

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

A population-based study of out-of-hospital cardiac arrest in the Japanese working population: 12-year trends, colleague bystanders, and neurological outcome

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047932
Article Type:	Original research
Date Submitted by the Author:	12-Dec-2020
Complete List of Authors:	Yamagishi, Yasunobu; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Oginosawa, Yasushi; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Fujino, Yoshihisa; University of Occupational and Environmental Health Japan, Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences Yagyu, Keishiro; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Miyamoto, Taro; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Tsukahara, Keita ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Hisaharu ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Hisaharu ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Hisaharu ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Risuko; University of Occupational and Environmental Health Japan, Department of Heart Rhythm Management Abe, Haruhiko; University of Occupational and Environmental Health Japan, Department of Heart Rhythm Management
Keywords:	Cardiac Epidemiology < CARDIOLOGY, Cardiology < INTERNAL MEDICINE, OCCUPATIONAL & INDUSTRIAL MEDICINE

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

A population-based study of out-of-hospital cardiac arrest in the Japanese working

population: 12-year trends, colleague bystanders, and neurological outcome

Corresponding author:

Yasushi Oginosawa

The Second Department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8556, Japan.

E-mail: y-ogi@med.uoeh-u.ac.jp

Yasunobu Yamagishi^a, Yasushi Oginosawa^a, Yoshihisa Fujino^b, Keishiro Yagyu^a, Taro Miyamoto^a, Keita Tsukahara^a, Hisaharu Ohe^a, Ritsuko Kohno^c, and Haruhiko Abe^c

^aThe Second Department of Internal Medicine, University of Occupational and

Environmental Health, Kitakyushu, Fukuoka, Japan;

^bDepartment of Environmental Epidemiology, Institute of Industrial Ecological Sciences,

University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan;

^cDepartment of Heart Rhythm Management, University of Occupational and Environmental

Health, Kitakyushu, Fukuoka, Japan.

Word count: 3276 words

ABSTRACT

Objectives: To elucidate the long-term characteristics and relationship between a colleague bystander and prognosis following an out-of-hospital cardiac arrest (OHCA) in the Japanese working population.

Design and setting: Prospective, nationwide, population-based OHCA registry (2005–2016). **Participants:** Working population of Japan, aged 20–69 years.

Primary and secondary outcome measures: Characteristics of cardiogenic OHCA. Citizen bystanders were classified as family, friends, colleagues, and passers-by. The relationship between prehospitalisation factors and 1-month survival with favourable neurological outcome was examined.

Results: The absolute number and incidence of OHCA were mostly unchanged, from 17,403 (20 per 100,000 population) in 2005 to 17,917 (22 per 100,000 population) in 2016; while the 1-month survival with favourable neurological outcome increased from 4.5% in 2005 to 11.7% in 2016. The incidence of OHCA, in any age group, was almost constant during the 12-year period, and increased exponentially with increasing age. Colleagues had the highest cardiopulmonary resuscitation/automated external defibrillator proportion and the best prognosis, despite having a significantly longer time from witnessing an OHCA to initial defibrillation compared with passers-by (13 *vs.* 12 minutes, p<0.001); that was independently

associated with 1-month survival with favourable neurological outcome (adjusted odds ratio:

0.97 [1-minute increments], 95% confidence interval: 0.95–0.98; *p*<0.001).

Conclusions: In the 12-year period, the incidence of OHCA in any age group remained almost constant, whereas the prognosis improved each year. Reducing the time from witnessing an OHCA to initial defibrillation may further improve the prognosis of OHCA with a colleague bystander.

Keywords: Cardiopulmonary resuscitation, defibrillation, Japan, out-of-hospital cardiac arrest, prognosis, prospective registry, working population.

terez onz

BMJ Open

STRENGTHS AND LIMITATIONS OF THIS STUDY

- In this population-based study, we analysed data collected from 2005 to 2016 in the All-Japan Utstein registry of the Fire and Disaster Management Agency; a prospective, nationwide, population-based registry.
- A large sample size and longer follow-up allowed detailed assessment of the relationship between a colleague bystander and prognosis following an out-of-hospital cardiac arrest (OHCA) in the Japanese working population.
- We assessed independent factors associated with 1-month survival with favourable neurological outcome after OHCA in the Japanese working population.
- The All-Japan Utstein registry did not contain information on actual employment status, individual medical therapy, activities of daily living before the OHCA, or in-hospital treatment interventions.

INTRODUCTION

Despite advancements in preventive and therapeutic options, sudden cardiac death (SCD) remains a leading cause of mortality. The annual incidence of SCD is estimated to range from 50 to 100 per 100,000 among North Americans and Europeans, and from 14.9 to 36 per 100,000 in the Japanese population.[1] Moreover, the relative public health burden of premature death is greater for SCDs than for all individual cancers and most other leading causes of death.[2] Several studies have reported a relationship between out-of-hospital cardiac arrest (OHCA) and location, such as the workplace,[3-6] although detailed information about SCDs in the working population is lacking, because SCDs do not always occur in the workplace.

We previously defined the working population as individuals aged 20–69 years, and we analysed relatively short-term cardiogenic OHCA condition in the Japanese working population, as an approximation of SCD, by using data from the Utstein registry—a prospective, nationwide, population-based OHCA registry—between 2005 and 2008 in Japan.[7] The earlier study revealed that the incidence of SCD in the working population was highest during winter, on Sundays and Mondays, and during early morning hours, whereas the prognosis of SCD was not reported. A previous study found that the key predictor of survival after OHCA is a bystander witness.[8] A family member witnessed most cases of OHCA in Japan, and OHCA had a worse prognosis with a family member bystander than

BMJ Open

with other bystanders.[9] However, the association between a colleague bystander and the OHCA outcome in the working population has not been fully elucidated.

On January 8, 2020, the Japanese parliament enacted a partial amendment to the law regarding the stabilisation of employment of elderly persons that recommended an extension of the retirement age from 65 to 70 years, with the law coming into effect in companies from April 1, 2021. Another study reported that patients aged ≥ 65 years comprised approximately 76% of patients with OHCA in Japan.[10] Therefore, because individuals in the 65–69 age group are likely to constitute a new working population in the future, investigating the characteristics of SCD in this age group may provide important information with regard to Japanese socioeconomics.

This study aimed to investigate the long-term characteristics of OHCA in the Japanese working population and to determine the prognosis based on age and type of bystander, with a focus on colleagues.

METHODS

Japan has approximately 378,000 km² of total land area, and its population in 2019 was estimated to be 126.2 million, of which 67.33 million were employed, including both part-time and full-time workers.[11] In 2019, 726 fire stations with emergency dispatch centres provided emergency services 24 hours a day.[12] OHCA patients who received a resuscitation attempt by emergency medical service (EMS) personnel were transported to a hospital and then registered in the Utstein registry.

In this population-based study, we analysed data collected between 2005 and 2016 in the All-Japan Utstein registry of the Fire and Disaster Management Agency (FDMA)-a prospective, nationwide, population-based registry-of OHCA victims based on the standardised Utstein style.[13] As described in previous reports that used the Utstein data,[9 10 14] EMS personnel filled the information sheet and updated the OHCA patient information in the Utstein registry based on the information recorded by the treating physician, including sex, age, prefecture, time of occurrence, initial cardiac rhythm, witness status, time course of resuscitation, bystander-initiated cardiopulmonary resuscitation (CPR), use of an automated external defibrillator (AED), administration of intravenous fluids, tracheal intubation, and prehospitalisation return of spontaneous circulation. EMS personnel followed-up these OHCA patients for 1 month to ascertain the survival rate and neurological outcome. The data of 1,423,338 patients were collected between January 1, 2005 and December 31, 2016.

Our patient population was divided into two groups: a cardiogenic and a non-cardiogenic OHCA group. As reported in a previous study,[15] the cardiogenic group was defined as

Page 9 of 35

BMJ Open

having confirmed absence of signs of circulation, with the following exclusion criteria: cerebrovascular disease, respiratory disease, malignant tumours, external factors, drug overdose, drowning, traffic accident, hypothermia, anaphylactic shock, and other non-cardiac factors. The cardiogenic or non-cardiogenic classification was determined clinically by physicians at the hospitals in collaboration with EMS providers, and was confirmed by the FDMA. In this study, the cardiogenic OHCA group included individuals of the working population alone (aged 20-69 years). After excluding those who did not receive OHCA resuscitation (n=4,907) or those who lacked a witness (n=109,761), the working population was further divided into four bystander groups (family, friends, colleagues, and passers-by). We focused on the absolute number and incidence of OHCA, the proportion that received CPR/AED, the 1-month survival rate following OHCA each year, and the characteristics of bystanders. The incidence of OHCA was calculated as follows: Absolute number of OHCAs in the 20–69 age group divided by the number of individuals in the entire 20–69 age group.

The population size was based on the estimated data obtained from the Statistics Bureau of Japan.[16 17] Neurological outcomes were evaluated by physicians based on the Cerebral Performance Category (CPC) scale: Category 1, good cerebral performance; Category 2, moderate cerebral disability; Category 3, severe cerebral disability; Category 4, coma or vegetative state; and Category 5, death or brain death.[10 13] Favourable neurological outcome at 1 month after admission was defined as Categories 1 or 2. Some abnormal values

BMJ Open

were noted in the data on the interval between the emergency call and patient contact (call to contact time), witness to call, time from witnessing an OHCA to bystander-initiated CPR, and time from witnessing an OHCA to initial defibrillation; therefore, we only analysed data recorded between 0 and 60 minutes. According to the FDMA, until 2012, patients with missing data on bystander use of AEDs constituted the group 'without bystander use of AEDs'; however, since 2013, they handled missing data as it is. To homogenise these data, we included all cases with missing AED data (n=8,180) in the group without bystander use of AEDs. The requirement for informed consent was waived owing to the use of anonymised data. This study was approved by the Institutional Review Board of the University of Occupational and Environmental Health, Japan (approval number; UOEHCRB19-072).[18]

Statistical analysis

We used the Mann–Whitney *U* test to compare the averages of continuous variables between the study groups. Univariate and multivariate logistic regression models were used to estimate the relationship between prehospitalisation factors, such as age, sex, bystander CPR/AED, first documented rhythm, type of bystander, onset time (call time), time course, and 1-month survival with favourable neurological outcome after OHCA. All statistical analyses were conducted using Stata (version 16.1; StataCorp LLC, College Station, TX, USA).

ier

Patient and public involvement

Patients and public were not involved in the design of this study.

RESULTS

Of the 1,423,338 OHCA patients included in the All-Japan Utstein registry between 2005 and 2016, we excluded cases with missing essential data (n=62) or abnormal values for categorisation (n=8). Cardiogenic and non-cardiogenic groups comprised 57.2% and 42.8% of the total OHCA population (n=1,423,268), respectively. In the cardiogenic OHCA group, 212,961 OHCA patients aged 20–69 years (working population) were enrolled in this study.

Overall trend of OHCA

The total general population reported by the Statistics Bureau of Japan declined from 127,768,000 in 2005 to 126,933,000 in 2016. A transient increase was observed in 2010 alone (n=128,057,000). Both the absolute number and the total incidence of OHCA had increased, from 102,737 (80 per 100,000 population) in 2005 to 123,552 (97 per 100,000 population) in 2016. Moreover, the absolute number and incidence of cardiogenic OHCA in all age groups increased from 56,412 (44 per 100,000 population) in 2005 to 75,109 (59 per 100,000 population) in 2016.

OHCA trend in the working population

In the OHCA population (n=1,423,268), the working population comprised 428,958 (30.1%) OHCA cases, whereas in the cardiogenic OHCA group (n=814,794), the working population comprised 212,961 (26.1%) OHCA cases.

Figure 1 shows that both the absolute number of cases and the incidence of cardiogenic OHCA in the working population mostly remained unchanged, from 17,403 (20 per 100,000 population) in 2005 to 17,917 (22 per 100,000 population) in 2016. The proportion of CPR and AED performed for cardiogenic OHCA in the working population increased every year, from 32.3% and 0.2% in 2005 to 47.7% and 4.9% in 2016, respectively, and the 1-month survival and favourable neurological outcome of cardiogenic OHCA in the working population also increased from 7.8% and 4.5% in 2005 to 16.3% and 11.7% in 2016, respectively (**Figure 2**).

Sixty-five to 69 age group

The Statistics Bureau of Japan reported that the population aged 20–64 years declined from 77,829,000 in 2005 to 70,522,000 in 2016, whereas the population in the 65–69 age group increased, from 7,460,000 in 2005 to 10,275,000 in 2016. **Figure 3** shows the incidence of cardiogenic OHCA in each age group (in 5-year increments) in the working population.

BMJ Open

There was no significant improvement in the incidence of cardiogenic OHCA over the last 12 years in any age group, and the incidence increased exponentially with increasing age.

Citizen bystander in OHCAs in the working population

Table 1.1 presents the characteristics (age, sex, CPR/AED proportion, and 1-month survival/neurological outcome) of the cardiogenic OHCA cases in the working population for each type of citizen bystander. The colleague bystander group had the highest percentage of both CPR and AED (56.6% and 10.2%, respectively). Furthermore, the colleague bystander group had the highest 1-month survival and best neurological outcome (28.1% and 20.8%, respectively). When time course data were available (n=13,698), the time course was identified for each citizen bystander group (**Table 1.2**). The colleague bystander group had a significantly longer median interval between witnessing an OHCA and initial defibrillation than the passers-by bystander group (13 vs. 12 minutes, p < 0.001).

	Bystander group			
Characteristic	Family	Friends	Colleagues	Passers-by
Total, n	46,909	6,115	8,457	5,155
Age, years, median (Q1–Q3)	61 (52–66)	59 (48–65)	56 (48–62)	60 (52–65)
Sex, men, %	73.6	83.0	92.2	86.6
CPR, %	44.3	52.7	56.6	47.6
AED (bystander defibrillation), %	0.7	7.1	10.2	9.3
1-month survival rate, %	15.9	22.0	28.1	26.5
1-month neurological outcome (CPC 1+2, %)	10.1	15.8	20.8	18.5

 Table 1.1. Characteristics of patients with cardiogenic OHCA in the working population according to bystander

 group

Abbreviations: AED, automated external defibrillator; CPC, Cerebral Performance Category; CPR,

cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac arrest; Q1–Q3, first to third quartile.

Table 1.2. Characteristics of patients with cardiogenic OHCA in the working population according to bystander group (time course data available)

Characteristic	Tin	ne course, minute	s, median (Q1–Q	3)
Witness call	2 (1–4)	2 (1–4)	2 (1–4)	2 (1-4)
Call to contact	8 (7–10)	8 (6–11)	8 (6–10)	7 (6–9)
Witness-initiated CPR by bystander	3 (1–5)	2 (1–5)	2 (1–5)	2 (1–4)
Witness-initial defibrillation	13 (11–17)	13 (10–17)	13 (10–16)	12 (9–15)

Abbreviations: CPR, cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac arrest; Q1–Q3, first to third quartile.

In the multivariate logistic regression analysis, age, sex, bystander chest compression, shock by public-access AEDs, first documented rhythm, type of bystander, time from witnessing an OHCA to bystander-initiated CPR, time from witnessing an OHCA to initial defibrillation, and call to contact time were independently associated with 1-month survival with favourable neurological outcome in this study population (**Table 2**).

BMJ Open

Prehospitalisation factor	Crude OR	95% CI	<i>p</i> -value	Adjusted OR	95% CI	<i>p</i> -value
Age (1-year increments)	0.97	0.97–0.98	<0.001	0.98	0.98–0.99	<0.001
Sex						
male	Ref.	_	_	Ref.	_	_
female	0.67	0.63–0.71	<0.001	1.35	1.21–1.52	<0.001
Bystander chest compression						
no	Ref.	-	_	Ref.	_	-
yes	2.26	2.16–2.37	<0.001	1.87	1.27–2.74	0.001
Shock by public-access AEDs						
no	Ref.	-	_	Ref.	_	-
yes	4.57	4.17–5.01	<0.001	1.73	1.48–2.02	<0.001
First documented rhythm						
VT/VF	Ref.	-	_	Ref.	_	_
PEA	0.16	0.15–0.17	<0.001	0.51	0.40-0.64	<0.001
asystole	0.03	0.03–0.04	<0.001	0.21	0.15–0.29	<0.001
Type of bystander						
family	Ref.		-	Ref.	_	_
friends	1.67	1.55–1.80	<0.001	1.26	1.11–1.44	<0.001
colleagues	2.33	2.19–2.47	<0.001	1.29	1.15–1.44	<0.001
passers-by	2.01	1.86–2.17	<0.001	1.25	1.08–1.45	0.003
Onset time						
0:00–7:59	0.75	0.71–0.79	<0.001	0.93	0.84–1.03	0.184
8:00–16:59	Ref.	-	_	Ref.	_	_
17:00–23:59	0.82	0.78–0.87	<0.001	0.93	0.85–1.03	0.157
Witness-initiated CPR by						
bystander time	0.91	0.90–0.92	<0.001	0.95	0.93–0.96	<0.001
(1-minute increments)						
Witness-initial defibrillation	0.90	0 90 0 00	<0.001	0.07	0.05.0.09	-0.001
time (1-minute increments)	0.89	0.89-0.90	<0.001	0.97	0.95-0.98	<0.001
Call to contact time	0.07			0.00	0.00.0.04	10.004
(1-minute increments)	0.87	0.86-0.89	<0.001	0.93	0.92-0.94	<0.001

Abbreviations: AED, automated external defibrillator; CI, confidence interval; CPR, cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac arrest; OR, odds ratio; PEA, pulseless electrical activity; Ref., reference; VT/VF, ventricular tachycardia/ventricular fibrillation.

DISCUSSION

Using data obtained from the Utstein registry, collected for 12 years between 2005 and 2016, we investigated OHCA in the Japanese working population with respect to age. We found that: (1) approximately 30% of all OHCA cases occurred in the working population, and the working population comprised 26% of all cases in the cardiogenic OHCA group; (2) both the absolute number and the incidence of cardiogenic OHCA in the working population remained mostly unchanged over the 12-year period; (3) in any age group in the working population, there was no significant improvement in the incidence of cardiogenic OHCA over the 12-year period, with the incidence of OHCA increasing exponentially with increasing age; (4) the proportion of CPR and the use of AEDs increased each year, and the prognosis after 1 month improved in the working population; and (5) among citizen bystanders, the colleague bystander group had the highest bystander CPR/AED proportion, highest 1-month survival rate, and best neurological outcome. However, colleague bystanders had a significantly longer time from witnessing an OHCA to initial defibrillation than the passers-by bystander group, and the time from witnessing an OHCA to initial defibrillation was independently associated with 1-month survival with favourable neurological outcome.

Causality of OHCA and its countermeasures in the working population

Page 17 of 35

BMJ Open

Acute coronary syndrome is the leading cause of cardiac arrest in Western countries. At least one significant coronary artery lesion was found in 70% of all OHCA patients in the absence of an obvious extracardiac cause.[19] The Kumamoto Acute Coronary Events study of an acute myocardial infarction (AMI) registry revealed that the incidence of AMI decreased from 2004 to 2011 in both men and women.[20] The rate of ST segment elevation myocardial infarction decrease was attributed to the increased use of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and lipid-lowering medications (e.g. statins).[21-23] However, the Miyagi AMI registry reported that the incidence of AMI in both men and women who were < 59 years has continued to increase over the past 30 years, between 1985 and 2014. This was attributed to the high incidence of dyslipidaemia secondary to the westernisation of young peoples' diets and lifestyles, as well as high smoking rates (\sim 50% and > 30% in young men and women, respectively).[24] Therefore, an improvement in the diet and the cessation of smoking could be important for reducing the incidence of cardiogenic OHCA in this population.

Compared to Western countries, ischaemic heart disease is less common in Japan,[25] whereas the prevalence of Brugada syndrome is relatively high.[26 27] Brugada syndrome was described by Pedro and Josep Brugada in 1992 as a disease that causes ventricular fibrillation despite the absence of obvious structural cardiac disease, electrolyte abnormalities, or QT prolongation.[28] The Brugada-type electrocardiogram (ECG; right bundle branch

BMJ Open

block and ST segment elevation in V1 through V3) may be closely associated with a sudden unexplained death syndrome, such as Lai Tai ('death during sleep') in northeast Thailand, Bangungut ('moaning and dying during sleep') in the Philippines, and Pokkuri ('sudden unexpected death at night') in Japan.[29] A troublesome characteristic of Brugada syndrome is its nocturnal tendency, which may delay therapeutic intervention and thus lead to worse prognosis. In the univariate analysis of this study, night-time onset of OHCA was associated with a worse prognosis than daytime onset, although this tendency was not detected in multivariate analysis (**Table 2**). A 12-lead ECG at screening, history of syncope, and family history of SCD could help identify patients who are in need of preventive pharmacological and non-pharmacological therapy (e.g. implantable cardioverter defibrillator).[30]

Previous meta-analyses of prospective cohort studies have revealed associations between work stressors and cardiovascular disease. The summary relative risk for long working hours (\geq 55 hours per week) compared with the standard 35–40 hours per week was 1.13 (95% confidence interval [CI]: 1.02–1.26).[31] The total working hours tended to decline in Japan [32] however, the reduction in the number of working hours was minor, and it is unknown whether it contributed significantly to the incidence of OHCA in the working population.

Analysis of OHCA in the 65–69 age group

BMJ Open

In 2018, the Japanese Cabinet Office reported that the proportion of workers in the 65–69 age group was low; in the 5-year age groups, the proportions of male and female workers were 91.0% (55–59), 79.1% (60–64), and 54.8% (65–69) and 70.5% (55–59), 53.6% (60–64), and 34.4% (65–69), respectively.[33] Considering the extension of retirement age that will come into effect from 2021, the employment rates are expected to increase for people in the 65–69 age group. Thus, we investigated the characteristics of cardiogenic OHCA in the 65–69 age group.

