59 60			27

3			
4 5			
6 7 8	473		hormone levels and energy homeostasis. J Diabetes Metab Disord
9 10	474		2020;19:1855–1861.
11 12 13	475	35	Benavides-Ward A, Vasquez-Achaya F, Silva-Caso W, et al. Helicobacter pylori
14 15 16	476		and its relationship with variations of gut microbiota in asymptomatic children
17 18 19	477		between 6 and 12 years. BMC Res Notes 2018;11:468.
20 21 22	478	36	Nakayama J, Watanabe K, Jiang J, et al. Diversity in gut bacterial community of
23 24 25	479		school-age children in Asia. Sci Rep 2015;5:8397.
26 27 28	480	37	Lim MY, Rho M, Song YM, et al. Stability of gut enterotypes in Korean
29 30 31	481		monozygotic twins and their association with biomarkers and diet. Sci Rep
32 33 34	482		2014;4:7348.
35 36 37	483	38	Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: Human gut microbes
38 39 40	484		associated with obesity. <i>Nature</i> 2006;444:1022–3.
41 42 43	485	39	Magne F, Gotteland M, Gauthier L, et al. The Firmicutes/Bacteroidetes Ratio: A
44 45 46	486		relevant marker of gut dysbiosis in obese patients? Nutrients 2020;12.
47 48 49	487	40	Jeon CY, Haan MN, Cheng C, et al. Helicobacter pylori infection is associated
50 51 52	488		with an increased rate of diabetes. <i>Diabetes Care</i> 2012;35:520–5.
53 54 55	489	41	Marietti M, Gasbarrini A, Saracco G, et al. Helicobacter pylori infection and
56 57 58	490		diabetes mellitus: the 2013 state of art. Panminerva Med 2013;55:277-81.
59 60			

Page 30 of 47

BMJ Open

1

1 2 3			
4 5 6			
7 8	491	42	Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota
9 10 11	492		to bariatric surgery-induced weight loss: Links with metabolic and low-grade
12 13 14	493		inflammation markers. <i>Diabetes</i> 2010;59:3049–57.
15 16 17	494	43	Moreno-Indias I, Sanchez-Alcoholado L, Garcia-Fuentes E, et al. Insulin
18 19 20	495		resistance is associated with specific gut microbiota in appendix samples from
21 22 23	496		morbidly obese patients. Am J Transl Res 2016;8:5672-84.
24 25 26	497	44	Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients
27 28 29	498		with nonalcoholic fatty liver disease. <i>Hepatology</i> 2013;58:120–7.
30 31 32	499	45	Roager HM, Licht TR, Poulsen SK, et al. Microbial enterotypes, inferred by the
33 34 35	500		prevotella-to-bacteroides ratio, remained stable during a 6-month randomized
36 37 38	501		controlled diet intervention with the new nordic diet. Appl Environ Microbiol
39 40 41	502		2014;80:1142–9.
42 43 44	503	46	Fugmann M, Breier M, Rottenkolber M, et al. The stool microbiota of insulin
45 46 47	504		resistant women with recent gestational diabetes, a high risk group for type 2
48 49 50	505		diabetes. Sci Rep 2015;5:13212.
50 51 52 53	506	47	Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes
54 55 56	507		impact host serum metabolome and insulin sensitivity. Nature 2016;535:376-81.
57 58 59	508	48	Lin L, Wen ZB, Lin DJ, et al. Correlations between microbial communities in
60			20