In fact, the proportion of workers aged ≥ 65 years in the total labour force population has been increasing every year, from 7.6% in 2005 to 12.8% in 2018.[34] We identified that there was no significant improvement in the incidence of cardiogenic OHCA in any age group over the last 12 years, and the incidence increased exponentially with increasing age (**Figure 3**). A study of OHCA in Osaka Prefecture, Japan, that was conducted for 2 years revealed that the incidence of OHCA increased exponentially with increasing age.[35] This study revealed that the incidence of cardiogenic OHCA in any age group was almost constant over the 12-year period. It should be noted that the incidence of OHCA in the 65–69 age group (extended retirement age group) was high, and age was independently associated with 1-month survival with favourable neurological outcome (adjusted odds ratio [OR]: 0.98 [1-year increments], 95% CI: 0.98–0.99; p < 0.001). Therefore, it is important for companies with older employees to take this factor into account.

Effect of colleagues and other types of bystanders

The worst 1-month survival and neurological outcome was observed in the family bystander group. This unfavourable result could be attributed to the lowest CPR/AED proportion (44.3% and 0.7%) among all of the study groups. Another study reported a similar association for the bystander-patient relationship: family members had a worse 1-month survival and neurological outcome than friends and colleagues. They reported that large delays (≥ 5 minutes) in the witness call interval and a large witness bystander CPR interval were most frequent in the family bystander group.[36]

A previous systematic review revealed that the OHCA survival rate was better at the workplace,[3] and the findings of our study are similar, whereby colleague bystander was associated with a better 1-month survival and favourable neurological outcome. A possible reason for such a favourable prognosis is that the CPR/AED proportion was highest in the colleague bystander group. Furthermore, we found room for further improvement of the prognosis of OHCA in the colleague bystander group. The colleague bystander group had a significantly longer median interval between witnessing an OHCA and initial defibrillation than the passers-by bystander group (13 *vs.* 12 minutes, respectively; p < 0.001), and the time from witnessing an OHCA to initial defibrillation was independently associated with 1-month survival with favourable neurological outcome in the working population (adjusted OR: 0.97 [1-minute increments], 95% CI: 0.95–0.98; p < 0.001). A possible reason why colleagues

Page 21 of 35

BMJ Open

took longer to perform the first defibrillation compared with passers-by is that most of the initial defibrillations were performed by EMS providers, and the median call to contact interval was significantly longer in the colleague bystander group than in the passers-by by stander group (8 vs. 7 minutes, respectively; p < 0.001). It is assumed that travel distance and time within the building contribute to the delay. Another study that used the model of a large-scale skyscraper calculated the length of time taken by the emergency services to reach a patient within the building (i.e. travel time). The minimum travel time was approximately 19 seconds, the intermediate value was 2 minutes, and the worst value was 4 minutes.[37] Recently, the importance of CPR has become widely known, and the findings of this study supported this fact, given that the CPR proportion in the working population has increased over the years (Figure 2). However, our present study revealed that there were > 30% of cases wherein CPR was not performed despite the cardiogenic OHCA being witnessed by colleagues in 2016 (shown in Supplementary Figure 1). More opportunities for CPR awareness activities in companies may be useful to prevent cardiac death and poor neurological outcome in OHCA patients in the working population. A previous study reported that approximately two-thirds of OHCA survivors return to work [38] which is crucially important in terms of public health and socioeconomic significance.

Limitations

This study has several limitations. First, this was a retrospective population-based study of data obtained from a prospective registry, with some instances where data were missing or abnormal values were present. Second, the actual employment status of the OHCA patients in the 20–69 age group (working population) was unknown. Third, the Utstein registry did not contain information on individual medical therapy, activities of daily living before the OHCA, or the details of in-hospital treatment interventions. Finally, there may be unmeasured confounding factors that may have influenced the 1-month survival with favourable neurological outcome. ie levie

CONCLUSIONS

Over the 12-year period (2005–2016), both the absolute number and incidence of cardiogenic OHCA in the working population remained mostly unchanged, whereas the prognosis of OHCA at 1-month improved. Among citizen bystanders, the colleague bystander group had the highest CPR/AED proportion, highest 1-month survival rate, and best neurological outcome, despite a significantly longer time from witnessing an OHCA to initial defibrillation than the passers-by bystander group. Reducing the time from witnessing an OHCA to initial defibrillation may further improve the prognosis of patients with an OHCA witnessed by a colleague.

We wish to thank all of the emergency medical service personnel and the Fire and Disaster

Management Agency of Japan for their cooperation in collecting data and managing the

Utstein-style registry.

COMPETING INTERESTS

The authors have no competing interests.

FUNDING

This research received no specific grant from any funding agency in the public, commercial,

or not-for-profit sectors.

AUTHORS' CONTRIBUTIONS

YY was involved in data analysis and writing of the manuscript. YO was involved in data verification, the design of the study, supervision, and revising the manuscript. YF was involved in data verification, supervision, and statistical analysis. KY, TM, and KT were involved in data verification. HO and RK were involved in data verification and supervision. HA was involved in data verification, supervision, and revising the manuscript.

DATA SHARING

The data used in this study are not publicly available. The data are only accessible through

the Fire and Disaster Management Agency (2-1-2 Kasumigaseki, Chiyoda-ku, Tokyo, Japan;

Tel.: +03-5253-7529; Fax: +03-5253-7532; E-mail: fdma-goiken@ml.soumu.go.jp).

Therefore, no additional data are available.

References

1

2

3

4

5

6

1

BMJ Open

Wong CX, Brown A, Lau DH et al. Epidemiology of Sudden Cardiac Death: Global

Stecker EC, Reinier K, Marijon E et al. Public health burden of sudden cardiac death

Descatha A, Dagrenat C, Cassan P et al. Cardiac arrest in the workplace and its

outcome: a systematic review and meta-analysis. Resuscitation 2015;96:30-6.

Engdahl J, Herlitz J. Localization of out-of-hospital cardiac arrest in Goteborg

Iwami T, Hiraide A, Nakanishi N et al. Outcome and characteristics of out-of-hospital

1994-2002 and implications for public access defibrillation. Resuscitation

cardiac arrest according to location of arrest: A report from a large-scale,

population-based study in Osaka, Japan. Resuscitation 2006;69:221-8.

2005;64:171-5. https://doi.org/10.1016/j.resuscitation.2004.08.006

and Regional Perspectives. Heart, Lung and Circulation 2019;28:6-14.

in the United States. Circ Arrhythm Electrophysiol 2014;7:212-7.

https://doi.org/10.1016/j.hlc.2018.08.026

https://doi.org/10.1161/circep.113.001034

https://doi.org/10.1016/j.resuscitation.2015.07.004

2		
3 4		
5		
6 7		
5 6 7 8		
9		
10		
11		
12		
13 14		
15		
16		
17		
18 19		
20		
21		
22		
23 24		
24 25		
26		
27		
28		
29 30		
31		
32		
33		
34 35		
36		
37		
38		
39 40		
40 41		
42		
43		
44 45		
43 46		
47		
48		
49 50		
50 51		
52		
53		
54		
55 56		
50 57		
58		
59		
60		

https://doi.org/10.1016/j.resuscitation.2005.08.018 Palaghita A, Jost D, Despreaux T et al. Characteristics of Cardiac Arrest Occurring in the Workplace: A Post Hoc Analysis of the Paris Area Fire Brigade Registry. *J Occup*

	Environ Med 2016;58:747-52. https://doi.org/10.1097/JOM.000000000000783
7	Abe H, Kohno R, Oginosawa Y. Characteristics of syncope in Japan and the Pacific
	rim. Prog Cardiovasc Dis 2013;55:364-9. https://doi.org/10.1016/j.pcad.2012.11.008
8	Suematsu Y, Zhang B, Kuwano T et al. Citizen bystander-patient relationship and
	1-month outcomes after out-of-hospital cardiac arrest of cardiac origin from the
	All-Japan Utstein Registry: a prospective, nationwide, population-based,
	observational study. BMJ Open 2019;9:e024715.
	http://dx.doi.org/10.1136/bmjopen-2018-024715
9	Kitamura T, Iwami T, Kawamura T et al. Nationwide improvements in survival from
	out-of-hospital cardiac arrest in Japan. Circulation 2012;126:2834-43.
	https://doi.org/10.1161/CIRCULATIONAHA.112.109496
10	Matsuyama T, Kitamura T, Kiyohara K et al. Assessment of the 11-year nationwide
	trend of out-of-hospital cardiac arrest cases among elderly patients in Japan
	(2005-2015). Resuscitation 2018;131:83-90.
	https://doi.org/10.1016/j.resuscitation.2018.08.011
11	Statistics Bureau of Japan. Labor Force Survey in 2019 in Japanese.
	https://www.stat.go.jp/data/roudou/sokuhou/nendo/index.html, (accessed 25 June
	2020).
12	Fire and Disaster Management Agency. Emergency System in 2019, Japan.

BMJ Open

1	
2	
3	
4	
5	
5 6 7	
7 8	
o 9	
9 10	
11	
12	
13	
13 14	
15	
15 16 17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26 27	
27	
28	
29	
30	
31 32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51 52	
52 53	
53 54	
54 55	
56	
57	
58	
59	
60	

https://www.fdma.go.jp/publication/rescue/items/kkkg r01 01 kyukyu.pdf, (accessed 25 June 2020). 13 Jacobs I, Nadkarni V, Bahr J et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries. A statement for healthcare professionals from a task force of the international liaison committee on resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa). Resuscitation 2004;63:233-49. https://doi.org/10.1016/j.resuscitation.2004.09.008 14 Okabayashi S, Matsuyama T, Kitamura T et al. Outcomes of Patients 65 Years or Older After Out-of-Hospital Cardiac Arrest Based on Location of Cardiac Arrest in

Japan. JAMA Netw Open 2019;2:e191011.

https://doi.org/10.1001/jamanetworkopen.2019.1011

- Kitamura T, Iwami T, Kawamura T et al. Nationwide public-access defibrillation in
 Japan. N Engl J Med 2010;362:994-1004. <u>https://doi.org/10.1056/NEJMoa0906644</u>
- 16 e-Stat. Table 1, Japanese population by each age and gender (as of October 1 each year, from 2000 to 2015)

https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200524

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
- 77	
23	
24	
25	
25 26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
37	
20	
39	
72	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

<u>&tstat=000000090001&cycle=0&tclass1=000000090004&tclass2=000001051180</u>, (accessed 16 April 2020).

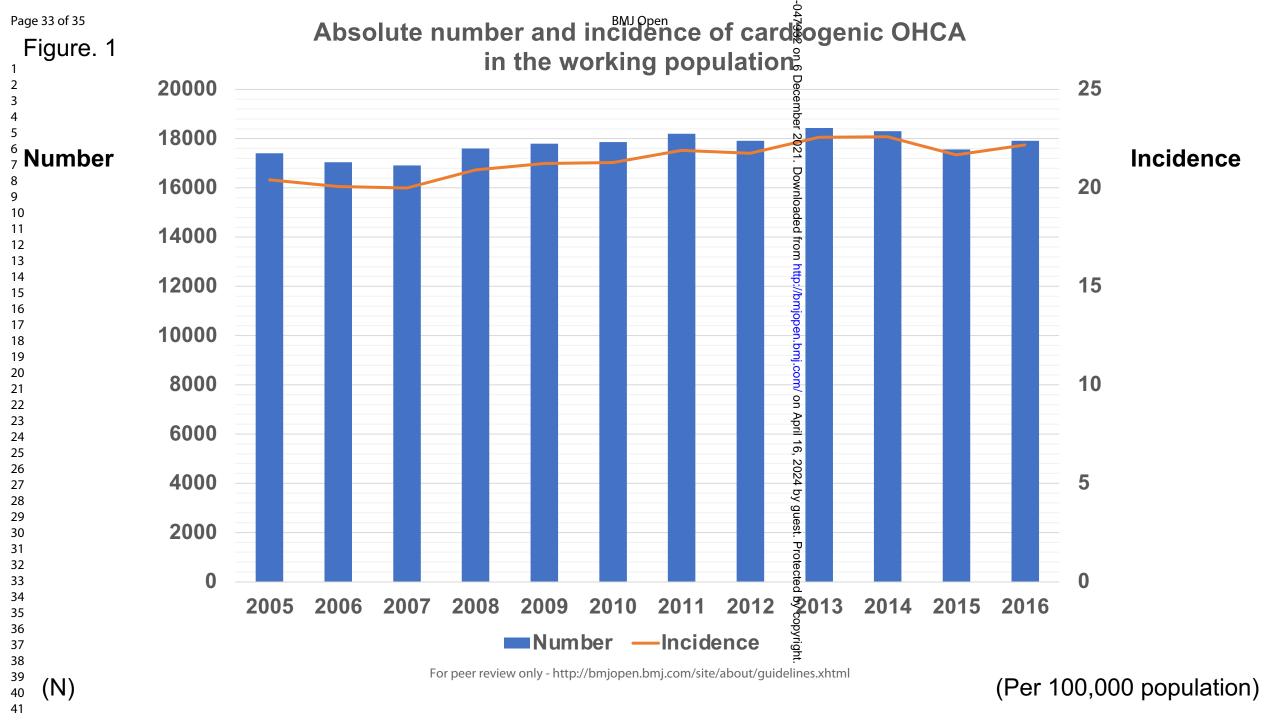
Statistics Bureau of Japan. Table 1. Japanese population by each age and gender (as of October 1, 2016) <u>https://www.stat.go.jp/data/jinsui/2016np/index.html#a05k28-b</u>, (accessed 16 April 2020).

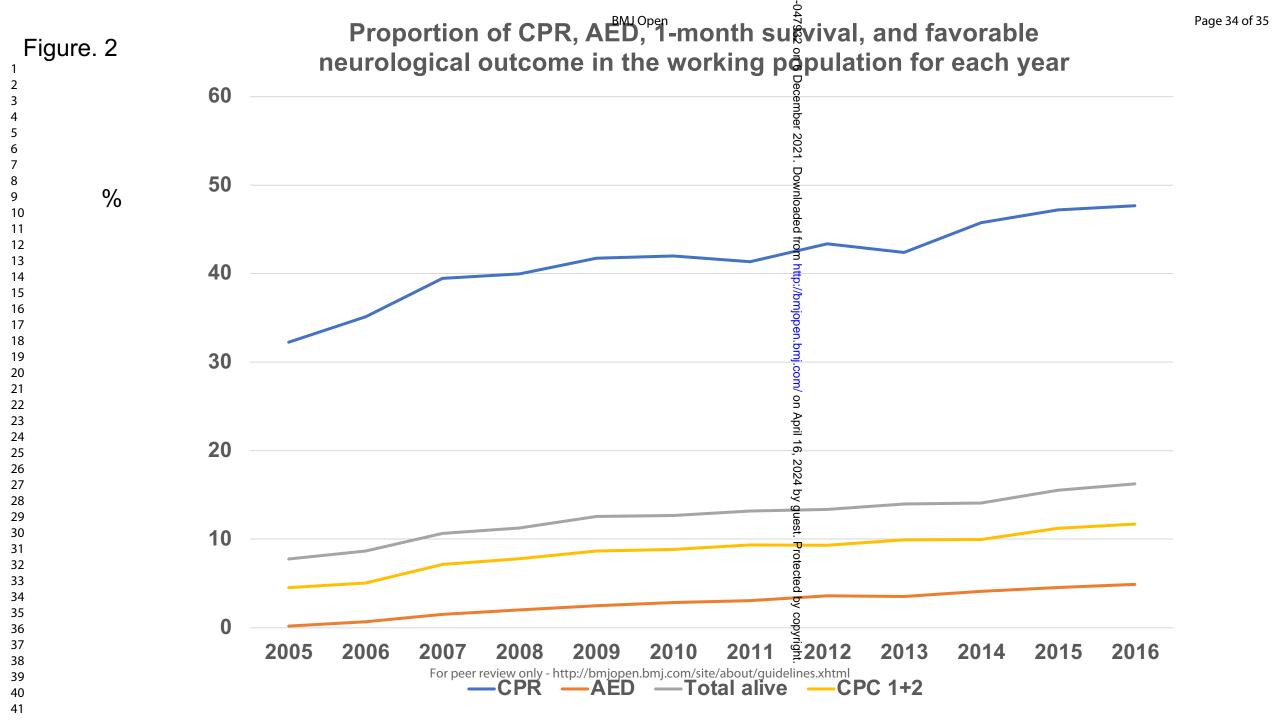
- University of Occupational and Environmental Health, Japan.,. Ethics Committee of Medical Research, University of Occupational and Environmental Health, Japan.
 <u>https://www.uoeh-u.ac.jp/IndustryCooperation/kenkyu/top.html</u>, (accessed 17 April 2020).
- Dumas F, Cariou A, Manzo-Silberman S et al. Immediate percutaneous coronary
 intervention is associated with better survival after out-of-hospital cardiac arrest:
 insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry.
 Circ Cardiovasc Interv 2010;3:200-7.

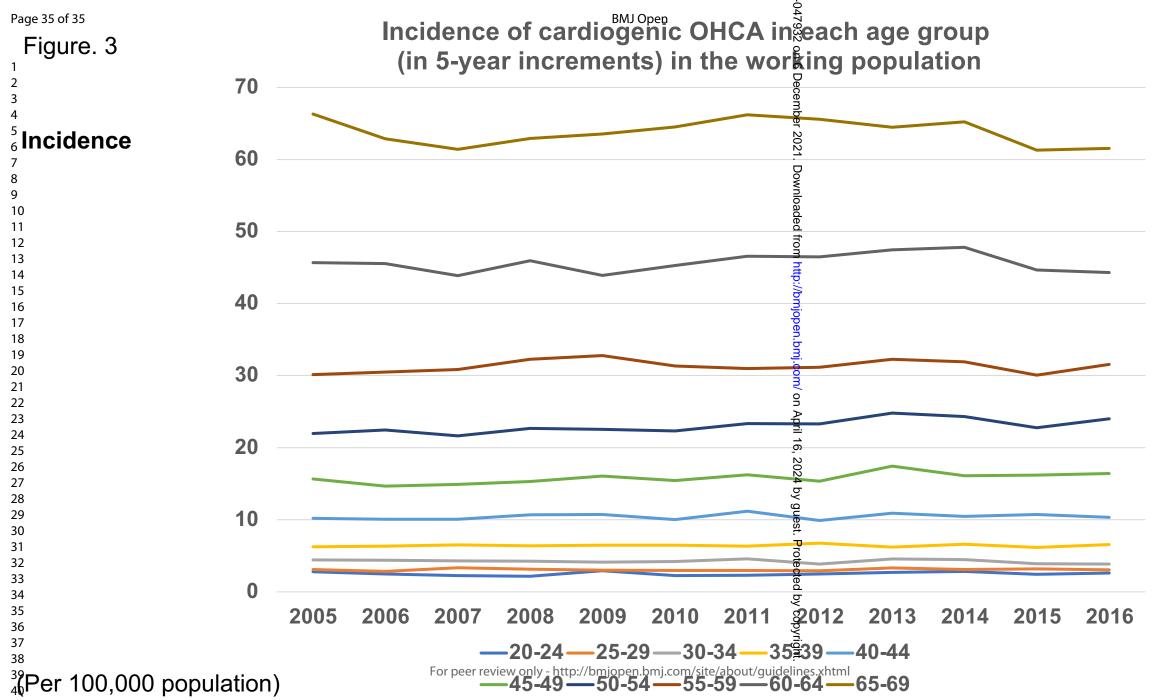
https://doi.org/10.1161/circinterventions.109.913665

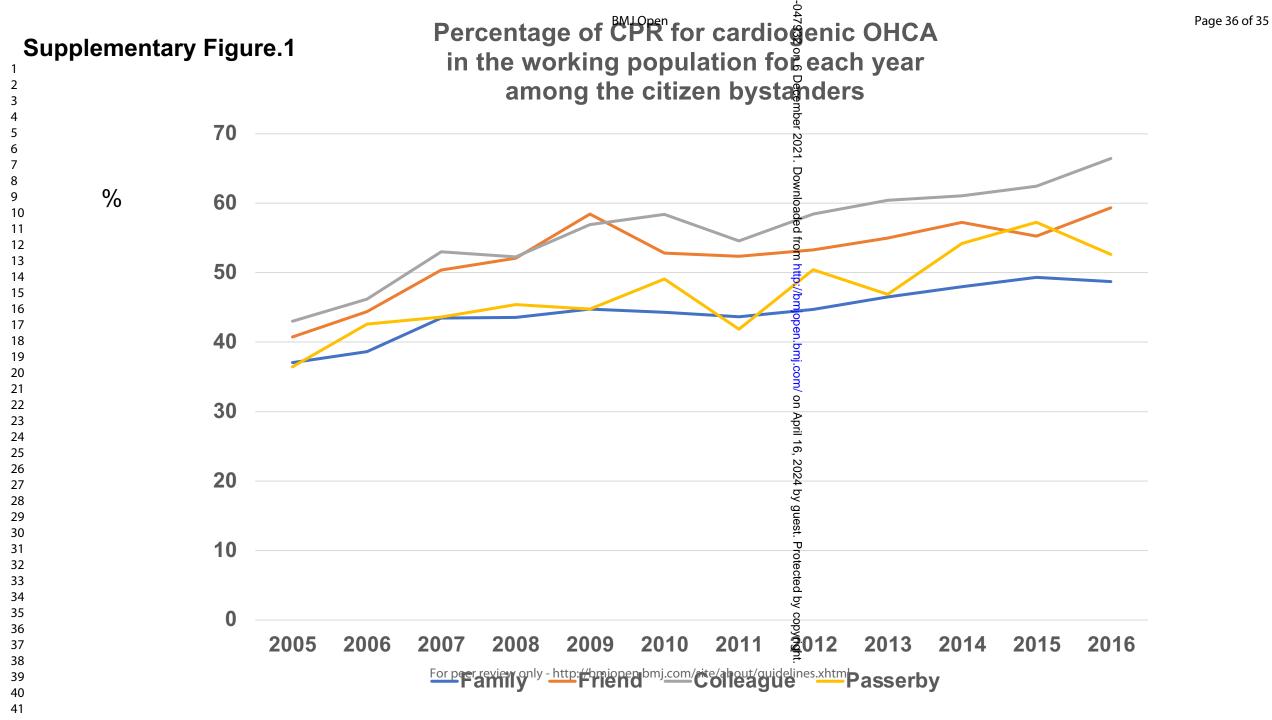
- Kojima S, Matsui K, Ogawa H. Temporal trends in hospitalization for acute myocardial infarction between 2004 and 2011 in Kumamoto, Japan. *Circ J* 2013;77:2841-3. <u>https://doi.org/10.1253/circj.cj-13-1011</u>
- 21 Yusuf S, Teo KK, Pogue J et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. *N Engl J Med* 2008;358:1547-59.

BMJ Open


1 2		
3 4 5		https://doi.org/10.1056/NEJMoa0801317
6 7 8	22	Turnbull F, Neal B, Pfeffer M et al. Blood pressure-dependent and independent
9 10 11		effects of agents that inhibit the renin-angiotensin system. J Hypertens
12 13 14		2007;25:951-8. https://doi.org/10.1097/HJH.0b013e3280bad9b4
15 16 17	23	Imano H, Noda H, Kitamura A et al. Low-density lipoprotein cholesterol and risk of
18 19 20		coronary heart disease among Japanese men and women: the Circulatory Risk in
21 22 23		Communities Study (CIRCS). Prev Med 2011;52:381-6.
24 25 26		https://doi.org/10.1016/j.ypmed.2011.02.019
27 28 29	24	Cui Y, Hao K, Takahashi J et al. Age-Specific Trends in the Incidence and
30 31 32		In-Hospital Mortality of Acute Myocardial Infarction Over 30 Years in
33 34 35		Japan—Report From the Miyagi AMI Registry Study—. Circulation Journal
36 37 38		2017:CJ-16-0799. https://doi.org/10.1253/circj.CJ-16-0799
39 40 41	25	Nishiuchi T, Hiraide A, Hayashi Y et al. Incidence and survival rate of
42 43 44		bystander-witnessed out-of-hospital cardiac arrest with cardiac etiology in Osaka,
45 46 47		Japan: a population-based study according to the Utstein style. <i>Resuscitation</i>
48 49 50		2003;59:329-35.
51 52 53		https://doi.org/10.1253/circj.CJ-16-07910.1016/s0300-9572(03)00241-7
55 54 55 56	26	Sakabe M, Fujiki A, Tani M et al. Proportion and prognosis of healthy people with
57 58 59		coved or saddle-back type ST segment elevation in the right precordial leads during


1 2		
3 4 5		10 years follow-up. Eur Heart J 2003;24:1488-93.
6 7 8		https://doi.org/10.1253/circj.CJ-16-07910.1016/s0195-668x(03)00323-3
9 10 11	27	Hermida JS, Lemoine JL, Aoun FB et al. Prevalence of the brugada syndrome in an
12 13 14		apparently healthy population. Am J Cardiol 2000;86:91-4.
15 16 17		https://doi.org/10.1253/circj.CJ-16-07910.1016/s0002-9149(00)00835-3
18 19 20	28	Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation
21 22 23		and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A
24 25 26		multicenter report. J Am Coll Cardiol 1992;20:1391-6.
27 28 29		https://doi.org/10.1253/circj.CJ-16-07910.1016/0735-1097(92)90253-j
30 31 32	29	Nademanee K, Veerakul G, Nimmannit S et al. Arrhythmogenic marker for the
33 34 35		sudden unexplained death syndrome in Thai men. Circulation 1997;96:2595-600.
36 37 38		https://doi.org/10.1161/01.cir.96.8.2595
39 40 41	30	Porzer M, Mrazkova E, Homza M et al. Out-of-hospital cardiac arrest. Biomed Pap
42 43 44		Med Fac Univ Palacky Olomouc Czech Repub 2017;161:348-353.
45 46 47		https://doi.org/10.5507/bp.2017.054
48 49 50	31	Kivimäki M, Kawachi I. Work Stress as a Risk Factor for Cardiovascular Disease.
51 52 53		Curr Cardiol Rep 2015;17:630. https://doi.org/10.1007/s11886-015-0630-8
54 55 56	32	Ministry of Health, Labour and Welfare.,. Table 1. actual working hours in Japanese.
57 58 59 60		https://www.mhlw.go.jp/toukei/youran/indexyr_d.html, (accessed 16 April 2020).


3		
4	33	Cabinet Office. Employment Situation in Japanese.
5	55	euomet office. Employment oftaation in supanese.
6 7		
8		https://www8.cao.go.jp/kourei/whitepaper/w-2018/html/zenbun/s1_2_1.html,
9		
10		(accessed 17 April 2020).
11		
12 13	24	Cabinat Office. Annual non-art on again againty in Janan
14	34	Cabinet Office. Annual report on aged society in Japan.
15		
16		https://www8.cao.go.jp/kourei/whitepaper/w-2019/zenbun/pdf/1s2s_01.pdf, (accessed
17 18		
19		5 July 2020).
20		5 July 2020).
21		
22 23	35	Iwami T, Hiraide A, Nakanishi N et al. Age and sex analyses of out-of-hospital
24		
25		cardiac arrest in Osaka, Japan. Resuscitation 2003;57:145-52.
26		
27 28		
29		https://doi.org/10.1253/circj.CJ-16-07910.1016/s0300-9572(03)00035-2
30		
31	36	Tanaka Y, Maeda T, Kamikura T et al. Potential association of bystander-patient
32 33		
34		relationship with bystander response and patient survival in daytime out-of-hospital
35		relationship with bystander response and patient survival in daytime out-or-nospital
36		
37 38		cardiac arrest. <i>Resuscitation</i> 2015;86:74-81.
30 39		
40		https://doi.org/10.1016/j.resuscitation.2014.11.004
41		
42 43		
43 44	37	Isobe T, Yoshikawa T. ANALYSIS AND EVALUATION OF THE TIME
45		
46		REQUIRED TO ARRIVE AT THE SPOT FOR FIRST AID IN LARGE-SCALE
47		
48 49		LIDDAN FACILITIES Journal of Auchitecture and Dimuning (Turner of ALL)
50		URBAN FACILITIES. Journal of Architecture and Planning (Transactions of AIJ)
51		
52		2015;80:145-155. https://doi.org/10.3130/aija.80.145
53 54		
55	38	Descatha A, Dumas F, Bougouin W et al. Work factors associated with return to work
56	20	
57		
58 59		in out-of-hospital cardiac arrest survivors. Resuscitation 2018;128:170-174.
60		


https://doi.org/10.1016/j.resuscitation.2018.05.021

For peer teriew only

BMJ Open

The incidence of out-of-hospital cardiac arrests and survival rates after one-month among the Japanese working population: A cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047932.R1
Article Type:	Original research
Date Submitted by the Author:	26-Aug-2021
Complete List of Authors:	Yamagishi, Yasunobu; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Oginosawa, Yasushi; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Fujino, Yoshihisa; University of Occupational and Environmental Health Japan, Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences Yagyu, Keishiro; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Miyamoto, Taro; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Tsukahara, Keita ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Hisaharu ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Hisaharu ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Hisaharu ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Ritsuko; University of Occupational and Environmental Health Japan, Department of Internal Medicine Kohno, Ritsuko; University of Occupational and Environmental Health Japan, Department of Heart Rhythm Management Abe, Haruhiko; University of Occupational and Environmental Health Japan, Department of Heart Rhythm Management
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Occupational and environmental medicine, Epidemiology, Public health
Keywords:	Cardiac Epidemiology < CARDIOLOGY, Cardiology < INTERNAL MEDICINE, OCCUPATIONAL & INDUSTRIAL MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

1	The incidence of out-of-hospital cardiac arrests and survival rates after one-month
2	among the Japanese working population: A cohort study
3	
4	Corresponding author:
5	Yasushi Oginosawa
6	The Second Department of Internal Medicine, University of Occupational and Environmental
7	Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8556, Japan.
8	E-mail: y-ogi@med.uoeh-u.ac.jp
9	
10	Yasunobu Yamagishi ^a , Yasushi Oginosawa ^a , Yoshihisa Fujino ^b , Keishiro Yagyu ^a , Taro
11	Miyamoto ^a , Keita Tsukahara ^a , Hisaharu Ohe ^a , Ritsuko Kohno ^c , and Haruhiko Abe ^c
12	^a The Second Department of Internal Medicine, University of Occupational and
13	Environmental Health, Kitakyushu, Fukuoka, Japan;
14	^b Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences,
15	University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan;
16	^c Department of Heart Rhythm Management, University of Occupational and Environmental
17	Health, Kitakyushu, Fukuoka, Japan.
18	Word count: 3641words

ABSTRACT

20	Objectives: The prevention and improvement of the prognosis of out-of-hospital cardiac
21	arrests (OHCAs) are important issues especially with respect to their social and economic
22	significance in working populations. The age distribution of the working population in Japan
23	is expected to change continually due to its aging society and extension of retirement;
24	however, few reports have examined the long-term condition of OHCA in the working
25	population, defined by age. The aim of this study was to determine the incidence of OHCAs
26	and the survival rates after 1 month, among the Japanese working population, defined by age,
27	considering the changing age distribution.
28	Design and setting: We analysed the All-Japan Utstein registry, a prospective, nationwide,
29	population-based, observational registry (2005–2016).
30	Participants: From the registry, 212,961 OHCA patients from the Japanese working
31	population (defined aged 20-69 years), with only cardiogenic aetiology participated in this
32	study. These patients were further divided into four groups according to the type of citizen
33	bystander (family, friends, work-colleagues, and passers-by).
34	Primary and secondary outcome measures: The main outcomes were 1-month survival
04	Timary and secondary outcome measures. The main outcomes were T month survival
35	with favourable neurological outcomes.

36	Results: The incidence of OHCAs, in any age group, was almost constant during the 12-year
37	period. The work-colleagues had the best prognosis despite having significantly longer times
38	to initial defibrillations compared with the passers-by (13 vs. 12 min, respectively, $P < 0.001$)
39	that was associated independently with 1-month survival with favourable neurological
40	outcomes (adjusted odds ratio: 0.94 [1-min increments], P < 0.001).
41	Conclusions: In the 12-year period, the incidence of OHCAs in any age group remained
42	almost constant, whereas the prognosis improved each year. Reducing the time to initial
43	defibrillation may further improve the prognosis of OHCAs with a work-colleague bystander.
44	Keywords: Cardiopulmonary resuscitation, defibrillation, Japan, out-of-hospital cardiac arrest, prognosis,
45	prospective registry, working population.

STRENGTHS AND LIMITATIONS OF THIS STUDY
• In this population-based study, we analysed data collected between 2005 to 2016 in
the All-Japan Utstein registry of the Fire and Disaster Management Agency; a
prospective, nationwide, population-based registry.
• A large sample size and longer follow-up allowed for the detailed assessment of the
relationship between a work-colleague bystander and the prognosis following an
out-of-hospital cardiac arrest (OHCA) in the Japanese working population.
• We assessed independent factors associated with 1-month survival with favourable
neurological outcomes after OHCAs in the Japanese working population.
• The All-Japan Utstein registry did not contain information on the actual employment
status, individual medical therapy, activities of daily living before the OHCAs, or
in-hospital treatment interventions.

58 INTRODUCTION

The prevention and improvement of the prognosis of out-of-hospital cardiac arrests (OHCAs) are important issues especially with respect to their social and economic significance in working populations.

Japan and other developed countries have aging populations.[1] Out of concern for future labour shortages due to the aging population, the Japanese parliament enacted a partial amendment to the law with respect to the stabilisation of the employment of elderly persons that recommended an extension of the retirement age from 65 to 70 years. This reform bill came into effect for companies from April 1, 2021. In addition, a study reported that patients aged ≥ 65 years comprised approximately 76% of patients with OHCAs in Japan.[2] Although the age distribution of the working population is expected change continuously, few reports have examined the long-term condition of OHCAs in the working population, according to age.

We defined the working population as individuals aged 20–69 years previously, and we
analysed relatively short-term cardiogenic OHCAs in the Japanese working population using
data from the Utstein registry, in Japan — a prospective, nationwide, population-based
OHCA registry — between 2005 and 2008.[3] Although this earlier study revealed that the
incidence of OHCAs in the working population was the highest during winter, on Sundays

BMJ Open

and Mondays, and during the early hours of the morning, it did not report on the prognosis ofthe OHCAs.

The aim of this study was to determine the incidence of OHCAs and the survival rates

after 1 month, among the Japanese working population, defined by age, considering the

80 changing age distribution.

82 METHODS

The population of Japan in 2019 was estimated to be 126.2 million, of which 67.33 million were employed, including both part-time and full-time workers.[4] In 2019, 726 fire stations with emergency dispatch centres provided emergency services 24 hours a day.[5] OHCA patients who underwent resuscitation attempts by emergency medical service (EMS) personnel were transported to hospitals and then registered in the Utstein registry. In this population-based study, we analysed data collected between 2005 and 2016 from the All-Japan Utstein registry of the Fire and Disaster Management Agency (FDMA); a prospective, nationwide, population-based registry of OHCA victims based on the standardised Utstein style.[6] As described in previous reports that used the Utstein data, [2,7,8] EMS personnel filled the information sheet and updated the OHCA patient

Page 8 of 47

1 2	
3 4	
5 6	
7 8	
9 10	
11 12	
13 14	
15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42	
43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
57 58 59	
59 60	

93	information based on the information recorded by the treating physician, including sex, age,
94	prefecture, time of occurrence, initial cardiac rhythm, witness status, type of bystander, time
95	course of resuscitation, bystander-initiated cardiopulmonary resuscitation (CPR), use of an
96	automated external defibrillator (AED), administration of intravenous fluids, tracheal
97	intubation, and prehospitalisation return of spontaneous circulation. The person who
98	performed the basic cardiopulmonary resuscitation, or defibrillation using a public-access
99	AEDs-was defined as a bystander. The EMS personnel followed-up these OHCA patients for
100	1 month to ascertain the survival rates and neurological outcomes. The data of 1,423,338
101	patients were collected between January 1, 2005 and December 31, 2016.
102	We excluded the non-cardiogenic OHCA group, and only the cardiogenic OHCA group
103	participated in our present study. As reported in a previous study,[9] the cardiogenic group
104	was defined as those having confirmed absence of signs of circulation, with the following
105	exclusion criteria: cerebrovascular diseases, respiratory diseases, malignant tumours, external
106	factors, drug overdoses, drownings, traffic accidents, hypothermia, anaphylactic shocks, and
107	other non-cardiac factors. The cardiogenic or non-cardiogenic classification was determined
108	clinically by physicians at the hospitals in collaboration with the EMS providers and was
109	confirmed by the FDMA. In this study, the cardiogenic OHCA group of the working
110	population (aged 20-69 years) were analysed. After excluding those who did not receive
111	OHCA resuscitations ($n = 4,907$) or those who lacked witnesses ($n = 109,761$), the working

3 1 5	112	population was further divided into four bystander groups (family, friends, work-colleagues,
5 7 3	113	and passers-by). We focused on the absolute number and incidences of OHCAs, the
) 0 1	114	proportion that received CPR/AEDs, the 1-month survival rate following the OHCAs each
2 3 4	115	year, and the characteristics of the bystanders. The incidence of the OHCAs was calculated as
5 6 7	116	follows: the absolute number of OHCAs in the 20–69 age group divided by the number of
18 19 20 21	117	individuals in the entire 20–69 age group.
21 22 23 24 25	118	The population size was based on the estimated data obtained from the Statistics Bureau of
26 27 28	119	Japan.[10,11] The neurological outcomes were evaluated by physicians based on the Cerebral
29 30 31	120	Performance Category (CPC) scale: Category 1, good cerebral performance; Category 2,
82 83	121	moderate cerebral disability; Category 3, severe cerebral disability; Category 4, coma or
84 85 86	122	vegetative state; and Category 5, death or brain death.[2,6] Favourable neurological outcomes
87 88 89	123	at 1 month after admission were defined as Categories 1 or 2. Since some abnormal values
10 11 12	124	were noted in the data in the intervals between the emergency calls and the patient contact
13 14 15 16	125	times (call to contact time), witness to call times, times from witnessing OHCAs to
17 18	126	bystander-initiated CPRs, and times from witnessing OHCAs to the times of the initial
19 50 51	127	defibrillations, we only analysed the data recorded between 0 and 60 min (Supplementary
52 53 54	128	Table 1). According to the FDMA (Fire and Disaster Management Agency), until 2012,
50 51 52 53 54 55 56 57 58	129	patients with null values for bystander use of AEDs were converted automatically into the
58 59 50	130	group 'without bystander use of AEDs'; however, since 2013, they did not automatically

convert the null value into the group 'without bystander use of AEDs' and these data were handled as missing data. To homogenise these data, we included all the cases with missing AED data (n = 8,180) in the group without bystander use of AEDs. The requirement for informed consent was waived due to the use of anonymised data. This study was approved by the Institutional Review Board of the University of Occupational and Environmental Health, Japan (approval number; UOEHCRB19-072).[12] **Statistical analysis** We used the Mann-Whitney U test to compare the differences between the two independent groups, when the dependent variable was either ordinal or continuous but not normally distributed. The incidence rate ratios (IRRs) for the incidence of cardiogenic OHCAs were estimated using a Poisson regression analysis, with the age groups separated by five years and a dummy variable for the year included in the model. A log-transformed version of each age group (in 5-year increments) for each year, was obtained from the official statistics, was used as the offset. Univariate and multivariable logistic regression models were used to estimate the relationships between the prehospitalisation factors, such as age, sex, bystander chest compressions, shock by public-access AEDs, first documented rhythms, types of bystander, onset times of day, onset years, times from witnessing OHCAs to bystander-initiated CPRs, times from witnessing OHCAs to the initial defibrillations, call to

149	contact times, and 1-month survival with favourable neurological outcomes after OHCAs.
150	For the multivariable regression models, Cook's distance and variance inflation factors (VIFs)
151	were determined to ascertain the presence of influential observations and multicollinearity,
152	respectively. All the statistical analyses were conducted using Stata (version 16.1; StataCorp
153	LLC, College Station, TX, USA).
154	Patient and public involvement
155	The patients and the public were not involved in the design of this study.
156	
157	RESULTS
158	Of the 1,423,338 OHCA patients included in the All-Japan Utstein registry between 2005 and
159	2016, we excluded cases with missing age data ($n = 62$) or patients who were over 120 years
160	old ($n = 8$). The cardiogenic and non-cardiogenic groups comprised 57.2% and 42.8% of the
161	total OHCA population ($n = 1,423,268$), respectively. In the cardiogenic OHCA group,
162	212,961 OHCA patients aged 20-69 years (working population) were enrolled in this study.
163	After excluding those who did not receive OHCA resuscitations ($n = 4,907$) or those who
164	lacked a-witnesses ($n = 109,761$), the working population was further divided into four

3 4 5	1
4 5 6 7 8 9 10	Ī
10 11 12 13	1
11 12 13 14 15 16 17 18	
19	Ī
20 21 22	1
23 24 25	1
26 27 28	Ī
29 30 31	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Ī
33 34 35 36 37 38 39	1
40 41 42	1
43 44 45	
46 47 48 49	-
50 51 52	Ī
53 54 55	Ī
56 57 58	Ī
59 60	1

bystander groups (family, friends, work-colleagues, and passers-by). Figure 1 shows a flowdiagram of patients with OHCAs.