1 2			
3 4			
5 6 7	509		stool and clinical indicators in patients with metabolic syndrome. World J Clin
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	510		<i>Cases</i> 2018;6:54–63.
	511	49	Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with
	512		type 1 diabetes differs from that in healthy children: a case-control study. BMC
	513		<i>Med</i> 2013;11:46.
	514	50	Leiva-Gea I, Sanchez-Alcoholado L, Martin-Tejedor B, et al. Gut microbiota
	515		differs in composition and functionality between children with type 1 diabetes
	516		and MODY2 and healthy control subjects: A case-control study. Diabetes Care
	517		2018;41:2385–95.
	518	51	Khorraminezhad L, Leclercq M, O'Connor S, et al. Dairy product intake
	519		modifies gut microbiota composition among hyperinsulinemic individuals. Eur J
	520		Nutr 2020.
	521	52	Lv Y, Zhao X, Guo W, et al. The relationship between frequently used
45 46	522		glucose-lowering agents and gut microbiota in type 2 diabetes mellitus. J
47 48 49 50 51 52 53 54 55 56 57 58 59	523		Diabetes Res 2018;2018:1890978.
	524	53	Gomez-Arango LF, Barrett HL, McIntyre HD, et al. Connections between the
	525		gut microbiome and metabolic hormones in early pregnancy in overweight and
	526		obese women. <i>Diabetes</i> 2016;65:2214–23.
60			30

3	
4	
5	
6	
7	
8 9	
10	
11	
12	
13	
14 15	
15 16	
16 17	
18	
19	
19 20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32 33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

> 527 54 Lambeth SM, Carson T, Lowe J, et al. Composition, diversity and abundance of 528 gut microbiome in prediabetes and type 2 diabetes. J Diabetes Obes 2015;2:1-7. 529 Takara Y, Endo H, Nakano R, et al. Smoking and drinking did not increase the 55 530 failure of therapeutic Helicobacter pylori eradication by vonoprazan, clarithromycin, and amoxicillin. Digestion 2019;99:172-8. 531

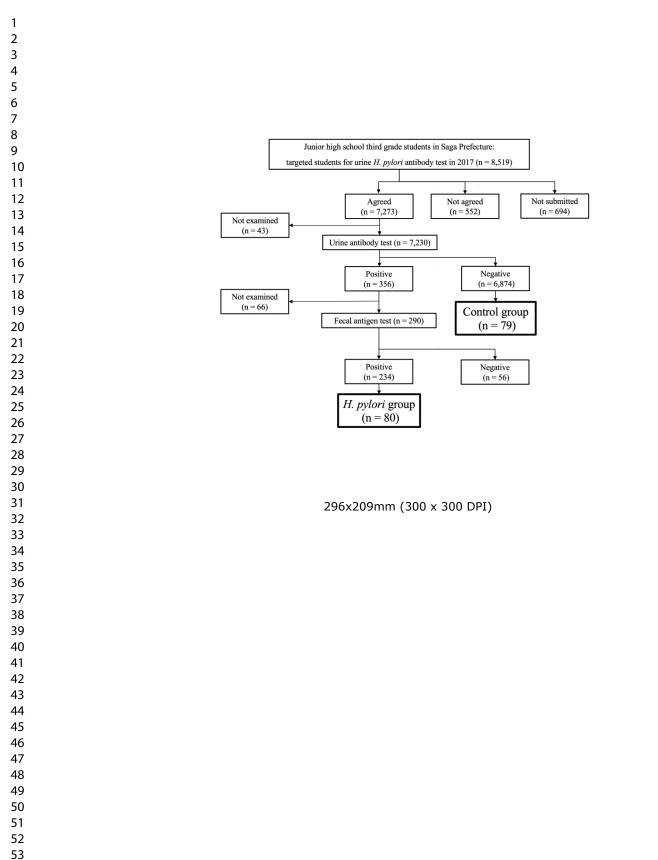
BMJ Open

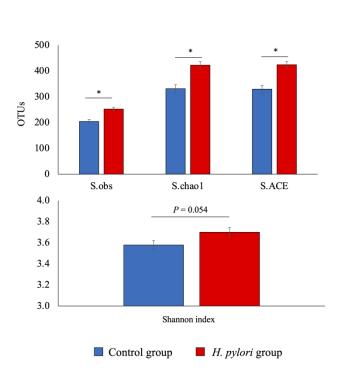
532 Table 1. Background characteristics of junior high school students in the two