67 Overall trend of OHCAs

68 The total general population reported by the Statistics Bureau of Japan declined from 69 127,768,000 in 2005 to 126,933,000 in 2016, while a transient increase was observed in 2010 170 alone (n = 128,057,000). Both the absolute number and the total incidence of OHCAs 171 increased, from 102,737 (80 per 100,000 population) in 2005 to 123,552 (97 per 100,000 172 population) in 2016. Moreover, the absolute number and incidence of cardiogenic OHCAs in 173 all age groups increased from 56,412 (44 per 100,000 population) in 2005 to 75,109 (59 per Lien 174 100,000 population) in 2016. 175 **OHCA trend in the working population** 176 Of the OHCA population (n = 1,423,268), the working population comprised 428,958 177 (30.1%) of the OHCA cases, whereas in the cardiogenic OHCA group (n = 814,794), the 178 working population comprised 212,961 (26.1%) OHCA cases. 179 Figure 2 shows that both the absolute number of cases and the incidence of cardiogenic 80 OHCA in the working population mostly remained unchanged, from 17,403 (20 per 100,000 population) in 2005 to 17,917 (22 per 100,000 population) in 2016. The proportion of CPRs 81 82 and AEDs performed for the cardiogenic OHCAs in the working population increased every

1	
2	
3	
4	
5	
6	
7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22 23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

183	year, from 32.3% and 0.2% in 2005 to 47.7% and 4.9% in 2016, respectively, and the												
184	1-month survival and favourable neurological outcomes of the cardiogenic OHCAs in the												
185	working population also increased from 7.8% and 4.5% in 2005 to 16.3% and 11.7% in 2016,												
186	respectively (Figure 3).												
187	Sixty-five to 69 age group												
188	The Statistics Bureau of Japan reported that the population aged 20–64 years declined from												
189	77,829,000 in 2005 to 70,522,000 in 2016, whereas the population in the 65–69 age group												
190	increased, from 7,460,000 in 2005 to 10,275,000 in 2016. Table 1 shows the incidence of												
191	cardiogenic OHCAs in each age group (in 5-year increments) in the working population. A												
192	Poisson regression analysis revealed that there were no significant improvements in the												
193	incidence of cardiogenic OHCAs over the last 12 years in any age group, and the IRRs for												
194	the incidence of cardiogenic OHCAs in age groups separated by five years, was 1.08.												
195													
	Table 1. Incid	lence of o	cardioge	nic OHC	As in ea	ch age g	Jroup (in	5-year iı	ncremen	ts) in the	working	ı populati	ion
					Incic	lence by	year (pe	er 100,00)0 popula	ation)			
	Age (years)	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	20-24	2.8	2.5	2.3	2.2	2.9	2.3	2.3	2.5	2.7	2.8	2.4	2.6
	25-29	3.1	2.8	3.3	3.1	3.0	3.0	3.0	2.9	3.3	3.1	3.2	3.1

12

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2														
3 4 5		30-34	4.5	4.4	4.3	4.2	4.1	4.2	4.6	3.9	4.6	4.5	3.9	3.9
6 7 8		35-39	6.3	6.4	6.5	6.4	6.5	6.5	6.3	6.8	6.2	6.6	6.2	6.6
9 10 11 12		40-44	10.2	10.1	10.1	10.7	10.8	10.0	11.2	9.9	10.9	10.5	10.7	10.3
12 13 14 15		45-49	15.7	14.7	14.9	15.3	16.1	15.4	16.2	15.4	17.5	16.1	16.2	16.4
16 17 18		50-54	22.0	22.4	21.6	22.7	22.6	22.4	23.3	23.3	24.8	24.3	22.8	24.0
19 20 21		55-59	30.2	30.5	30.9	32.3	32.8	31.4	31.0	31.2	32.3	31.9	30.1	31.6
22 23 24		60-64	45.7	45.5	43.9	45.9	43.9	45.3	46.6	46.5	47.4	47.8	44.7	44.3
25 26 27		65-69	66.3	62.9	61.4	62.9	63.5	64.5	66.2	65.6	64.5	65.2	61.3	61.5
28 29 30		Abbreviations: OHCA, out-of-hospital cardiac arrest.												
31 32 33	196													
34 35 36 37	197	Citizen bystander in OHCAs in the working population												
38 39 40 41	198	Table 2.1	presents	the ch	aracter	istics (a	ige, sex	x, CPR/	AED p	roporti	ons, an	d 1-mo	onth	
42 43 44	199	survival/neurological outcomes) of the cardiogenic OHCA cases in the working population												
45 46 47	200	for each type of citizen bystander. The work-colleague bystander group had the highest												
48 49 50	201	percentag	e for both	n CPRs	and A	EDs (5	6.6% a	nd 10.2	2%, res	pective	ly). Fu	rthermo	ore, the	
51 52 53	202	work-coll	eague by	stander	group	had th	e highe	st 1-mo	onth su	rvival a	and bes	t neuro	logical	
54 55 56	203	outcomes	(28.1% a	and 20.	8%, re	spectiv	ely). W	hen the	e time c	ourse o	lata we	ere avai	lable (r	n =
57 58 59	204	13,698), 1	he time c	ourse v	vas ide	entified	for eac	h citize	en bysta	ander g	roup (1	fable 2	.2). Th	e
60	205	work-coll	eague by	stander	group	had sig	_	ntly lon	iger me	dian in	tervals	betwee	en	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

207	12 min, respectively, $P < 0.001$).				
208					
200					
	Table 2.1. Characteristics of patients wi	th cardiogenic OHCA	s in the working	population according	g to the
	bystander group				
	Characteristic		Bysta	nder group	
		Family	Friends	Work-colleagues	Passers-b
	Total, n	46,909	6,115	8,457	5,155
	Age, years, median (Q1–Q3)	61 (52–66)	59 (48–65)	56 (48–62)	60 (52–65
		70.0	02.0	00.0	96.6
	Sex, men, %	73.6	83.0	92.2	86.6
	CPR, %	44.3	52.7	56.6	47.6
	AED (bystander defibrillation), %	0.7	7.1	10.2	9.3
	1-month survival rate, %	15.9	22.0	28.1	26.5
	1-month neurological outcome				
	-	10.1	15.8	20.8	18.5
	(CPC 1+2, %)				

cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac arrest; Q1–Q3, first to third quartile.

Table 2.2. Characteristics of patients with cardiogenic OHCAs in the working population according to the

Characteristic	Family	Friends	Work-colleagues	Passers-by
		Time course, m	in, median (Q1–Q3)	
Witness call	2 (1–4)	2 (1–4)	2 (1–4)	2 (1-4)
Call to contact	8 (7–10)	8 (6–11)	8 (6–10)	7 (6–9)
Witness-initiated CPR by bystander	3 (1–5)	2 (1–5)	2 (1–5)	2 (1–4)
Witness-initial defibrillation	13 (11–17)	13 (10–17)	13 (10–16)	12 (9–15)

Abbreviations: CPR, cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac arrest; Q1–Q3, first to third quartile.

Using a multivariable logistic regression, 13,698 patients were analysed. There were 11,808 (86.2%) males, 13,509 (98.6%) patients received bystander chest compression, 1,062 (7.8%) were shocked by public-access AEDs (automated external defibrillator), 13,698 first documented rhythms were analysed. The VT/VF rhythm was 11,882 (86.7%), PEA 741 (5.4%), asystole 834 (6.1%), and others 241 (1.7%). There were 8,564 (62.5%) family bystanders, 1,551 (11.3%) friends bystanders, 2,465 (18.0%) work-colleagues bystanders, and 1,118 (8.2%) passers-by bystanders. With respect to the onset time of day, 13,698 were analysed, of which the time period 0:00-7:59 comprised 3,835 (28.0%), 8:00-16:59 5,696 (41.6%), and 17:00-23:59 4,167 (30.4%). Age, sex, bystander chest compressions, shock by

BMJ Open

60

219 public-access AEDs, first documented rhythms, types of bystander, onset years, times from 220 witnessing OHCAs to bystander-initiated CPRs, times from witnessing OHCAs to initial 221 defibrillations, and the call to contact times were associated independently with 1-month 222 survival with favourable neurological outcomes in this study population (Table 3). According to the Cook's distance calculation, none were above 0.5. The mean VIF was 1.27 223 224 and none of the variables exceeded a VIF of 3. 225 Table 3. Effect of prehospitalisation factors on the 1-month survival with favourable neurological outcomes after OHCAs Prehospitalisation factor Crude OR 95% CI P-value Adjusted OR 95% CI P-value 0.98 0.98-0.99 < 0.001 0.98 < 0.001 Age (10-year increments) 0.98-0.99 Sex male Ref. Ref. female 1.16 1.04-1.29 0.006 1.33 1.19-1.50 < 0.001 Bystander chest compression Ref. no Ref 0.027 1.77 1.23-2.56 0.002 1.54 1.05-2.22 yes Shock by public-access AEDs no Ref. Ref.

Page 18 of 47

yes	1.72	1.51–1.95	<0.001	1.53	1.31–1.77	<0.001
First documented rhythm						
VT/VF	Ref.	_	_	Ref.	_	-
PEA	0.35	0.28–0.43	<0.001	0.49	0.39–0.61	<0.001
asystole	0.13	0.09–0.17	<0.001	0.21	0.15–0.29	<0.001
Others	2.16	1.67-2.79	<0.001	1.73	1.31-2.29	<0.001
Type of bystander						
family	Ref.	_	_	Ref.	-	-
friends	1.42	1.26–1.59	<0.001	1.28	1.13–1.46	<0.001
work-colleagues	1.55	1.41–1.71	<0.001	1.28	1.15–1.44	<0.001
passers-by	1.69	1.48–1.93	<0.001	1.25	1.08–1.45	0.003
Onset time of day						
0:00–7:59	0.76	0.69–0.84	<0.001	0.92	0.83–1.03	0.141
8:00–16:59	Ref.	_	_	Ref.	-	-
17:00–23:59	0.90	0.82–0.98	0.018	0.93	0.84–1.02	0.116
Onset year	1.08	1.07-1.09	<0.001	1.09	1.08-1.11	<0.001
(1-year increments)						
Witness-initiated CPR by bystander time	0.91	0.90–0.92	<0.001	0.96	0.95–0.98	<0.001
(1-min increments)						

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	
4	
5	
6	
7 8	
9	
10	
11	
12	
13 14	
14 15	
16	
17	
18 19	
20	
21	
22	
23 24	
24 25	
26	
27	
28 29	
29 30	
31	
32	
33	
34 35	
36	
37	
38 39	
39 40	
40 41	
42	
43	
44 45	
45 46	
47	
48	
49 50	
50 51	
52	
53	
54	
55 56	
57	
58	
59	
60	

	Witness-initial defibrillation time	0.89	0.89-0.90	<0.001	0.94	0.93-0.95	<0.001
	(1-min increments)						
	Call to contact time	0.87	0.86-0.89	<0.001	0.93	0.91-0.95	<0.001
	(1-min increments)						
	Abbreviations: AED, automated external defibr	illator; CI, c	onfidence inter	val; CPR, car	diopulmonar	y resuscitation; (DHCA,
	out-of-hospital cardiac arrest; OR, odds ratio; F	PEA, pulsele	ess electrical a	ctivity; Ref., re	eference; VT	/VF, ventricular	
	tachycardia/ventricular fibrillation.						
226							
227	DISCUSSION						
228	Using the data obtained from the U	Utstein re	egistry, tha	t were coll	ected for	12 years be	tween
229	2005 and 2016, we investigated O	HCAs in	the Japane	ese workir	ıg popula	tion with res	spect to
230	age. We found that: (1) approxima	ately 30%	6 of all the	OHCA ca	ses occur	rred in the w	orking
231	population, and that the working p	opulatio	n comprise	ed 26% of	all the ca	ses in the	
232	cardiogenic OHCA group; (2) both	h the abs	olute numł	per and the	e incidenc	ce of cardiog	genic
233	OHCAs in the working population	n remaine	ed mainly u	inchanged	over the	12-year per	iod; (3)
234	in any age group in the working po	opulatior	n, there was	s no signif	icant imp	provement in	the
235	incidence of cardiogenic OHCAs	over the	12-year pe	riod, with	the incide	ence of OHO	CAs
236	increasing with increasing age; (4)) the proj	portion of (CPRs and	the use of	f AEDs incre	eased

1	
2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
38 39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

237	each year, and the prognosis after 1 month improved in the working population; and (5)
238	among the citizen bystanders, the work-colleague bystander group had the highest bystander
239	CPR/AED proportion, highest 1-month survival rate, and best neurological outcomes.
240	However, the work-colleague bystanders had a significantly longer time from witnessing
241	OHCAs to the initial defibrillations than the passers-by bystander group, and the time from
242	witnessing OHCAs to initial defibrillations was associated independently with 1-month
243	survival with favourable neurological outcomes.
244	Causality of OHCAs and their countermeasures in the working population
245	The acute coronary syndrome is the leading cause of cardiac arrest in Western countries. At
246	least one significant coronary artery lesion was found in 70% of all OHCA patients in the
247	absence of an obvious extracardiac cause.[13] The Kumamoto Acute Coronary Events study
248	of acute myocardial infarctions (AMIs) revealed that from 2004 to 2011, the incidence of
249	AMIs decreased in both men and women.[14] The rate of ST segment elevation myocardial
250	infarction decrease was attributed to the increased use of angiotensin-converting enzyme
251	inhibitors, angiotensin II receptor blockers, and lipid-lowering medications (e.g.
252	statins).[15-17] However, the Miyagi AMI registry reported that between 1985 and 2014, the
253	incidence of AMIs in both men and women who were < 59 years continued to increase. This
254	was attributed to the high incidence of dyslipidaemia, secondary to the westernisation of
255	young peoples' diets and lifestyles, as well as the high smoking rates (\sim 50% and $>$ 30% in

	256	young men and women, respectively).[18] Therefore, an improvement in the diet and the
	257	cessation of smoking may be important in the reduction of the incidence of cardiogenic
0 1 2	258	OHCAs in this population.
2 3 4 5 6	259	Compared to Western countries, ischaemic heart disease is less common in Japan,[19]
6 7 8 9	260	whereas the prevalence of the Brugada syndrome is relatively high.[20,21] The Brugada
0 1	261	syndrome was described by Pedro and Josep Brugada in 1992, as a disease that causes
2 3 4	262	ventricular fibrillation despite the absence of obvious structural cardiac diseases, electrolyte
2 3 4 5 6 7 8	263	abnormalities, or QT prolongations.[22] The Brugada-type electrocardiogram (ECG; right
9 0	264	bundle branch block and ST segment elevation in V1 through V3) may be associated closely
1 2 3	265	with a sudden unexplained death syndrome, such as Lai Tai ('death during sleep') in
2 3 4 5 6	266	northeast Thailand, Bangungut ('moaning and dying during sleep') in the Philippines, and
7 8 9	267	Pokkuri ('sudden unexpected death at night') in Japan.[23] A troublesome characteristic of
0 1 2	268	the Brugada syndrome is its nocturnal tendency, which may delay therapeutic interventions
3 4 5 6	269	and thus lead to worse prognosis. In the univariate analysis of this study, a night-time onset
6 7 8	270	(0:00–7:59 and 17:00–23:59) of OHCAs was associated with a worse prognosis than a
9 0 1	271	daytime onset (8:00–16:59), although this tendency was not shown in the multivariable
2 3 4	272	analysis (Table 3). Using a 12-lead ECG at screening, a history of syncope, and a family
5 6 7 8 9 0	273	history of sudden cardiac death may help identify patients who are in need of preventive

274	pharmacological and non-pharmacological therapy (e.g. use of an implantable cardioverter
275	defibrillator).[24]
276	Previous meta-analyses of prospective cohort studies have revealed associations between
277	work stressors and cardiovascular diseases. The summary relative risk for long working hours
278	(\geq 55 hours per week) compared with the standard 35–40 hours per week was 1.13 (95%)
279	confidence interval [CI]: 1.02-1.26).[25] The total working hours tended to decline in Japan
280	[26] however, the reduction in the number of working hours was minor, and it is unknown
281	whether it contributed significantly to the incidence of OHCAs in the working population.
282	Analysis of OHCAs in the 65–69 age group
283	In 2018, the Japanese Cabinet Office reported that the proportion of workers in the 65–69 age
283 284	In 2018, the Japanese Cabinet Office reported that the proportion of workers in the 65–69 age group was low; in the 5-year age groups, the proportions of male and female workers were
284	group was low; in the 5-year age groups, the proportions of male and female workers were
284 285	group was low; in the 5-year age groups, the proportions of male and female workers were 91.0% (55–59), 79.1% (60–64), and 54.8% (65–69) and 70.5% (55–59), 53.6% (60–64), and
284 285 286	group was low; in the 5-year age groups, the proportions of male and female workers were 91.0% (55–59), 79.1% (60–64), and 54.8% (65–69) and 70.5% (55–59), 53.6% (60–64), and 34.4% (65–69).[27] Considering the extension of the retirement age that came into effect
284 285 286 287	group was low; in the 5-year age groups, the proportions of male and female workers were 91.0% (55–59), 79.1% (60–64), and 54.8% (65–69) and 70.5% (55–59), 53.6% (60–64), and 34.4% (65–69).[27] Considering the extension of the retirement age that came into effect from 2021, the employment rates are expected to increase for people in the 65–69 age group.
284 285 286 287 288	group was low; in the 5-year age groups, the proportions of male and female workers were 91.0% (55–59), 79.1% (60–64), and 54.8% (65–69) and 70.5% (55–59), 53.6% (60–64), and 34.4% (65–69).[27] Considering the extension of the retirement age that came into effect from 2021, the employment rates are expected to increase for people in the 65–69 age group. Thus, we investigated the characteristics of cardiogenic OHCAs in the 65–69 age group.

Page 23 of 47

3 1 5	292	over the last 12 years, and the incidence increased with increasing age (Table 1). A study of
5 7 3	293	OHCAs in the Osaka Prefecture, Japan, that was conducted for two years revealed that the
9 0 1	294	incidence of OHCAs increased exponentially with increasing age.[29] Our present study
2 3 4	295	revealed that the incidence of cardiogenic OHCAs in any age group was almost constant over
5 6 7	296	the 12-year period. It should be noted that the incidence of OHCAs in the 65–69 age group
8 9 20	297	(extended retirement age group) was high, and that age was associated independently with
21 22 23	298	1-month survival with favourable neurological outcomes (adjusted odds ratio [OR]: 0.98
24 25 26	299	[10-year increments], 95% CI: 0.98–0.99; $P < 0.001$). Therefore, it is important for
27 28 29	300	companies with older employees to take this into account. Nevertheless, this is not a problem
80 81 82	301	that is limited to Japan; the aging of the population is progressing worldwide, especially in
83 84 85	302	developed countries.[1] In the future, there is a possibility that the retirement age will be
86 87 88	303	extended in many countries around the world.
39 40 41 42 43	304	Effect of work-colleagues and other types of bystanders
13 14 15 16	305	A previous study found that a key predictor of survival after OHCAs is the bystander
17 18 19	306	witness.[30] Another previous study reported that most of the cases of OHCAs in Japan that
50 51 52	307	were witnessed by family members and family bystanders had a worse prognosis than those
51 52 53 54 55 56	308	witnessed by other bystanders.[7] Moreover, in our present study, the worst 1-month survival
57 58	309	and neurological outcomes was observed in the family bystander group. This unfavourable
59 50	310	result may be attributed to the lowest CPR/AED proportions (44.3% and 0.7%, respectively).
		22

Page 24 of 47

1 2 3 4	
5 6 7 8	
9 10 11 12 13	
13 14 15 16 17	
18 19 20 21	
22 23 24 25 26	
27 28 29 30	
31 32 33 34 35	
36 37 38 39	
40 41 42 43 44	
45 46 47 48	
49 50 51 52 53	
54 55 56 57	
58 59 60	

311	Another study that reported a similar association for the bystander-patient relationship
312	indicated that the large delays (\geq 5 min) in the witness call interval and large witness
313	bystander CPR interval were most frequent in the family bystander group.[31]
314	A previous systematic review revealed that the OHCA survival rate was better in the
315	workplace,[32] and the findings of our study were similar: work-colleague bystanders were
316	associated with a better 1-month survival and favourable neurological outcomes. A possible
317	reason for such a favourable prognosis was that the CPR/AED proportion was highest in the
318	work-colleague bystander group. Furthermore, we found further improvements in the
319	prognosis of OHCAs in the work-colleague bystander group. The work-colleague bystander
320	group had significantly longer median intervals between the witnessing OHCAs and initial
321	defibrillations than the passers-by bystander group (13 vs. 12 min, respectively; $P < 0.001$). It
322	is known that a 1-min delay can reduce the survival rate by 7–10%,[33] and the results from
323	Table 3 also indicate that a 1-min difference does have a clinically meaningful benefit for
324	1-month survival with favourable neurological outcomes (adjusted OR: 0.94 [1-min
325	increments], 95% CI: 0.93–0.95; $P < 0.001$). A possible reason why work-colleagues took
326	longer to perform the first defibrillation compared with passers-by may have been due to
327	most of the initial defibrillations being performed by EMS providers, and that the median call
328	to contact intervals were significantly longer in the work-colleague bystander group than in
329	the passers-by bystander group (8 vs. 7 min, respectively; $P < 0.001$). The travel distance and

Page 25 of 47

BMJ Open

1	
2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

330	time to travel within buildings may also have contributed to the delays. Another study that
331	used the model of a large-scale skyscraper, calculated the length of time taken by the
332	emergency services to reach a patient within the building (i.e. travel time) and found that the
333	minimum travel time was approximately 19 s, the intermediate value 2 min, and the worst
334	value 4 min.[34]
335	Recently, the importance of CPR has become known widely, and the findings of this study
336	supported this, given that the CPR proportion in the working population has increased over
337	the years (Figure 3). However, our present study revealed that in 2016 in > 30% of the cases
338	CPR was not performed despite the witnessing of the cardiogenic OHCAs by
339	work-colleagues (shown in Supplementary Figure 1). More opportunities for CPR
340	awareness activities in companies may be useful in preventing cardiac death and poor
341	neurological outcomes in OHCA patients in the working population. A previous study
342	reported that approximately two-thirds of OHCA survivors return to work,[35] which is
342 343	reported that approximately two-thirds of OHCA survivors return to work,[35] which is important in terms of public health and socioeconomic significance.
343	important in terms of public health and socioeconomic significance.
343 344	important in terms of public health and socioeconomic significance.

the 20–69 age group (working population) was unknown. Third, the Utstein registry did not
contain any information on individual medical therapy, and activities of daily living before
the OHCAs, or the details of the in-hospital treatment interventions. Finally, there may have
been unmeasured confounding factors that may have influenced the 1-month survival with
favourable neurological outcomes.

354 CONCLUSIONS

Over the 12-year period (2005–2016), both the absolute number and incidence of cardiogenic OHCAs in the working population remained mainly unchanged, whereas the prognosis of OHCAs at 1-month improved. Among the citizen bystanders, the work-colleague bystander group showed the highest CPR/AED proportion, highest 1-month survival rate, and best neurological outcomes, despite significantly longer times from witnessing OHCAs to initial defibrillations than the passers-by bystander group. Reducing the time from witnessing OHCAs to initial defibrillations may further improve the prognosis of patients with OHCAs that have been witnessed by work-colleagues.

1 2		
3 4 5 6	363	ACKNOWLEDGMENTS
7 8 9	364	We wish to thank all of the emergency medical service personnel and the Fire and Disaster
10 11 12	365	Management Agency of Japan for their cooperation in collecting data and managing the
13 14 15 16	366	Utstein-style registry.
17 18 19	367	
20 21 22	368	COMPETING INTERESTS
23 24 25	369	The authors have no competing interests.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	370	
	371	FUNDING
	372	This research received no specific grant from any funding agency in the public, commercial,
	373	or not-for-profit sectors.
	374	
42 43 44 45	375	AUTHORS' CONTRIBUTIONS
46 47 48	376	YY was involved in data analysis and writing of the manuscript. YO was involved in data
49 50 51	377	verification, the design of the study, supervision, and revising the manuscript. YF was
52 53 54	378	involved in data verification, supervision, and statistical analysis. KY, TM, and KT were
55 56 57	379	involved in data verification. HO and RK were involved in data verification and supervision.
58 59 60	380	HA was involved in data verification, supervision, and revising the manuscript.

1 2		
2 3 4 5	381	
6 7 8	382	DATA SHARING
9 10 11 12	383	The data used in this study are not publicly available. The data are only accessible through
13 14 15	384	the Fire and Disaster Management Agency (2-1-2 Kasumigaseki, Chiyoda-ku, Tokyo, Japan;
16 17 18	385	Tel.: +03-5253-7529; Fax: +03-5253-7532; E-mail: fdma-goiken@ml.soumu.go.jp).
19 20 21	386	Therefore, no additional data are available.
22 23 24 25	387	
26 27 28 29	388	ETHICS STATEMENT
30 31 32 33	389	This study was approved by the Institutional Review Board of the University of Occupational
34 35	390	and Environmental Health, Japan (approval number; UOEHCRB19-072).
36 37 38		
39 40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52		
53 54		
55		
56 57		
58 59		
60		

1 2			
3 4 5	391	REF	ERENCES
6 7 8	392	[1]	Statistics Bureau of Japan. Figure 21. Trends in the proportion of elderly population
9 10 11	393		in major countries (1950-2065). https://www.stat.go.jp/data/topics/topi1135.html,
12 13 14	394		(accessed 9 August 2021).
15 16 17	395	[2]	Matsuyama T, Kitamura T, Kiyohara K et al. Assessment of the 11-year nationwide
18 19 20	396		trend of out-of-hospital cardiac arrest cases among elderly patients in Japan
21 22 23	397		(2005-2015). Resuscitation 2018;131:83-90.
24 25 26	398		https://doi.org/10.1016/j.resuscitation.2018.08.011
27 28 29	399	[3]	Abe H, Kohno R, Oginosawa Y. Characteristics of syncope in Japan and the Pacific
30 31 32	400		rim. Prog Cardiovasc Dis 2013;55:364-9. <u>https://doi.org/10.1016/j.pcad.2012.11.008</u>
33 34 35	401	[4]	Statistics Bureau of Japan. Labor Force Survey in 2019 in Japanese.
36 37 38	402		https://www.stat.go.jp/data/roudou/sokuhou/nendo/index.html, (accessed 25 June
39 40 41	403		2020).
42 43 44	404	[5]	Fire and Disaster Management Agency. Emergency System in 2019, Japan.
45 46 47	405		https://www.fdma.go.jp/publication/rescue/items/kkkg_r01_01_kyukyu.pdf,
48 49 50	406		(accessed 25 June 2020).
51 52	407	[6]	Jacobs I, Nadkarni V, Bahr J et al. Cardiac arrest and cardiopulmonary resuscitation
53 54 55	408		outcome reports: update and simplification of the Utstein templates for resuscitation
56 57 58 59 60	409		registries. A statement for healthcare professionals from a task force of the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3			
4 5	410		international liaison committee on resuscitation (American Heart Association,
6 7 8	411		European Resuscitation Council, Australian Resuscitation Council, New Zealand
9 10 11	412		Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart
12 13 14	413		Foundation, Resuscitation Council of Southern Africa). Resuscitation
15 16 17	414		2004;63:233-49. https://doi.org/10.1016/j.resuscitation.2004.09.008
18 19 20	415	[7]	Kitamura T, Iwami T, Kawamura T et al. Nationwide improvements in survival from
21 22 23	416		out-of-hospital cardiac arrest in Japan. Circulation 2012;126:2834-43.
24 25 26	417		https://doi.org/10.1161/CIRCULATIONAHA.112.109496
27 28 29	418	[8]	Okabayashi S, Matsuyama T, Kitamura T et al. Outcomes of Patients 65 Years or
30 31 32	419		Older After Out-of-Hospital Cardiac Arrest Based on Location of Cardiac Arrest in
33 34 35	420		Japan. JAMA Netw Open 2019;2:e191011.
36 37 38	421		https://doi.org/10.1001/jamanetworkopen.2019.1011
39 40 41	422	[9]	Kitamura T, Iwami T, Kawamura T et al. Nationwide public-access defibrillation in
42 43 44	423		Japan. N Engl J Med 2010;362:994-1004. <u>https://doi.org/10.1056/NEJMoa0906644</u>
45 46 47	424	[10]	e-Stat. Table 1, Japanese population by each age and gender (as of October 1 each
48 49 50	425		year, from 2000 to 2015)
50 51 52 53	426		https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200524
54 55	427		<u>&tstat=000000090001&cycle=0&tclass1=000000090004&tclass2=000001051180</u> ,
56 57 58	428		(accessed 16 April 2020).
59 60			

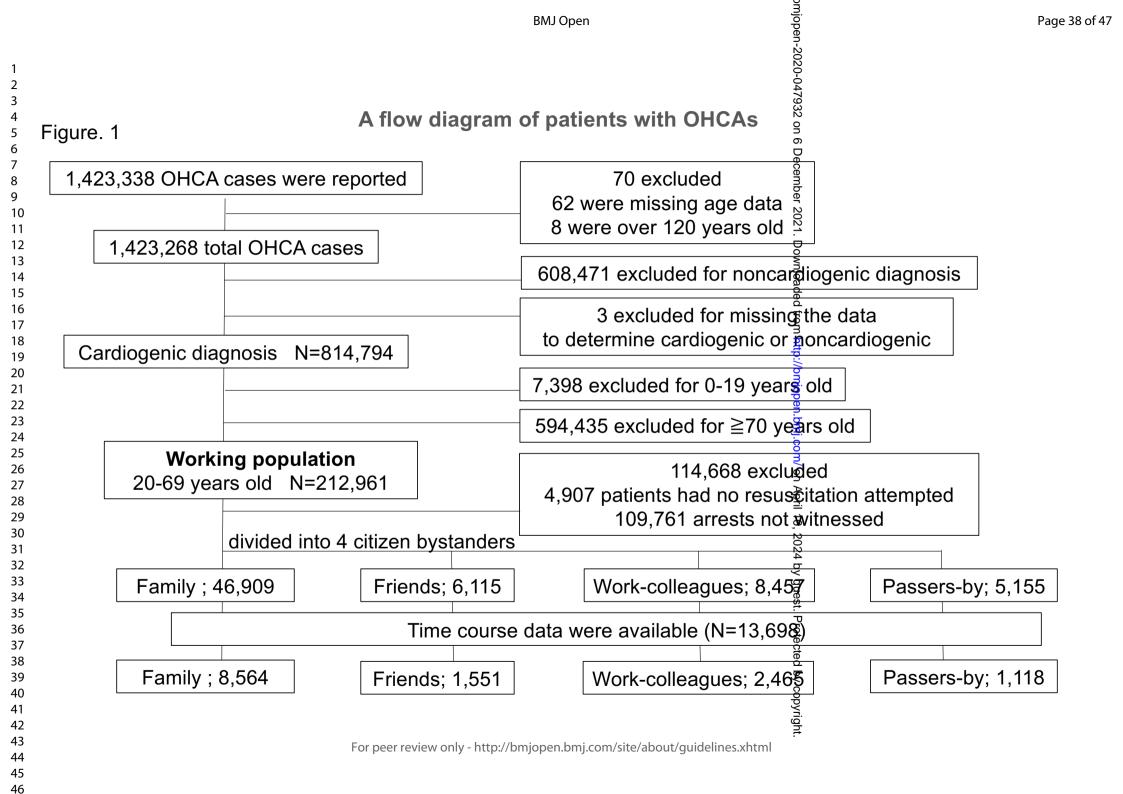
Page 31 of 47

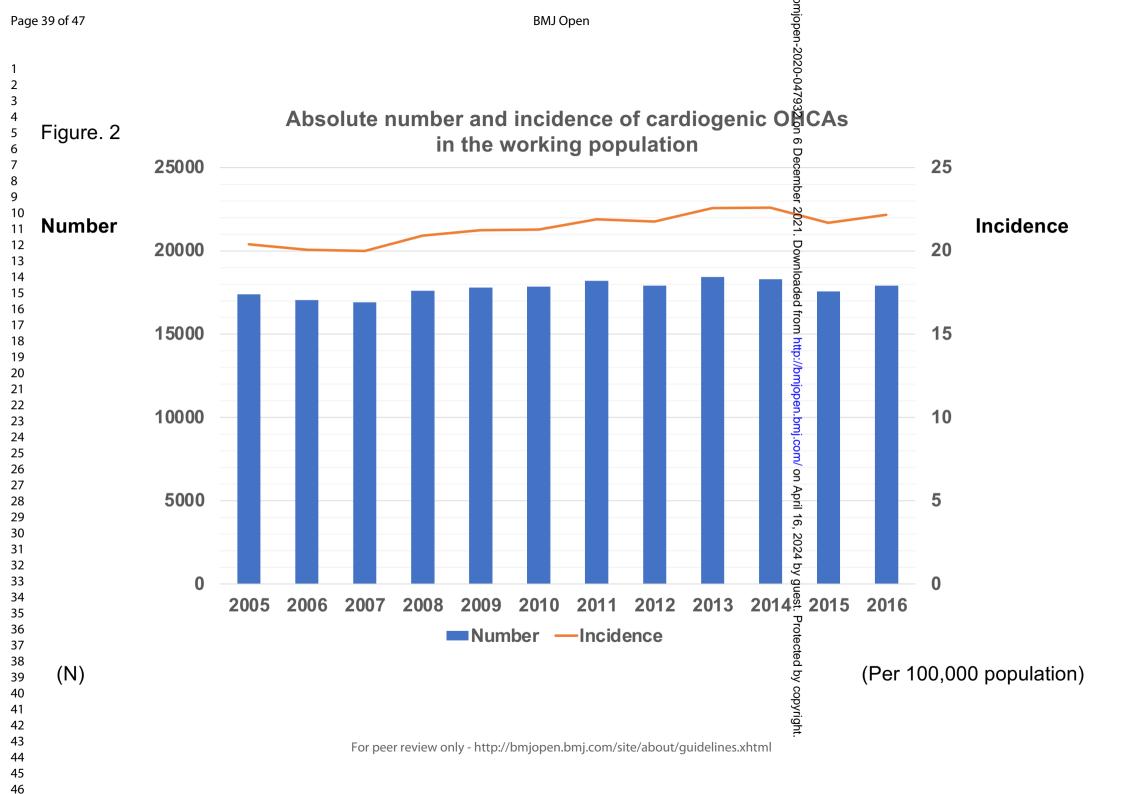
1

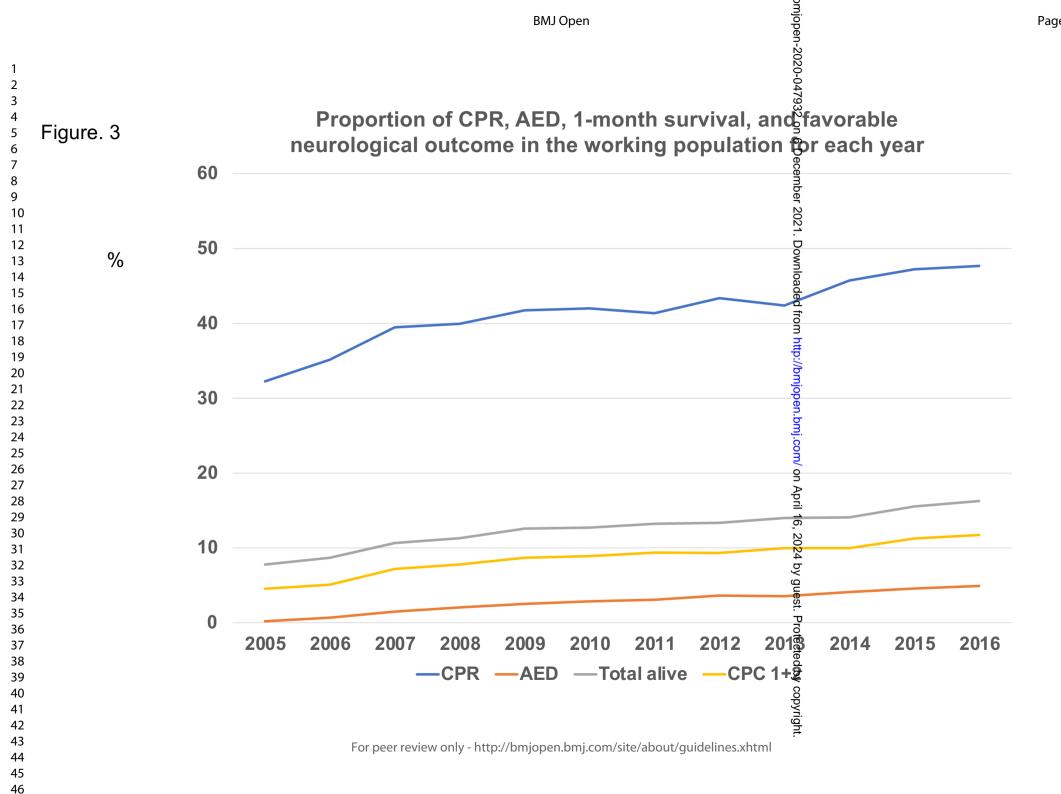
2 3			
4 5 6	429	[11]	Statistics Bureau of Japan. Table 1. Japanese population by each age and gender (as
7 8	430		of October 1, 2016) https://www.stat.go.jp/data/jinsui/2016np/index.html#a05k28-b,
9 10 11	431		(accessed 16 April 2020).
12 13 14	432	[12]	University of Occupational and Environmental Health, Japan.,. Ethics Committee of
15 16 17	433		Medical Research, University of Occupational and Environmental Health, Japan.
18 19 20	434		https://www.uoeh-u.ac.jp/IndustryCooperation/kenkyu/top.html, (accessed 17 April
21 22 23	435		2020).
24 25 26	436	[13]	Dumas F, Cariou A, Manzo-Silberman S et al. Immediate percutaneous coronary
27 28 29	437		intervention is associated with better survival after out-of-hospital cardiac arrest:
30 31 32	438		insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry.
33 34 35	439		Circ Cardiovasc Interv 2010;3:200-7.
36 37 38 39 40 41 42 43 44 45 46 47	440		https://doi.org/10.1161/circinterventions.109.913665
	441	[14]	Kojima S, Matsui K, Ogawa H. Temporal trends in hospitalization for acute
	442		myocardial infarction between 2004 and 2011 in Kumamoto, Japan. Circ J
	443		2013;77:2841-3. https://doi.org/10.1253/circj.cj-13-1011
48 49 50	444	[15]	Yusuf S, Teo KK, Pogue J et al. Telmisartan, ramipril, or both in patients at high risk
51 52 53	445		for vascular events. N Engl J Med 2008;358:1547-59.
54 55 56	446		https://doi.org/10.1056/NEJMoa0801317
57 58 59 60	447	[16]	Turnbull F, Neal B, Pfeffer M et al. Blood pressure-dependent and independent

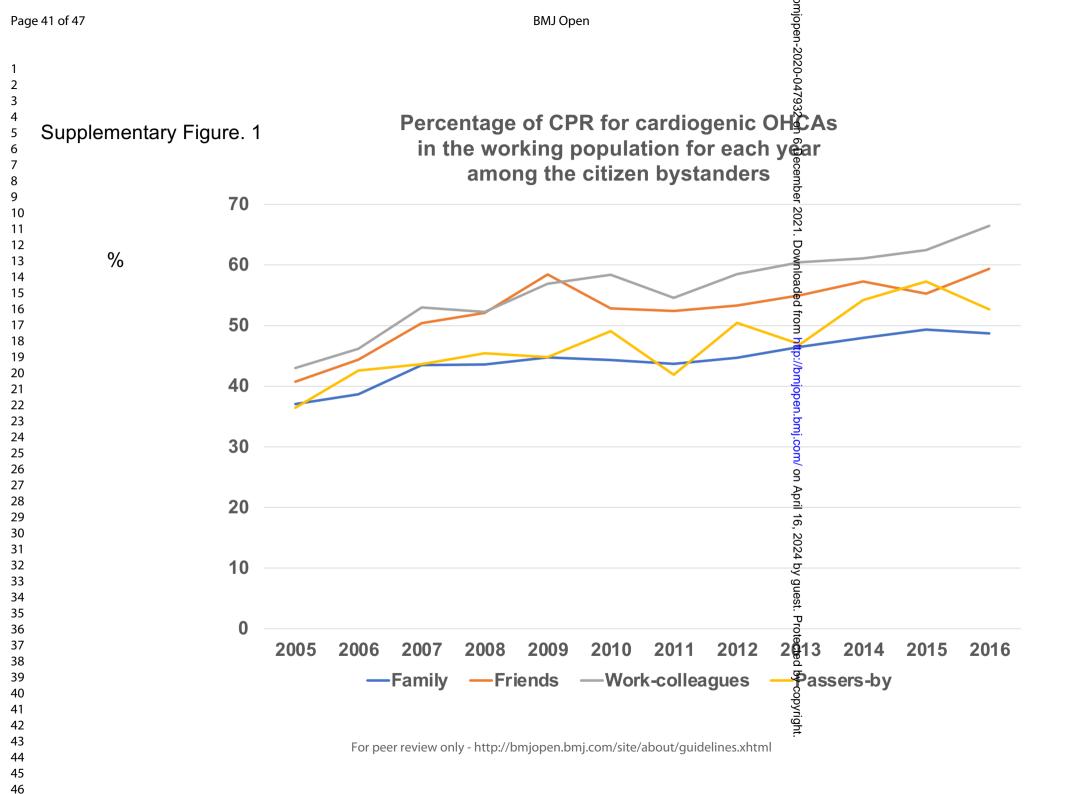
2 3 4	448		effects of agents that inhibit the renin-angiotensin system. J Hypertens
5	440		encers of agents that minor the remin-anglotensin system. 5 Trypertens
6 7 8 9	449		2007;25:951-8. https://doi.org/10.1097/HJH.0b013e3280bad9b4
10 11	450	[17]	Imano H, Noda H, Kitamura A et al. Low-density lipoprotein cholesterol and risk of
12 13 14	451		coronary heart disease among Japanese men and women: the Circulatory Risk in
15 16 17	452		Communities Study (CIRCS). Prev Med 2011;52:381-6.
18 19 20	453		https://doi.org/10.1016/j.ypmed.2011.02.019
21 22 23	454	[18]	Cui Y, Hao K, Takahashi J et al. Age-Specific Trends in the Incidence and
24 25 26	455		In-Hospital Mortality of Acute Myocardial Infarction Over 30 Years in
27 28 29	456		Japan—Report From the Miyagi AMI Registry Study—. Circulation Journal
30 31 32	457		2017:CJ-16-0799. https://doi.org/10.1253/circj.CJ-16-0799
33 34 35	458	[19]	Nishiuchi T, Hiraide A, Hayashi Y et al. Incidence and survival rate of
36 37 38	459		bystander-witnessed out-of-hospital cardiac arrest with cardiac etiology in Osaka,
39 40 41	460		Japan: a population-based study according to the Utstein style. Resuscitation
42 43 44	461		2003;59:329-35. https://doi.org/10.1016/S0300-9572(03)00241-7
45 46 47	462	[20]	Sakabe M, Fujiki A, Tani M et al. Proportion and prognosis of healthy people with
48 49 50	463		coved or saddle-back type ST segment elevation in the right precordial leads during
51 52 53	464		10 years follow-up. Eur Heart J 2003;24:1488-93.
54 55 56	465		https://doi.org/10.1016/S0195-668X(03)00323-3
57 58 59 60	466	[21]	Hermida JS, Lemoine JL, Aoun FB et al. Prevalence of the brugada syndrome in an

1 2			
3 4 5	467		apparently healthy population. Am J Cardiol 2000;86:91-4.
6 7 8	468		https://doi.org/10.1016/S0002-9149(00)00835-3
9 10 11	469	[22]	Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation
12 13 14	470		and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A
15 16 17	471		multicenter report. J Am Coll Cardiol 1992;20:1391-6.
18 19 20	472		https://doi.org/10.1016/0735-1097(92)90253-J
21 22 23	473	[23]	Nademanee K, Veerakul G, Nimmannit S et al. Arrhythmogenic marker for the
24 25 26	474		sudden unexplained death syndrome in Thai men. Circulation 1997;96:2595-600.
27 28 29	475		https://doi.org/10.1161/01.cir.96.8.2595
30 31 32	476	[24]	Porzer M, Mrazkova E, Homza M et al. Out-of-hospital cardiac arrest. Biomed Pap
33 34 35	477		Med Fac Univ Palacky Olomouc Czech Repub 2017;161:348-353.
36 37 38	478		https://doi.org/10.5507/bp.2017.054
39 40 41	479	[25]	Kivimäki M, Kawachi I. Work Stress as a Risk Factor for Cardiovascular Disease.
42 43 44	480		Curr Cardiol Rep 2015;17:630. https://doi.org/10.1007/s11886-015-0630-8
45 46 47	481	[26]	Ministry of Health, Labour and Welfare.,. Table 1. actual working hours in Japanese.
48 49 50	482		https://www.mhlw.go.jp/toukei/youran/indexyr_d.html, (accessed 16 April 2020).
51 52 53	483	[27]	Cabinet Office. Employment Situation in Japanese.
54 55 56	484		https://www8.cao.go.jp/kourei/whitepaper/w-2018/html/zenbun/s1_2_1.html,
57 58 59	485		(accessed 17 April 2020).
60			


1 2			
3 4 5	486	[28]	Cabinet Office. Annual report on aged society in Japan.
6 7 8	487		https://www8.cao.go.jp/kourei/whitepaper/w-2019/zenbun/pdf/1s2s_01.pdf, (accessed
9 10 11	488		5 July 2020).
12 13 14	489	[29]	Iwami T, Hiraide A, Nakanishi N et al. Age and sex analyses of out-of-hospital
15 16 17	490		cardiac arrest in Osaka, Japan. Resuscitation 2003;57:145-52.
18 19 20	491		https://doi.org/10.1016/S0300-9572(03)00035-2
21 22 23	492	[30]	Suematsu Y, Zhang B, Kuwano T et al. Citizen bystander-patient relationship and
24 25 26	493		1-month outcomes after out-of-hospital cardiac arrest of cardiac origin from the
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	494		All-Japan Utstein Registry: a prospective, nationwide, population-based,
	495		observational study. BMJ Open 2019;9:e024715.
	496		http://dx.doi.org/10.1136/bmjopen-2018-024715
	497	[31]	Tanaka Y, Maeda T, Kamikura T et al. Potential association of bystander-patient
	498		relationship with bystander response and patient survival in daytime out-of-hospital
	499	99	cardiac arrest. <i>Resuscitation</i> 2015;86:74-81.
45 46 47	500		https://doi.org/10.1016/j.resuscitation.2014.11.004
48 49 50 51 52 53 54 55 56	501	[32]	Descatha A, Dagrenat C, Cassan P et al. Cardiac arrest in the workplace and its
	502		outcome: a systematic review and meta-analysis. Resuscitation 2015;96:30-6.
	503		https://doi.org/10.1016/j.resuscitation.2015.07.004
57 58 59 60	504	[33]	Part 4: the automated external defibrillator: key link in the chain of survival.