533	groups
-----	--------

	Control group	H. pylori group	P value
	(n = 79)	(n = 80)	
(male/female)	42/37	46/34	0.80
(years)	14.73 ± 0.33	14.76 ± 0.32	0.71
(kg/m ²)	19.69 ± 3.48	19.67 ± 2.41	0.97
(vaginal/C-section)	68/11	60/11	0.79
(breast/formula/mix)	37/6/36	27/15/36	0.07
(nursery/kindergarten/none)	25/54/0	53/25/2	<0.001
(+/-)	5/75	7/73	0.55
	(years) (kg/m ²) (vaginal/C-section) (breast/formula/mix) (nursery/kindergarten/none)	(n = 79) (male/female) 42/37 (years) 14.73 ± 0.33 (kg/m ²) 19.69 ± 3.48 (vaginal/C-section) 68/11 (breast/formula/mix) 37/6/36 (nursery/kindergarten/none) 25/54/0	$(n = 79) \qquad (n = 80)$ $(male/female) \qquad 42/37 \qquad 46/34$ $(years) \qquad 14.73 \pm 0.33 \qquad 14.76 \pm 0.32$ $(kg/m^2) \qquad 19.69 \pm 3.48 \qquad 19.67 \pm 2.41$ $(vaginal/C-section) \qquad 68/11 \qquad 60/11$ $(breast/formula/mix) \qquad 37/6/36 \qquad 27/15/36$ $(nursery/kindergarten/none) \qquad 25/54/0 \qquad 53/25/2$

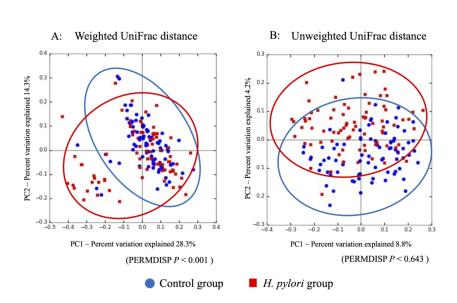
534 Delivery: birth delivery style; C-section: cesarean section; nutrition: method of infant

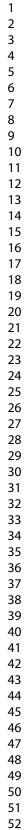

535 nutrition; school: pre-school situation; BMI: body mass index.

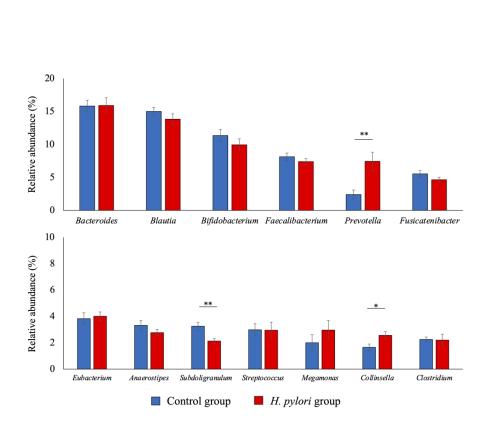

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	

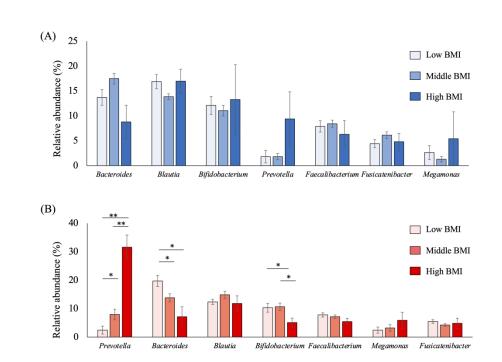
536	Figure legends
537	Figure 1. Flowchart for Helicobacter pylori screening and treatment of junior high
538	school students in Saga Prefecture and the selection method used to establish the
539	two groups.
540	The <i>H. pylori</i> group comprised 80 students, consented to the study, tested positive for
541	both urinary anti- <i>H. pylori</i> immunoglobulin-G antibody and stool antigen test. The
542	control group (n = 79) comprised those tested negative for both tests.
543	
544	Figure 2. Alpha diversity of the 16S rRNA sequences in the control and <i>H. pylori</i>
545	groups
546	The control group exhibited lower microbial species richness compared with the
547	H. pylori group. The observed species index (S. obs), chao 1 index, and
548	abundance-based coverage estimator index all showed significantly higher diversity in
549	the <i>H. pylori</i> group than in the control group (* $P < 0.001$). The Shannon index was not
550	significantly different between the two groups ($P = 0.054$). OTUs: operational
551	taxonomic units.