1 2			
3 4 5	505		European Resuscitation Council. Resuscitation 2000;46:73-91.
6 7 8	506		https://doi.org/10.1016/s0300-9572(00)00272-0
9 10 11	507	[34]	Isobe T, Yoshikawa T. ANALYSIS AND EVALUATION OF THE TIME
12 13 14	508		REQUIRED TO ARRIVE AT THE SPOT FOR FIRST AID IN LARGE-SCALE
15 16 17	509		URBAN FACILITIES. Journal of Architecture and Planning (Transactions of AIJ)
18 19 20	510		2015;80:145-155. https://doi.org/10.3130/aija.80.145
21 22 23 24	511	[35]	Descatha A, Dumas F, Bougouin W et al. Work factors associated with return to work
24 25 26 27	512		in out-of-hospital cardiac arrest survivors. Resuscitation 2018;128:170-174.
27 28 29 30	513		https://doi.org/10.1016/j.resuscitation.2018.05.021
31 32 33	514		
34 35 36	515		
37 38 39	516		
40 41 42	517		
43 44 45	518		
46 47 48	519		
49 50 51	520		
52 53 54	521		
55 56 57	522		
58 59 60	523		


524 LEGENDS


	525	Figure 1. A flow diagram of patients with OHCAs
) <u>2</u>	526	Of the 1,423,338 OHCA patients included in the All-Japan Utstein registry between 2005 and
3 1 5	527	2016, we excluded cases with missing data of age $(n=62)$ or patients who were over 120
5 7 3	528	years old (n=8). Cardiogenic and non-cardiogenic groups comprised 57.2% and 42.8% of the
) 	529	total OHCA population (n=1,423,268), respectively. We excluded non-cardiogenic OHCA
- 3 4	530	group. In the cardiogenic OHCA group, 212,961 OHCA patients aged 20-69 years (working
5 7 2	531	population) were enrolled in this study. After excluding those who did not receive OHCA
)	532	resuscitation ($n = 4,907$) or those who lacked a witness ($n = 109,761$), the working population
2 3	533	was further divided into four bystander groups (family, friends, work-colleagues, and
+ 5 5 7	534	passers-by). Abbreviation: OHCA, out-of-hospital cardiac arrest.
, 3 9	535	
) 2	536	Figure 2. Absolute number and incidence of cardiogenic OHCAs in the working
3 4 5	537	population. Both the absolute number and incidence of cardiogenic OHCAs in the working
ע 7		
3	538	population were mostly unchanged over the period of 12 years, from 17,403 (20 per 100,000
, 3 9 0 1	538 539	population were mostly unchanged over the period of 12 years, from 17,403 (20 per 100,000 population) in 2005 to 17,917 (22 per 100,000 population) in 2016. Abbreviation: OHCA,
, 3 9 0 1 2 3 4		
, 3 9 0 1 2 3 4 5 5 7 5	539	population) in 2005 to 17,917 (22 per 100,000 population) in 2016. Abbreviation: OHCA,

1 2		
3 4 5	543	Figure 3. Proportion of CPR, AED, 1-month survival, and favourable neurological
6 7 8	544	outcome in the working population for each year. The percentage of CPR and AED
9 10 11	545	increased each year from 32.3% and 0.2% in 2005 to 47.7% and 4.9% in 2016, respectively.
12 13 14	546	One-month survival rate of cardiogenic OHCAs in the working population increased from
15 16 17	547	7.8% in 2005 to 16.3% in 2016, and the 1-month survival with favourable neurological
18 19 20	548	outcome also increased from 4.5% in 2005 to 11.7% in 2016. Abbreviations: CPR,
21 22 23	549	cardiopulmonary resuscitation; AED, automated external defibrillator; CPC, cerebral
24 25 26	550	performance category.
27 28 29 30	551	
30 31 32 33	552	
33 34 35 36 37	553	
38 39 40 41	554	
42 43 44 45	555	
46 47 48 49	556	
50 51 52 53	557	
54 55 56 57 58	558	
58 59 60	559	

Supplementary Table 1. Information about the abnormal value of time course

	-	Time course, minutes	
	< 0	0 - 60	60 <
Witness call, n (%)	13.784 (20.7)	52.281 (78.6)	472 (0.7)
Call to contact, n (%)	20 (0.0)	66,440 (99.9)	83 (0.1)
Witness-initiated CPR by bystander, n (%)	40 (0.1)	30,264 (99.4)	152 (0.5)
Witness-initial defibrillation, n (%)	112 (0.4)	31,190 (98.8)	253 (0.8)

Abbreviations: CPR, cardiopulmonary resuscitation.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract \rightarrow Page 1, Lines 1-2: The incidence of out-of-hospital cardiac arrests and surviva
		rates after one-month among the Japanese working population: A cohort study
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found
		\rightarrow Page 2-3, Lines 19-43: ABSTRACT
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported \rightarrow Page 5, Lines 62-70: Japan and other developed countries have aging populations.[1] Out of concern for future labour shortages due to the aging population the Japanese parliament enacted a partial amendment to the law with respect to the stabilisation of the employment of elderly persons that recommended an extension of the retirement age from 65 to 70 years. This reform bill came into effect for
Ohiastiwas	2	companies from April 1, 2021.
Objectives	3	State specific objectives, including any prespecified hypotheses \rightarrow Page 5, Lines 68-70: Although the age distribution of the working population is
		expected change continuously, few reports have examined the long-term condition of
		OHCAs in the working population, according to age. (hypotheses)
		\rightarrow Page 6, Lines 78-80: The aim of this study was to determine the incidence of
		OHCAs and the survival rates after 1 month, among the Japanese working population
		defined by age, considering the changing age distribution. (objectives)
Methods		O,
Study design	4	Present key elements of study design early in the paper
		\rightarrow Page 6, Lines 88: In this population-based study, we analysed data collected
		between 2005 and 2016 from the All-Japan Utstein registry of the Fire and Disaster
		Management Agency (FDMA); a prospective, nationwide, population-based registry
		of OHCA victims based on the standardised Utstein style.[6]
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection
		\rightarrow Page 6-7, Lines 91-97: As described in previous reports that used the Utstein
		data,[2,7,8] EMS personnel filled the information sheet and updated the OHCA
		patient information based on the information recorded by the treating physician,
		including sex, age, prefecture, time of occurrence, initial cardiac rhythm, witness
		status, type of bystander, time course of resuscitation, bystander-initiated
		cardiopulmonary resuscitation (CPR), use of an automated external defibrillator
		(AED), administration of intravenous fluids, tracheal intubation, and
		prehospitalisation return of spontaneous circulation.
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of

		 selection of participants. Describe methods of follow-up <i>Case-control study</i>—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i>—Give the eligibility criteria, and the sources and methods of selection of participants →Page 7-8, Lines 109-113: In this study, the cardiogenic OHCA group of the working population (aged 20–69 years) were analysed. After excluding those who did not receive OHCA resuscitations (n = 4,907) or those who lacked witnesses (n = 109,761), the working population was further divided into four bystander groups (family, friends, work-colleagues, and passers-by). (b) <i>Cohort study</i>—For matched studies, give matching criteria and number of exposed and unexposed <i>Case-control study</i>—For matched studies, give matching criteria and the number of controls per case →not applicable
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable \rightarrow Page 7, Lines 103-107: As reported in a previous study,[9] the cardiogenic group was defined as those having confirmed absence of signs of circulation, with the following exclusion criteria: cerebrovascular diseases, respiratory diseases, malignant tumours, external factors, drug overdoses, drownings, traffic accidents, hypothermia, anaphylactic shocks, and other non-cardiac factors. \rightarrow Page 8, Line 119-123: The neurological outcomes were evaluated by physicians based on the Cerebral Performance Category (CPC) scale: Category 1, good cerebral performance; Category 2, moderate cerebral disability; Category 3, severe cerebral disability; Category 4, coma or vegetative state; and Category 5, death or brain death.[2,6] Favourable neurological outcomes at 1 month after admission were defined as Categories 1 or 2.
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group →Page 6-7, Lines 91-97: As described in previous reports that used the Utstein data,[2,7,8] EMS personnel filled the information sheet and updated the OHCA patient information based on the information recorded by the treating physician, including sex, age, prefecture, time of occurrence, initial cardiac rhythm, witness status, type of bystander, time course of resuscitation, bystander-initiated cardiopulmonary resuscitation (CPR), use of an automated external defibrillator (AED), administration of intravenous fluids, tracheal intubation, and prehospitalisation return of spontaneous circulation.
Bias	9	Describe any efforts to address potential sources of bias →Page 9-10, Lines 144-149: Univariate and multivariable logistic regression models were used to estimate the relationships between the prehospitalisation factors, such as age, sex, bystander chest compressions, shock by public-access AEDs, first documented rhythms, types of bystander, onset times of day, onset years, times from witnessing OHCAs to bystander-initiated CPRs, times from witnessing OHCAs to the initial defibrillations, call to contact times, and 1-month survival with favourable neurological outcomes after OHCAs.

Study size	10	Explain how the study size was arrived at \rightarrow Page 7, Lines 100-101: The data of 1,423,338 patients were collected between January 1, 2005 and December 31, 2016.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
-		describe which groupings were chosen and why
		\rightarrow Page 9, Lines 138-140: We used the Mann-Whitney U test to compare the
		differences between the two independent groups, when the dependent variable was
		either ordinal or continuous but not normally distributed
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding \rightarrow Page 9-10, Lines 137-153: Statistical analysis ~
		(b) Describe any methods used to examine subgroups and interactions
		→Page 9-10, Lines 137-153: Statistical analysis ~
		(c) Explain how missing data were addressed
		\rightarrow Figure 1
		→Page 8-9, Lines 128-133: According to the FDMA (Fire and Disaster Managemen
		Agency), until 2012, patients with null values for bystander use of AEDs were
		converted automatically into the group 'without bystander use of AEDs'; however,
		since 2013, they did not automatically convert the null value into the group 'without
		bystander use of AEDs' and these data were handled as missing data. To homogenis
		these data, we included all the cases with missing AED data ($n = 8,180$) in the group
		without bystander use of AEDs.
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was
		addressed
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of
		sampling strategy
		→not applicable
		(<u>e</u>) Describe any sensitivity analyses
		\rightarrow As sensitivity analyses, univariate and multivariable logistic regression are
		performed with and without time data. We confirmed that these methods of data
		analysis did not change the main results.
Continued on next page		

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,
1		examined for eligibility, confirmed eligible, included in the study, completing follow-up, as
		analysed
		→Figure 1
		(b) Give reasons for non-participation at each stage
		→Figure 1
		(c) Consider use of a flow diagram
		\rightarrow Figure 1
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and informat
data		on exposures and potential confounders
		\rightarrow Page 6, Lines 85-87: OHCA patients who underwent resuscitation attempts by emergence
		medical service (EMS) personnel were transported to hospitals and then registered in the Utstein registry.
		(b) Indicate number of participants with missing data for each variable of interest
		\rightarrow Figure 1
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)
		→Page 7, Lines 99-100: The EMS personnel followed-up these OHCA patients for 1 month
		ascertain the survival rates and neurological outcomes.
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time
		\rightarrow Table 2.1 and 2.2.
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure
		→not applicable
		Cross-sectional study—Report numbers of outcome events or summary measures
		→not applicable
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for a
		why they were included
		\rightarrow Table 3.
		(b) Report category boundaries when continuous variables were categorized
		\rightarrow Table 3.
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaning
		time period
		→not applicable
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses
		→Page 9-10, Lines 137-153: Statistical analysis ~
Discussion		
Key results	18	Summarise key results with reference to study objectives \rightarrow Page 18-19, Lines 230-243: We found that: (1) approximately 30% of all the OHCA case
		occurred in the working population, and that the working population comprised 26% of all
		cases in the cardiogenic OHCA group; (2) both the absolute number and the incidence of
		eases in the eardiogenic offer group, (2) both the absolute number and the medence of

Other information Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based \rightarrow Page 26, Line 371-373: FUNDING~
		the world.
		future, there is a possibility that the retirement age will be extended in many countries around
		aging of the population is progressing worldwide, especially in developed countries.[1] In the
		\rightarrow Page 22, Lines 300-303: Nevertheless, this is not a problem that is limited to Japan; the
Generalisability	21	Discuss the generalisability (external validity) of the study results
		approximately 19 s, the intermediate value 2 min, and the worst value 4 min.[34]
		a patient within the building (i.e. travel time) and found that the minimum travel time was
		a large-scale skyscraper, calculated the length of time taken by the emergency services to read
		within buildings may also have contributed to the delays. Another study that used the model of
		by stander group (8 vs. 7 min, respectively; $P < 0.001$). The travel distance and time to travel
		were significantly longer in the work-colleague bystander group than in the passers-by
		defibrillations being performed by EMS providers, and that the median call to contact interva
		the first defibrillation compared with passers-by may have been due to most of the initial
		\rightarrow Page 23-24, Lines 325-334: A possible reason why work-colleagues took longer to perform
		of analyses, results from similar studies, and other relevant evidence
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicit
		→Page 24-25, Lines 344-352: Limitations ~
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias
		favourable neurological outcomes.
		OHCAs to initial defibrillations was associated independently with 1-month survival with
		initial defibrillations than the passers-by bystander group, and the time from witnessing
		work-colleague bystanders had a significantly longer time from witnessing OHCAs to the
		proportion, highest 1-month survival rate, and best neurological outcomes. However, the
		citizen bystanders, the work-colleague bystander group had the highest bystander CPR/AED
		year, and the prognosis after 1 month improved in the working population; and (5) among the
		increasing with increasing age; (4) the proportion of CPRs and the use of AEDs increased ea
		in the incidence of cardiogenic OHCAs over the 12-year period, with the incidence of OHCA

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

The incidence of out-of-hospital cardiac arrests and survival rates after one-month among the Japanese working population: A cohort study

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2020-047932.R2
Article Type:	Original research
Date Submitted by the Author:	24-Oct-2021
Complete List of Authors:	Yamagishi, Yasunobu; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Oginosawa, Yasushi; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Fujino, Yoshihisa; University of Occupational and Environmental Health Japan, Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences Yagyu, Keishiro; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Miyamoto, Taro; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Tsukahara, Keita ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Hisaharu ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Hisaharu ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Hisaharu ; University of Occupational and Environmental Health Japan, The Second Department of Internal Medicine Ohe, Ritsuko; University of Occupational and Environmental Health Japan, Department of Heart Rhythm Management Abe, Haruhiko; University of Occupational and Environmental Health Japan, Department of Heart Rhythm Management
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Occupational and environmental medicine, Epidemiology, Public health
Keywords:	Cardiac Epidemiology < CARDIOLOGY, Cardiology < INTERNAL MEDICINE, OCCUPATIONAL & INDUSTRIAL MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievon

1	The incidence of out-of-hospital cardiac arrests and survival rates after one-month
2	among the Japanese working population: A cohort study
3	
4	Corresponding author:
5	Yasushi Oginosawa
6	The Second Department of Internal Medicine, University of Occupational and Environmental
7	Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8556, Japan.
8	E-mail: y-ogi@med.uoeh-u.ac.jp
9	
10	Yasunobu Yamagishi ^a , Yasushi Oginosawa ^a , Yoshihisa Fujino ^b , Keishiro Yagyu ^a , Taro
11	Miyamoto ^a , Keita Tsukahara ^a , Hisaharu Ohe ^a , Ritsuko Kohno ^c , and Haruhiko Abe ^c
12	^a The Second Department of Internal Medicine, University of Occupational and
13	Environmental Health, Kitakyushu, Fukuoka, Japan;
14	^b Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences,
15	University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan;
16	^c Department of Heart Rhythm Management, University of Occupational and Environmental
17	Health, Kitakyushu, Fukuoka, Japan.
18	Word count: 3639 words

ABSTRACT

20	Objectives: The prevention and improvement of the prognosis of out-of-hospital cardiac
21	arrests (OHCAs) are important issues especially with respect to their social and economic
22	significance in working populations. The age distribution of the working population in Japan
23	is expected to change continually due to its aging society and extension of retirement;
24	however, few reports have examined the long-term condition of OHCA in the working
25	population, defined by age. The aim of this study was to determine the incidence of OHCAs
26	and the survival rates after 1 month, among the Japanese working population, defined by age,
27	considering the changing age distribution.
28	Design and setting: We analysed the All-Japan Utstein registry, a prospective, nationwide,
29	population-based, observational registry (2005–2016).
30	Participants: From the registry, 212,961 OHCA patients from the Japanese working
31	population (defined aged 20-69 years), with only cardiogenic aetiology participated in this
32	study. These patients were further divided into four groups according to the type of citizen
33	bystander (family, friends, work-colleagues, and passers-by).
34	Primary and secondary outcome measures: The main outcomes were 1-month survival
04	Timary and secondary outcome measures. The main outcomes were T month survival
35	with favourable neurological outcomes.

36	Results: The incidence of OHCAs, in any age group, was almost constant during the 12-year
37	period. The work-colleagues had the best prognosis despite having significantly longer times
38	to initial defibrillations compared with the passers-by (13 vs. 12 min, respectively, $P < 0.001$)
39	that was associated independently with 1-month survival with favourable neurological
40	outcomes (adjusted odds ratio: 0.94 [1-min increments], P < 0.001).
41	Conclusions: In the 12-year period, the incidence of OHCAs in any age group remained
42	almost constant, whereas the prognosis improved each year. Reducing the time to initial
43	defibrillation may further improve the prognosis of OHCAs with a work-colleague bystander.
44	Keywords: Cardiopulmonary resuscitation, defibrillation, Japan, out-of-hospital cardiac arrest, prognosis,
45	prospective registry, working population.

STRENGTHS AND LIMITATIONS OF THIS STUDY
• In this population-based study, we analysed data collected between 2005 to 2016 in
the All-Japan Utstein registry of the Fire and Disaster Management Agency; a
prospective, nationwide, population-based registry.
• A large sample size and longer follow-up allowed for the detailed assessment of the
relationship between a work-colleague bystander and the prognosis following an
out-of-hospital cardiac arrest (OHCA) in the Japanese working population.
• We assessed independent factors associated with 1-month survival with favourable
neurological outcomes after OHCAs in the Japanese working population.
• The All-Japan Utstein registry did not contain information on the actual employment
status, individual medical therapy, activities of daily living before the OHCAs, or
in-hospital treatment interventions.

58 INTRODUCTION

59 The prevention and improvement of the prognosis of out-of-hospital cardiac arrests (OHCAs)
60 are important issues especially with respect to their social and economic significance in
61 working populations.

Japan and other developed countries have aging populations.[1] Out of concern for future labour shortages due to the aging population, the Japanese parliament enacted a partial amendment to the law with respect to the stabilisation of the employment of elderly persons that recommended an extension of the retirement age from 65 to 70 years. This reform bill came into effect for companies from April 1, 2021. In addition, a study reported that patients aged ≥ 65 years comprised approximately 76% of patients with OHCAs in Japan.[2] Although the age distribution of the working population is expected change continuously, few reports have examined the long-term condition of OHCAs in the working population, according to age. We defined the working population as individuals aged 20-69 years previously, and we

72 analysed relatively short-term cardiogenic OHCAs in the Japanese working population using
73 data from the Utstein registry, in Japan — a prospective, nationwide, population-based
74 OHCA registry — between 2005 and 2008.[3] Although this earlier study revealed that the
75 incidence of OHCAs in the working population was the highest during winter, on Sundays

BMJ Open

and Mondays, and during the early hours of the morning, it did not report on the prognosis ofthe OHCAs.

The aim of this study was to determine the incidence of OHCAs and the survival rates

after 1 month, among the Japanese working population, defined by age, considering the

80 changing age distribution.

82 METHODS

The population of Japan in 2019 was estimated to be 126.2 million, of which 67.33 million were employed, including both part-time and full-time workers.[4] In 2019, 726 fire stations with emergency dispatch centres provided emergency services 24 hours a day.[5] OHCA patients who underwent resuscitation attempts by emergency medical service (EMS) personnel were transported to hospitals and then registered in the Utstein registry. In this population-based study, we analysed data collected between 2005 and 2016 from the All-Japan Utstein registry of the Fire and Disaster Management Agency (FDMA); a prospective, nationwide, population-based registry of OHCA victims based on the standardised Utstein style.[6] As described in previous reports that used the Utstein data, [2,7,8] EMS personnel filled the information sheet and updated the OHCA patient

Page 8 of 47

1 2	
3 4	
5 6	
7 8	
9 10	
11 12	
13 14	
15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42	
43	
44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
57 58 59	
59 60	

93	information based on the information recorded by the treating physician, including sex, age,
94	prefecture, time of occurrence, initial cardiac rhythm, witness status, type of bystander, time
95	course of resuscitation, bystander-initiated cardiopulmonary resuscitation (CPR), use of an
96	automated external defibrillator (AED), administration of intravenous fluids, tracheal
97	intubation, and prehospitalisation return of spontaneous circulation. The person who
98	performed the basic cardiopulmonary resuscitation, or defibrillation using a public-access
99	AEDs-was defined as a bystander. The EMS personnel followed-up these OHCA patients for
100	1 month to ascertain the survival rates and neurological outcomes. The data of 1,423,338
101	patients were collected between January 1, 2005 and December 31, 2016.
102	We excluded the non-cardiogenic OHCA group, and only the cardiogenic OHCA group
103	participated in our present study. As reported in a previous study,[9] the cardiogenic group
104	was defined as those having confirmed absence of signs of circulation, with the following
105	exclusion criteria: cerebrovascular diseases, respiratory diseases, malignant tumours, external
106	factors, drug overdoses, drownings, traffic accidents, hypothermia, anaphylactic shocks, and
107	other non-cardiac factors. The cardiogenic or non-cardiogenic classification was determined
108	clinically by physicians at the hospitals in collaboration with the EMS providers and was
109	confirmed by the FDMA. In this study, the cardiogenic OHCA group of the working
110	population (aged 20-69 years) were analysed. After excluding those who did not receive
111	OHCA resuscitations ($n = 4,907$) or those who lacked witnesses ($n = 109,761$), the working

3 1 5	112	population was further divided into four bystander groups (family, friends, work-colleagues,
5 7 3	113	and passers-by). We focused on the absolute number and incidences of OHCAs, the
) 0 1	114	proportion that received CPR/AEDs, the 1-month survival rate following the OHCAs each
2 3 4	115	year, and the characteristics of the bystanders. The incidence of the OHCAs was calculated as
5 6 7	116	follows: the absolute number of OHCAs in the 20–69 age group divided by the number of
18 19 20 21	117	individuals in the entire 20–69 age group.
21 22 23 24 25	118	The population size was based on the estimated data obtained from the Statistics Bureau of
26 27 28	119	Japan.[10,11] The neurological outcomes were evaluated by physicians based on the Cerebral
29 30 31	120	Performance Category (CPC) scale: Category 1, good cerebral performance; Category 2,
82 83	121	moderate cerebral disability; Category 3, severe cerebral disability; Category 4, coma or
84 85 86	122	vegetative state; and Category 5, death or brain death.[2,6] Favourable neurological outcomes
87 88 89	123	at 1 month after admission were defined as Categories 1 or 2. Since some abnormal values
10 11 12	124	were noted in the data in the intervals between the emergency calls and the patient contact
13 14 15 16	125	times (call to contact time), witness to call times, times from witnessing OHCAs to
17 18	126	bystander-initiated CPRs, and times from witnessing OHCAs to the times of the initial
19 50 51	127	defibrillations, we only analysed the data recorded between 0 and 60 min (Supplementary
52 53 54	128	Table 1). According to the FDMA (Fire and Disaster Management Agency), until 2012,
50 51 52 53 54 55 56 57 58	129	patients with null values for bystander use of AEDs were converted automatically into the
58 59 50	130	group 'without bystander use of AEDs'; however, since 2013, they did not automatically

convert the null value into the group 'without bystander use of AEDs' and these data were handled as missing data. To homogenise these data, we included all the cases with missing AED data (n = 8,180) in the group without bystander use of AEDs. The requirement for informed consent was waived due to the use of anonymised data. This study was approved by the Institutional Review Board of the University of Occupational and Environmental Health, Japan (approval number; UOEHCRB19-072).[12] **Statistical analysis** We used the t-test to compare the differences between the two independent groups, when the dependent variable was continuous. The incidence rate ratios (IRRs) for the incidence of cardiogenic OHCAs were estimated using a Poisson regression analysis, with the age groups separated by five years and a dummy variable for the year included in the model. A log-transformed version of the numbers in each age group (in 5-year increments) for each year, was obtained from the official statistics, was used as the offset. Univariate and multivariable logistic regression models were used to estimate the relationships between the prehospitalisation factors, such as age, sex, bystander chest compressions, shock by public-access AEDs, first documented rhythms, types of bystander, onset times of day, onset years, times from witnessing OHCAs to bystander-initiated CPRs, times from witnessing OHCAs to the initial defibrillations, call to contact times, and 1-month survival with

1 2		
3 4 5	149	favourable neurological outcomes after OHCAs. For the multivariable regression models,
6 7 8	150	Cook's distance and variance inflation factors (VIFs) were determined to ascertain the
9 10 11	151	presence of influential observations and multicollinearity, respectively. All the statistical
12 13 14	152	analyses were conducted using Stata (version 16.1; StataCorp LLC, College Station, TX,
15 16 17 18 19	153	USA).
20 21	154	Patient and public involvement
22 23 24 25 26	155	The patients and the public were not involved in the design of this study.
27 28 29 30 31	156	
32 33 34	157	RESULTS
35 36 37 38	158	Of the 1,423,338 OHCA patients included in the All-Japan Utstein registry between 2005 and
39 40 41	159	2016, we excluded cases with missing age data ($n = 62$) or patients who were over 120 years
42 43 44	160	old (n = 8). The cardiogenic and non-cardiogenic groups comprised 57.2% and 42.8% of the
45 46 47	161	total OHCA population ($n = 1,423,268$), respectively. In the cardiogenic OHCA group,
48 49 50	162	212,961 OHCA patients aged 20-69 years (working population) were enrolled in this study.
51 52 53	163	After excluding those who did not receive OHCA resuscitations ($n = 4,907$) or those who
55 54 55 56 57 58 59	164	lacked a-witnesses (n = 109,761), the working population was further divided into four
60		

3 4 5	1
4 5 6 7 8 9 10	Ī
10 11 12 13	1
11 12 13 14 15 16 17 18	
19	Ī
20 21 22	1
23 24 25	1
26 27 28	Ī
29 30 31	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Ţ
33 34 35 36 37 38 39	1
40 41 42	1
43 44 45	
46 47 48 49	-
50 51 52	Ī
53 54 55	Ī
56 57 58	Ī
59 60	1

bystander groups (family, friends, work-colleagues, and passers-by). Figure 1 shows a flowdiagram of patients with OHCAs.

67 Overall trend of OHCAs

68 The total general population reported by the Statistics Bureau of Japan declined from 69 127,768,000 in 2005 to 126,933,000 in 2016, while a transient increase was observed in 2010 170 alone (n = 128,057,000). Both the absolute number and the total incidence of OHCAs 171 increased, from 102,737 (80 per 100,000 population) in 2005 to 123,552 (97 per 100,000 172 population) in 2016. Moreover, the absolute number and incidence of cardiogenic OHCAs in 173 all age groups increased from 56,412 (44 per 100,000 population) in 2005 to 75,109 (59 per Lien 174 100,000 population) in 2016. 175 OHCA trend in the working population 176 Of the OHCA population (n = 1,423,268), the working population comprised 428,958 177 (30.1%) of the OHCA cases, whereas in the cardiogenic OHCA group (n = 814,794), the 178 working population comprised 212,961 (26.1%) OHCA cases. 179 Figure 2 shows that both the absolute number of cases and the incidence of cardiogenic 80 OHCA in the working population mostly remained unchanged, from 17,403 (20 per 100,000 population) in 2005 to 17,917 (22 per 100,000 population) in 2016. The proportion of CPRs 81 82 and AEDs performed for the cardiogenic OHCAs in the working population increased every

1	
2	
3	
4	
5	
6	
7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22 23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

183	year, from	32.3% a	and 0.2	% in 2	005 to -	47.7%	and 4.9	% in 2	016, re	spectiv	ely, an	d the	
184	1-month su	rvival a	and fav	ourable	e neuro	logical	outcon	nes of t	he carc	liogeni	COHC.	As in th	ne
185	working po	pulation	n also i	increas	ed fron	n 7.8%	and 4.5	5% in 2	2005 to	16.3%	and 11	.7% in	2016,
186	respectivel	y (Figu	re 3).										
187	Sixty-five	to 69 ag	ge grou	р									
188	The Statisti	ics Bure	eau of J	lapan r	eported	l that th	e popu	lation a	nged 20)–64 ye	ars dec	lined fi	om
189	77,829,000	in 2003	5 to 70	,522,00)0 in 20)16, wh	iereas t	he pop	ulation	in the (65–69 a	age gro	up
190	increased, f	from 7,4	460,000	0 in 20	05 to 1	0,275,0	000 in 2	016. T	able 1	shows	the inci	idence	of
191	cardiogenic	COHCA	As in ea	ich age	group	(in 5-y	ear inc	rement	s) in th	e worki	ing pop	oulation	. A
192	Poisson reg	ression	analys	sis reve	aled th	at there	e were i	no sign	ificant	improv	ements	s in the	
193	incidence o	of cardio	ogenic	ОНСА	s over	the last	12 yea	irs in ai	ny age	group,	and the	e IRRs f	for
194	the inciden	ce of ca	rdioge	nic OH	ICAs in	i age gi	oups so	eparate	d by fiv	ve year	s, was	1.08.	
195													
	Table 1. Incid	lence of o	cardioge	nic OHC	As in ea	ch age g	Jroup (in	5-year iı	ncremen	ts) in the	working	ı populati	ion
					Incic	lence by	year (pe	er 100,00)0 popula	ation)			
	Age (years)	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	20-24	2.8	2.5	2.3	2.2	2.9	2.3	2.3	2.5	2.7	2.8	2.4	2.6
	25-29	3.1	2.8	3.3	3.1	3.0	3.0	3.0	2.9	3.3	3.1	3.2	3.1

12

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2															
3 4 5		30-34	4.5	4.4	4.3	4.2	4.1	4.2	4.6	3.9	4.6	4.5	3.9	3.9	
6 7 8		35-39	6.3	6.4	6.5	6.4	6.5	6.5	6.3	6.8	6.2	6.6	6.2	6.6	
9 10 11 12		40-44	10.2	10.1	10.1	10.7	10.8	10.0	11.2	9.9	10.9	10.5	10.7	10.3	
12 13 14 15		45-49	15.7	14.7	14.9	15.3	16.1	15.4	16.2	15.4	17.5	16.1	16.2	16.4	
16 17 18		50-54	22.0	22.4	21.6	22.7	22.6	22.4	23.3	23.3	24.8	24.3	22.8	24.0	
19 20 21		55-59	30.2	30.5	30.9	32.3	32.8	31.4	31.0	31.2	32.3	31.9	30.1	31.6	
22 23 24		60-64	45.7	45.5	43.9	45.9	43.9	45.3	46.6	46.5	47.4	47.8	44.7	44.3	
25 26 27		65-69	66.3	62.9	61.4	62.9	63.5	64.5	66.2	65.6	64.5	65.2	61.3	61.5	
28 29 30 31 32 33		Abbreviations: OHCA, out-of-hospital cardiac arrest.													
	196														
34 35 36 37	197	Citizen b	ystander	in OH	ICAs i	n the w	vorking	g popul	lation						
38 39 40 41	198	Table 2.1 presents the characteristics (age, sex, CPR/AED proportions, and 1-month)													
42 43 44	199	survival/r	neurologio	cal outo	comes)	of the	cardiog	genic O	HCA c	ases in	the wo	orking p	opulat	ion	
45 46	200	for each type of citizen bystander. The work-colleague bystander group had the highest													
47 48 49 50	201	percentag	e for both	n CPRs	and A	EDs (5	6.6% a	nd 10.2	2%, res	pective	ly). Fu	rthermo	ore, the		
51 52 53	202	work-coll	eague by	stander	group	had th	e highe	st 1-mo	onth su	rvival a	and bes	t neuro	logical		
54 55 56	203	outcomes	(28.1% a	and 20.	8%, re	spectiv	ely). W	hen the	e time c	ourse o	lata we	ere avai	lable (r	n =	
57 58 59	204	13,698), 1	he time c	ourse v	vas ide	entified	for eac	h citize	en bysta	ander g	roup (1	fable 2	.2). Th	e	
60	205	work-coll	eague by	stander	group	had sig	_	ntly lon	iger me	dian in	tervals	betwee	en		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

207	12 min, respectively, $P < 0.001$).				
208					
200					
	Table 2.1. Characteristics of patients wi	th cardiogenic OHCA	s in the working	population according	g to the
	bystander group				
	Characteristic		Bysta	nder group	
		Family	Friends	Work-colleagues	Passers-b
	Total, n	46,909	6,115	8,457	5,155
	Age, years, median (Q1–Q3)	61 (52–66)	59 (48–65)	56 (48–62)	60 (52–65
		70.0	02.0	00.0	96.6
	Sex, men, %	73.6	83.0	92.2	86.6
	CPR, %	44.3	52.7	56.6	47.6
	AED (bystander defibrillation), %	0.7	7.1	10.2	9.3
	1-month survival rate, %	15.9	22.0	28.1	26.5
	1-month neurological outcome				
	-	10.1	15.8	20.8	18.5
	(CPC 1+2, %)				

cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac arrest; Q1-Q3, first to third quartile.

Table 2.2. Characteristics of patients with cardiogenic OHCAs in the working population according to the

Characteristic	Family	Family Friends Work-colleagues		Passers-by	
		Time course, m	in, median (Q1–Q3)		
Witness call	2 (1–4)	2 (1–4)	2 (1–4)	2 (1-4)	
Call to contact	8 (7–10)	8 (6–11)	8 (6–10)	7 (6–9)	
Witness-initiated CPR by bystander	3 (1–5)	2 (1–5)	2 (1–5)	2 (1–4)	
Witness-initial defibrillation	13 (11–17)	13 (10–17)	13 (10–16)	12 (9–15)	

Abbreviations: CPR, cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac arrest; Q1–Q3, first to third quartile.

Using a multivariable logistic regression, 13,698 patients were analysed. There were 11,808 (86.2%) males, 13,509 (98.6%) patients received bystander chest compression, 1,062 (7.8%) were shocked by public-access AEDs (automated external defibrillator), 13,698 first documented rhythms were analysed. The number of patients with VT/VF rhythm was 11,882 (86.7%), PEA 741 (5.4%), asystole 834 (6.1%), and others 241 (1.7%). There were 8,564 (62.5%) family bystanders, 1,551 (11.3%) friends bystanders, 2,465 (18.0%) work-colleagues bystanders, and 1,118 (8.2%) passers-by bystanders. With respect to the onset time of day, 13,698 were analysed, of which the time period 0:00-7:59 comprised 3,835 (28.0%),

8:00-16:59 5,696 (41.6%), and 17:00-23:59 4,167 (30.4%). Age, sex, bystander chest

compressions, shock by public-access AEDs, first documented rhythms, types of bystander,
onset years, times from witnessing OHCAs to bystander-initiated CPRs, times from
witnessing OHCAs to initial defibrillations, and the call to contact times were associated
independently with 1-month survival with favourable neurological outcomes in this study
population (Table 3). According to the Cook's distance calculation, none were above 0.5.
The mean VIF was 1.27 and none of the variables exceeded a VIF of 3.

Prehospitalisation factor	Crude OR	95% CI	P-value	Adjusted OR	95% CI	P-value	
Age (10-year increments)	0.98	0.98–0.99	<0.001	0.98	0.98–0.99	<0.001	
Sex							
male	Ref.	-	- (Ref.	-	-	
female	1.16	1.04-1.29	0.006	1.33	1.19–1.50	<0.001	
Bystander chest compression							
no	Ref.	-	-	Ref.	-	-	
yes	1.77	1.23–2.56	0.002	1.54	1.05–2.22	0.027	
Shock by public-access AEDs							
no	Ref.	-	-	Ref.	-	-	

Page 18 of 47

yes	1.72	1.51–1.95	<0.001	1.53	1.31–1.77	<0.001
First documented rhythm						
VT/VF	Ref.	_	_	Ref.	_	-
PEA	0.35	0.28–0.43	<0.001	0.49	0.39–0.61	<0.001
asystole	0.13	0.09–0.17	<0.001	0.21	0.15–0.29	<0.001
Others	2.16	1.67-2.79	<0.001	1.73	1.31-2.29	<0.001
Type of bystander						
family	Ref.	_	_	Ref.	-	-
friends	1.42	1.26–1.59	<0.001	1.28	1.13–1.46	<0.001
work-colleagues	1.55	1.41–1.71	<0.001	1.28	1.15–1.44	<0.001
passers-by	1.69	1.48–1.93	<0.001	1.25	1.08–1.45	0.003
Onset time of day						
0:00–7:59	0.76	0.69–0.84	<0.001	0.92	0.83–1.03	0.141
8:00–16:59	Ref.	_	-	Ref.	_	-
17:00-23:59	0.90	0.82–0.98	0.018	0.93	0.84–1.02	0.116
Onset year	1.08	1.07-1.09	<0.001	1.09	1.08-1.11	<0.001
(1-year increments)						
Witness-initiated CPR by bystander time	0.91	0.90–0.92	<0.001	0.96	0.95–0.98	<0.001
(1-min increments)						

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	
4	
5	
6	
7 8	
9	
10	
11	
12	
13 14	
14 15	
16	
17	
18 19	
20	
21	
22	
23	
24 25	
26	
27	
28 29	
29 30	
31	
32	
33 24	
34 35	
36	
37	
38 39	
39 40	
40 41	
42	
43	
44 45	
45 46	
47	
48	
49 50	
50 51	
52	
53	
54	
55 56	
57	
58	
59	
60	

	Witness-initial defibrillation time	0.89	0.89-0.90	<0.001	0.94	0.93-0.95	<0.001
	(1-min increments)						
	Call to contact time	0.87	0.86-0.89	<0.001	0.93	0.91-0.95	<0.001
	(1-min increments)						
	Abbreviations: AED, automated external defibr	illator; CI, c	onfidence inter	val; CPR, car	diopulmonar	y resuscitation; (DHCA,
	out-of-hospital cardiac arrest; OR, odds ratio; F	PEA, pulsele	ess electrical a	ctivity; Ref., re	eference; VT	/VF, ventricular	
	tachycardia/ventricular fibrillation.						
226							
227	DISCUSSION						
228	Using the data obtained from the U	Utstein re	egistry, tha	t were coll	ected for	12 years be	tween
229	2005 and 2016, we investigated O	HCAs in	the Japane	ese workir	ıg popula	tion with res	spect to
230	age. We found that: (1) approxima	ately 30%	6 of all the	OHCA ca	ses occur	rred in the w	orking
231	population, and that the working p	opulatio	n comprise	ed 26% of	all the ca	ses in the	
232	cardiogenic OHCA group; (2) both	h the abs	olute numł	per and the	e incidenc	ce of cardiog	genic
233	OHCAs in the working population	n remaine	ed mainly u	inchanged	over the	12-year per	iod; (3)
234	in any age group in the working po	opulatior	n, there was	s no signif	icant imp	provement in	the
235	incidence of cardiogenic OHCAs	over the	12-year pe	riod, with	the incide	ence of OHO	CAs
236	increasing with increasing age; (4)) the proj	portion of (CPRs and	the use of	f AEDs incre	eased

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
38 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
59 60	
00	

237	each year, and the prognosis after 1 month improved in the working population; and (5)
238	among the citizen bystanders, the work-colleague bystander group had the highest bystander
239	CPR/AED proportion, highest 1-month survival rate, and best neurological outcomes.
240	However, the work-colleague bystanders had a significantly longer time from witnessing
241	OHCAs to the initial defibrillations than the passers-by bystander group, and the time from
242	witnessing OHCAs to initial defibrillations was associated independently with 1-month
243	survival with favourable neurological outcomes.
244	Causality of OHCAs and their countermeasures in the working population
245	The acute coronary syndrome is the leading cause of cardiac arrest in Western countries. At
246	least one significant coronary artery lesion was found in 70% of all OHCA patients in the
247	absence of an obvious extracardiac cause.[13] The Kumamoto Acute Coronary Events study
248	of acute myocardial infarctions (AMIs) revealed that from 2004 to 2011, the incidence of
249	AMIs decreased in both men and women.[14] The rate of ST segment elevation myocardial
250	infarction decrease was attributed to the increased use of angiotensin-converting enzyme
251	inhibitors, angiotensin II receptor blockers, and lipid-lowering medications (e.g.
252	statins).[15-17] However, the Miyagi AMI registry reported that between 1985 and 2014, the
253	incidence of AMIs in both men and women who were < 59 years continued to increase. This
254	was attributed to the high incidence of dyslipidaemia, secondary to the westernisation of
255	young peoples' diets and lifestyles, as well as the high smoking rates (\sim 50% and $>$ 30% in

	256	young men and women, respectively).[18] Therefore, an improvement in the diet and the
	257	cessation of smoking may be important in the reduction of the incidence of cardiogenic
0 1 2	258	OHCAs in this population.
2 3 4 5 6	259	Compared to Western countries, ischaemic heart disease is less common in Japan,[19]
6 7 8 9	260	whereas the prevalence of the Brugada syndrome is relatively high.[20,21] The Brugada
0 1	261	syndrome was described by Pedro and Josep Brugada in 1992, as a disease that causes
2 3 4	262	ventricular fibrillation despite the absence of obvious structural cardiac diseases, electrolyte
2 3 4 5 6 7 8	263	abnormalities, or QT prolongations.[22] The Brugada-type electrocardiogram (ECG; right
9 0	264	bundle branch block and ST segment elevation in V1 through V3) may be associated closely
1 2 3	265	with a sudden unexplained death syndrome, such as Lai Tai ('death during sleep') in
2 3 4 5 6	266	northeast Thailand, Bangungut ('moaning and dying during sleep') in the Philippines, and
7 8 9	267	Pokkuri ('sudden unexpected death at night') in Japan.[23] A troublesome characteristic of
0 1 2	268	the Brugada syndrome is its nocturnal tendency, which may delay therapeutic interventions
3 4 5 6	269	and thus lead to worse prognosis. In the univariate analysis of this study, a night-time onset
6 7 8	270	(0:00–7:59 and 17:00–23:59) of OHCAs was associated with a worse prognosis than a
9 0 1	271	daytime onset (8:00–16:59), although this tendency was not shown in the multivariable
2 3 4	272	analysis (Table 3). Using a 12-lead ECG at screening, a history of syncope, and a family
5 6 7 8 9 0	273	history of sudden cardiac death may help identify patients who are in need of preventive

274	pharmacological and non-pharmacological therapy (e.g. use of an implantable cardioverter
275	defibrillator).[24]
276	Previous meta-analyses of prospective cohort studies have revealed associations between
277	work stressors and cardiovascular diseases. The summary relative risk for long working hours
278	(\geq 55 hours per week) compared with the standard 35–40 hours per week was 1.13 (95%)
279	confidence interval [CI]: 1.02-1.26).[25] The total working hours tended to decline in Japan
280	[26] however, the reduction in the number of working hours was minor, and it is unknown
281	whether it contributed significantly to the incidence of OHCAs in the working population.
282	Analysis of OHCAs in the 65–69 age group
283	In 2018, the Japanese Cabinet Office reported that the proportion of workers in the 65–69 age
283 284	In 2018, the Japanese Cabinet Office reported that the proportion of workers in the 65–69 age group was low; in the 5-year age groups, the proportions of male and female workers were
284	group was low; in the 5-year age groups, the proportions of male and female workers were
284 285	group was low; in the 5-year age groups, the proportions of male and female workers were 91.0% (55–59), 79.1% (60–64), and 54.8% (65–69) and 70.5% (55–59), 53.6% (60–64), and
284 285 286	group was low; in the 5-year age groups, the proportions of male and female workers were 91.0% (55–59), 79.1% (60–64), and 54.8% (65–69) and 70.5% (55–59), 53.6% (60–64), and 34.4% (65–69).[27] Considering the extension of the retirement age that came into effect
284 285 286 287	group was low; in the 5-year age groups, the proportions of male and female workers were 91.0% (55–59), 79.1% (60–64), and 54.8% (65–69) and 70.5% (55–59), 53.6% (60–64), and 34.4% (65–69).[27] Considering the extension of the retirement age that came into effect from 2021, the employment rates are expected to increase for people in the 65–69 age group.
284 285 286 287 288	group was low; in the 5-year age groups, the proportions of male and female workers were 91.0% (55–59), 79.1% (60–64), and 54.8% (65–69) and 70.5% (55–59), 53.6% (60–64), and 34.4% (65–69).[27] Considering the extension of the retirement age that came into effect from 2021, the employment rates are expected to increase for people in the 65–69 age group. Thus, we investigated the characteristics of cardiogenic OHCAs in the 65–69 age group.