55	52	Figure 3. Beta diversity of the 16S rRNA/DNA/amplicon sequence data (control
55	53	group vs <i>H. pylori</i> group)
55	54	PCO: principal coordinate analysis; PERMDISP: permutational analysis of multivariate
55	55	dispersions.
55	56	
55	57	Figure 4. The main 13 bacterial types present in the intestinal microbiota at the
55	58	genus level, comparing the <i>H. pylori</i> and control groups.
55	59	* <i>P</i> < 0.05; ** <i>P</i> < 0.01.
56	60	
56	61	Figure 5. The seven main bacterial types present in the intestinal microbiota at the
56	62	genus level for the control group (A) and the <i>H. pylori</i> group (B) in association with
56	63	body mass index (BMI)
56	64	* <i>P</i> < 0.05; ** <i>P</i> < 0.01. Low: BMI < 15; Mid: BMI of 15–25; High: BMI > 25.
56	65	
56	6	Figure 6. Relative abundance of the <i>Prevotella</i> genus in relation to the BMI
56	67	category in the <i>H. pylori</i> and control groups
56	88	Low: BMI < 15; Mid: BMI of 15–25; High: BMI > 25.
56	69	*P < 0.05; **P < 0.01; ***P < 0.001.

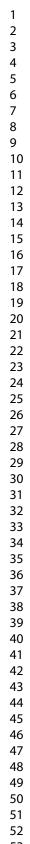

3 4		
5		
6 7	570	
8		
9 10	571	Figure 7. The ratio of the Firmicutes phylum to the Bacteroides phylum in relation
11		
12 13	572	to the BMI category in the <i>H. pylori</i> and control groups
14		
15	573	Low: BMI < 15; Mid: BMI of 15–25; High: BMI > 25.
16 17		
18	574	*** <i>P</i> < 0.001
19 20	071	*** <i>P</i> < 0.001.
21	575	
22	575	
23 24	570	
25	576	Figure 8. Relative abundance of the <i>Subdoligranulum</i> genus in relation to the BMI
26 27		
28	577	category in the <i>H. pylori</i> and control groups
29 30		
31	578	Low: BMI < 15; Mid: BMI of 15–25; High: BMI > 25.
32		
33 34	579	*P < 0.05; **P < 0.01.
35		
36 37	580	
38		
39 40	581	Figure 9. Relative abundance of the <i>Collinsella</i> genus in relation to the BMI
41		
42	582	category in the <i>H. pylori</i> and control groups
43 44		category in the <i>H. pylori</i> and control groups
45	583	Low: BMI < 15; Mid: BMI of 15–25; High: BMI > 25.
46 47		
48		
49 50		
51		
52		
53 54		
55		
56 57		
58		
59 60		
		35

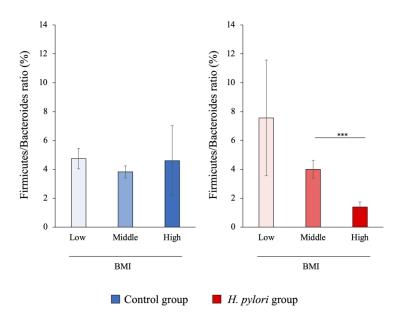

296x209mm (300 x 300 DPI)


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

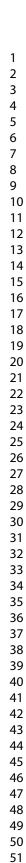

296x209mm (300 x 300 DPI)

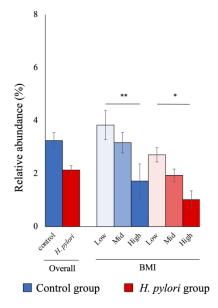
BMJ Open: first published as 10.1136/bmjopen-2020-047941 on 2 July 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.



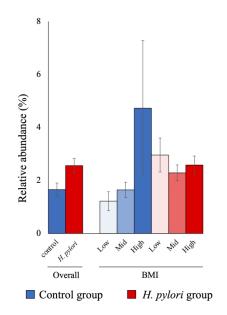

296x209mm (300 x 300 DPI)

296x209mm (300 x 300 DPI)


296x209mm (300 x 300 DPI)



296x209mm (300 x 300 DPI)


BMJ Open: first published as 10.1136/bmjopen-2020-047941 on 2 July 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

BMJ Open

296x209mm (300 x 300 DPI)

296x209mm (300 x 300 DPI)

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectional reporting guidelines, and cite them as:

von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

			Page
		Reporting Item	Number
Title and abstract			
Title	<u>#1a</u>	Indicate the study's design with a commonly used term in the title or the abstract	1
Abstract	<u>#1b</u>	Provide in the abstract an informative and balanced summary of what was done and what was found	2-3
Introduction			
Background / rationale	<u>#2</u>	Explain the scientific background and rationale for the investigation being reported	5
Objectives	<u>#3</u>	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	<u>#4</u>	Present key elements of study design early in the paper	5-6
Setting	<u>#5</u> For	Describe the setting, locations, and relevant dates, including periods of peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5-6

Page 47 of 47

1			recruitment, exposure, follow-up, and data collection	
2 3 4 5 6 7 8 9 10 11 12 13 14 15	Eligibility criteria	<u>#6a</u>	Give the eligibility criteria, and the sources and methods of selection of participants.	6
		<u>#7</u>	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-9
	Data sources / measurement	<u>#8</u>	For each variable of interest give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group. Give information separately for for exposed and unexposed groups if applicable.	6-9
16 17 18	Bias	<u>#9</u>	Describe any efforts to address potential sources of bias	6-9
19 20	Study size	<u>#10</u>	Explain how the study size was arrived at	6-9
21 22 23 24	Quantitative variables	<u>#11</u>	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	6-9
25 26 27 28	Statistical methods	<u>#12a</u>	Describe all statistical methods, including those used to control for confounding	9
29 30 31	Statistical methods	<u>#12b</u>	Describe any methods used to examine subgroups and interactions	9
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Statistical methods	<u>#12c</u>	Explain how missing data were addressed	9
	Statistical methods	<u>#12d</u>	If applicable, describe analytical methods taking account of sampling strategy	9
	Statistical methods	<u>#12e</u>	Describe any sensitivity analyses	9
	Results			
	Participants	<u>#13a</u>	Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.	10
	Participants	<u>#13b</u>	Give reasons for non-participation at each stage	10
	Participants	<u>#13c</u>	Consider use of a flow diagram	10
59 60		For	peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 48 of 47

BMJ Open: first published as 10.1136/bmjopen-2020-047941 on 2 July 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

1 2 3 4 5	Descriptive data	<u>#14a</u>	Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders. Give information separately for exposed and unexposed groups if applicable.	10
6 7 8 9	Descriptive data	<u>#14b</u>	Indicate number of participants with missing data for each variable of interest	10
10 11 12	Outcome data	<u>#15</u>	Report numbers of outcome events or summary measures. Give information separately for exposed and unexposed groups if applicable.	10-12
13 14 15 16 17 18	Main results	<u>#16a</u>	Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10-12
19 20	Main results	<u>#16b</u>	Report category boundaries when continuous variables were categorized	10-12
21 22 23 24	Main results	<u>#16c</u>	If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	10-12
25 26 27 28	Other analyses	<u>#17</u>	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	10-12
20 29 30	Discussion			
31 32 33	Key results	<u>#18</u>	Summarise key results with reference to study objectives	13
34 35 36 37 38	Limitations	<u>#19</u>	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	16
39 40 41 42 43	Interpretation	<u>#20</u>	Give a cautious overall interpretation considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	13-16
44 45 46	Generalisability	<u>#21</u>	Discuss the generalisability (external validity) of the study results	13-16
47 48	Other			
49	Information			
50 51 52 53 54 55	Funding	<u>#22</u>	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	18
56	The STROBE checklist is distributed under the terms of the Creative Commons Attribution License CC-BY.			
57 58		-	ted on 12. December 2020 using https://www.goodreports.org/, a tool made b	by the
59 60	EQUATOR Network in collaboration with Penelope ai For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			