Page 23 of 47

3 1 5	292	over the last 12 years, and the incidence increased with increasing age (Table 1). A study of
5 7 3	293	OHCAs in the Osaka Prefecture, Japan, that was conducted for two years revealed that the
) 0 1	294	incidence of OHCAs increased exponentially with increasing age.[29] Our present study
2 3 4	295	revealed that the incidence of cardiogenic OHCAs in any age group was almost constant over
5 6 7	296	the 12-year period. It should be noted that the incidence of OHCAs in the 65–69 age group
8 9 20	297	(extended retirement age group) was high, and that age was associated independently with
21 22 23	298	1-month survival with favourable neurological outcomes (adjusted odds ratio [OR]: 0.98
24 25 26	299	[10-year increments], 95% CI: 0.98–0.99; $P < 0.001$). Therefore, it is important for
27 28 29	300	companies with older employees to take this into account. Nevertheless, this is not a problem
80 81 82	301	that is limited to Japan; the aging of the population is progressing worldwide, especially in
83 84 85	302	developed countries.[1] In the future, there is a possibility that the retirement age will be
86 87 88	303	extended in many countries around the world.
39 40 41 42 43	304	Effect of work-colleagues and other types of bystanders
13 14 15 16	305	A previous study found that a key predictor of survival after OHCAs is the bystander
17 18 19	306	witness.[30] Another previous study reported that most of the cases of OHCAs in Japan that
50 51 52	307	were witnessed by family members and family bystanders had a worse prognosis than those
51 52 53 54 55 56	308	witnessed by other bystanders.[7] Moreover, in our present study, the worst 1-month survival
57 58	309	and neurological outcomes was observed in the family bystander group. This unfavourable
59 50	310	result may be attributed to the lowest CPR/AED proportions (44.3% and 0.7%, respectively).
		22

Page 24 of 47

1 2 3 4	
5 6 7 8	
9 10 11 12	
13 14 15 16 17	
18 19 20 21	
22 23 24 25 26	
27 28 29 30	
31 32 33 34 35	
36 37 38 39	
40 41 42 43 44	
45 46 47 48	
49 50 51 52 53	
54 55 56 57	
58 59 60	

311	Another study that reported a similar association for the bystander-patient relationship
312	indicated that the large delays (\geq 5 min) in the witness call interval and large witness
313	bystander CPR interval were most frequent in the family bystander group.[31]
314	A previous systematic review revealed that the OHCA survival rate was better in the
315	workplace,[32] and the findings of our study were similar: work-colleague bystanders were
316	associated with a better 1-month survival and favourable neurological outcomes. A possible
317	reason for such a favourable prognosis was that the CPR/AED proportion was highest in the
318	work-colleague bystander group. Furthermore, we found further improvements in the
319	prognosis of OHCAs in the work-colleague bystander group. The work-colleague bystander
320	group had significantly longer median intervals between the witnessing OHCAs and initial
321	defibrillations than the passers-by bystander group (13 vs. 12 min, respectively; $P < 0.001$). It
322	is known that a 1-min delay can reduce the survival rate by 7–10%,[33] and the results from
323	Table 3 also indicate that a 1-min difference does have a clinically meaningful benefit for
324	1-month survival with favourable neurological outcomes (adjusted OR: 0.94 [1-min
325	increments], 95% CI: 0.93–0.95; $P < 0.001$). A possible reason why work-colleagues took
326	longer to perform the first defibrillation compared with passers-by may have been due to
327	most of the initial defibrillations being performed by EMS providers, and that the median call
328	to contact intervals were significantly longer in the work-colleague bystander group than in
329	the passers-by bystander group (8 vs. 7 min, respectively; $P < 0.001$). The travel distance and

Page 25 of 47

BMJ Open

1	
2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 40	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
52	

330	time to travel within buildings may also have contributed to the delays. Another study that
331	used the model of a large-scale skyscraper, calculated the length of time taken by the
332	emergency services to reach a patient within the building (i.e. travel time) and found that the
333	minimum travel time was approximately 19 s, the intermediate value 2 min, and the worst
334	value 4 min.[34]
335	Recently, the importance of CPR has become known widely, and the findings of this study
336	supported this, given that the CPR proportion in the working population has increased over
337	the years (Figure 3). However, our present study revealed that in 2016 in > 30% of the cases
338	CPR was not performed despite the witnessing of the cardiogenic OHCAs by
339	work-colleagues (shown in Supplementary Figure 1). More opportunities for CPR
340	awareness activities in companies may be useful in preventing cardiac death and poor
341	neurological outcomes in OHCA patients in the working population. A previous study
342	reported that approximately two-thirds of OHCA survivors return to work,[35] which is
342 343	reported that approximately two-thirds of OHCA survivors return to work,[35] which is important in terms of public health and socioeconomic significance.
343	important in terms of public health and socioeconomic significance.
343 344	important in terms of public health and socioeconomic significance.

the 20–69 age group (working population) was unknown. Third, the Utstein registry did not
contain any information on individual medical therapy, and activities of daily living before
the OHCAs, or the details of the in-hospital treatment interventions. Finally, there may have
been unmeasured confounding factors that may have influenced the 1-month survival with
favourable neurological outcomes.

354 CONCLUSIONS

Over the 12-year period (2005–2016), both the absolute number and incidence of cardiogenic OHCAs in the working population remained mainly unchanged, whereas the prognosis of OHCAs at 1-month improved. Among the citizen bystanders, the work-colleague bystander group showed the highest CPR/AED proportion, highest 1-month survival rate, and best neurological outcomes, despite significantly longer times from witnessing OHCAs to initial defibrillations than the passers-by bystander group. Reducing the time from witnessing OHCAs to initial defibrillations may further improve the prognosis of patients with OHCAs that have been witnessed by work-colleagues.

1 2		
3 4 5 6	363	ACKNOWLEDGMENTS
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	364	We wish to thank all of the emergency medical service personnel and the Fire and Disaster
	365	Management Agency of Japan for their cooperation in collecting data and managing the
	366	Utstein-style registry.
	367	
	368	COMPETING INTERESTS
	369	The authors have no competing interests.
26 27 28	370	
29 30 31 32 33 34 35 36 37 38 39 40 41	371	FUNDING
	372	This research received no specific grant from any funding agency in the public, commercial,
	373	or not-for-profit sectors.
	374	
42 43 44 45	375	AUTHORS' CONTRIBUTIONS
46 47 48	376	YY was involved in data analysis and writing of the manuscript. YO was involved in data
49 50 51	377	verification, the design of the study, supervision, and revising the manuscript. YF was
52 53 54	378	involved in data verification, supervision, and statistical analysis. KY, TM, and KT were
55 56 57	379	involved in data verification. HO and RK were involved in data verification and supervision.
58 59 60	380	HA was involved in data verification, supervision, and revising the manuscript.

1 2		
2 3 4 5	381	
6 7 8	382	DATA SHARING
9 10 11 12	383	The data used in this study are not publicly available. The data are only accessible through
13 14 15	384	the Fire and Disaster Management Agency (2-1-2 Kasumigaseki, Chiyoda-ku, Tokyo, Japan;
16 17 18	385	Tel.: +03-5253-7529; Fax: +03-5253-7532; E-mail: fdma-goiken@ml.soumu.go.jp).
19 20 21	386	Therefore, no additional data are available.
22 23 24 25	387	
26 27 28 29	388	ETHICS STATEMENT
30 31 32 33	389	This study was approved by the Institutional Review Board of the University of Occupational
34 35	390	and Environmental Health, Japan (approval number; UOEHCRB19-072).
36 37 38		
39 40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52		
53 54		
55		
56 57		
58 59		
59 60		

1 2			
3 4 5	391	REF	ERENCES
6 7 8	392	[1]	Statistics Bureau of Japan. Figure 21. Trends in the proportion of elderly population
9 10 11	393		in major countries (1950-2065). https://www.stat.go.jp/data/topics/topi1135.html,
12 13 14	394		(accessed 9 August 2021).
15 16 17	395	[2]	Matsuyama T, Kitamura T, Kiyohara K et al. Assessment of the 11-year nationwide
18 19 20	396		trend of out-of-hospital cardiac arrest cases among elderly patients in Japan
21 22 23	397		(2005-2015). Resuscitation 2018;131:83-90.
24 25 26	398		https://doi.org/10.1016/j.resuscitation.2018.08.011
27 28 29	399	[3]	Abe H, Kohno R, Oginosawa Y. Characteristics of syncope in Japan and the Pacific
30 31 32	400		rim. Prog Cardiovasc Dis 2013;55:364-9. <u>https://doi.org/10.1016/j.pcad.2012.11.008</u>
33 34 35	401	[4]	Statistics Bureau of Japan. Labor Force Survey in 2019 in Japanese.
36 37 38	402		https://www.stat.go.jp/data/roudou/sokuhou/nendo/index.html, (accessed 25 June
39 40 41	403		2020).
42 43 44	404	[5]	Fire and Disaster Management Agency. Emergency System in 2019, Japan.
45 46 47	405		https://www.fdma.go.jp/publication/rescue/items/kkkg_r01_01_kyukyu.pdf,
48 49 50	406		(accessed 25 June 2020).
51 52	407	[6]	Jacobs I, Nadkarni V, Bahr J et al. Cardiac arrest and cardiopulmonary resuscitation
53 54 55	408		outcome reports: update and simplification of the Utstein templates for resuscitation
56 57 58 59 60	409		registries. A statement for healthcare professionals from a task force of the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

410		international liaison committee on resuscitation (American Heart Association,
411		European Resuscitation Council, Australian Resuscitation Council, New Zealand
412		Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart
413		Foundation, Resuscitation Council of Southern Africa). Resuscitation
414		2004;63:233-49. https://doi.org/10.1016/j.resuscitation.2004.09.008
415	[7]	Kitamura T, Iwami T, Kawamura T et al. Nationwide improvements in survival from
416		out-of-hospital cardiac arrest in Japan. Circulation 2012;126:2834-43.
417		https://doi.org/10.1161/CIRCULATIONAHA.112.109496
418	[8]	Okabayashi S, Matsuyama T, Kitamura T et al. Outcomes of Patients 65 Years or
419		Older After Out-of-Hospital Cardiac Arrest Based on Location of Cardiac Arrest in
420		Japan. JAMA Netw Open 2019;2:e191011.
421		https://doi.org/10.1001/jamanetworkopen.2019.1011
422	[9]	Kitamura T, Iwami T, Kawamura T et al. Nationwide public-access defibrillation in
423		Japan. N Engl J Med 2010;362:994-1004. https://doi.org/10.1056/NEJMoa0906644
	[10]	e-Stat. Table 1, Japanese population by each age and gender (as of October 1 each
	[10]	
		year, from 2000 to 2015)
426		https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200524
427		<u>&tstat=000000090001&cycle=0&tclass1=000000090004&tclass2=000001051180</u> ,
428		(accessed 16 April 2020).
	 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 	 411 412 413 414 415 (7] 416 417 418 (8] 419 420 421 421 422 (9] 423 423 424 (10] 425 427

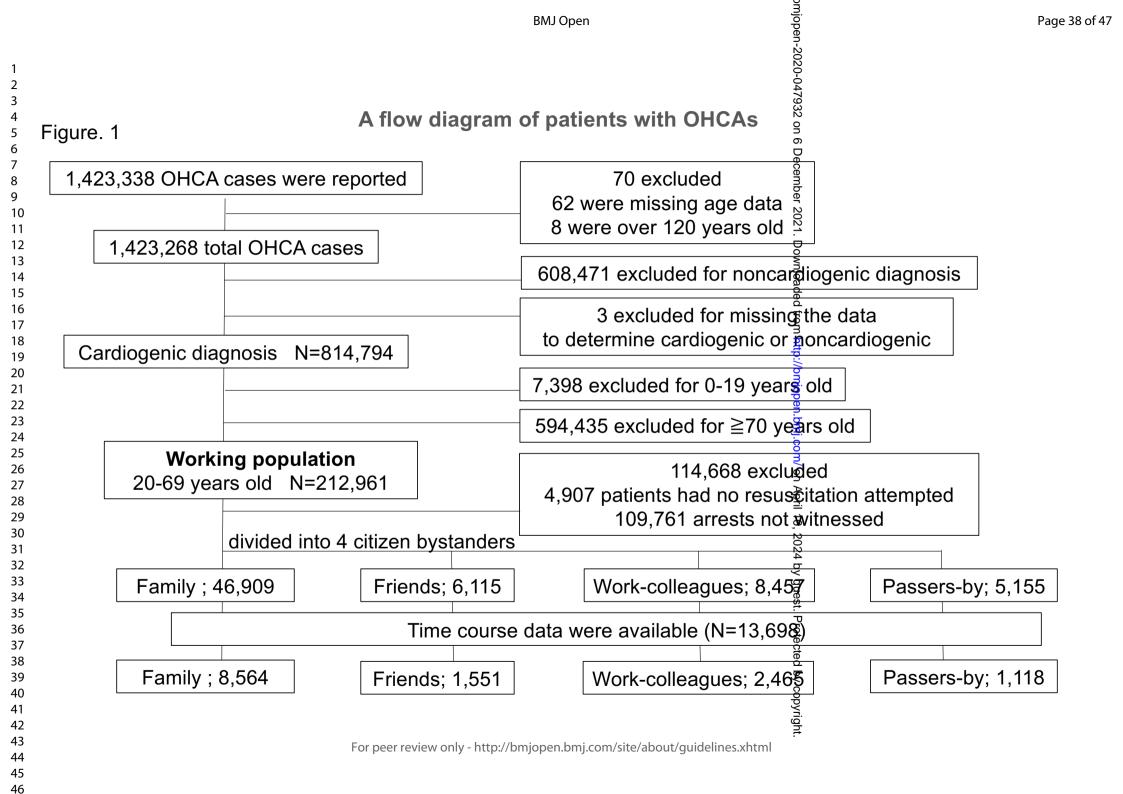
Page 31 of 47

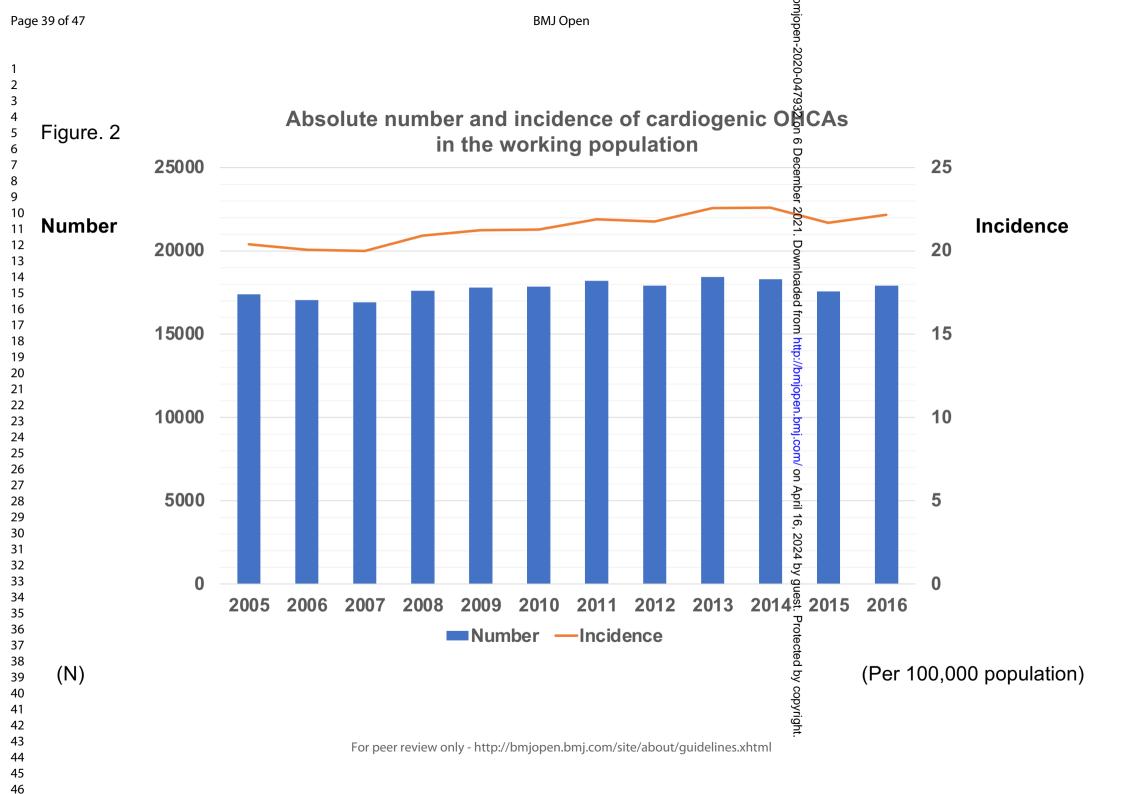
1

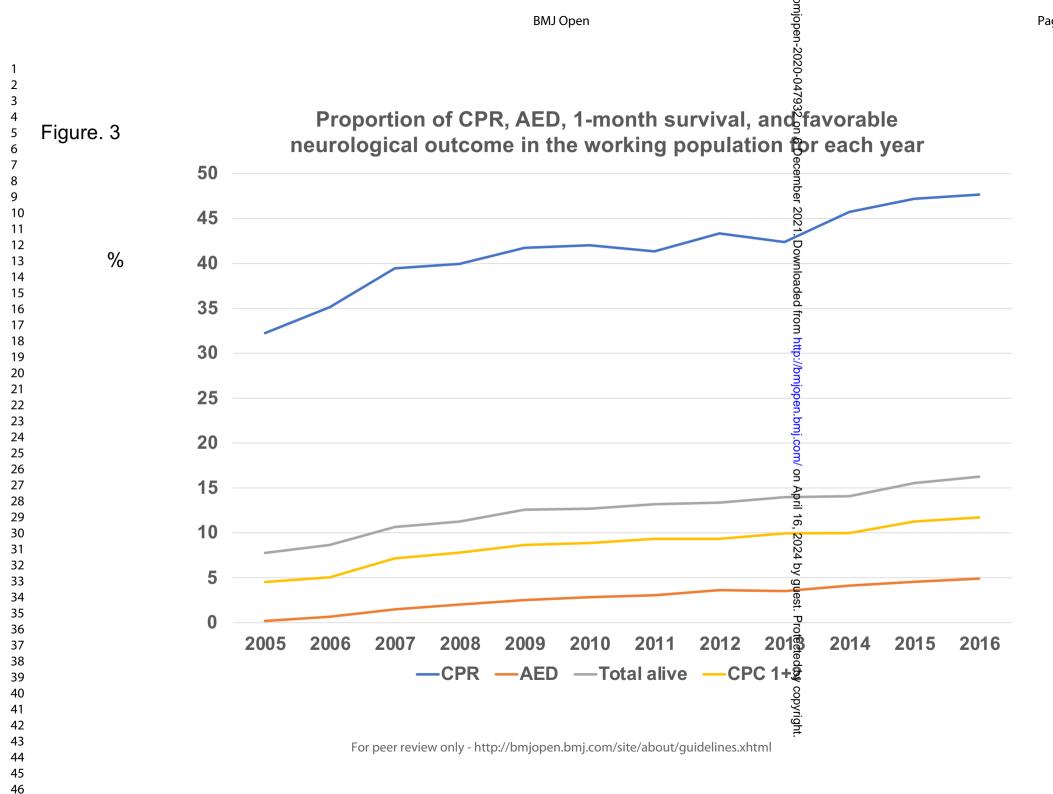
2 3			
4 5 6	429	[11]	Statistics Bureau of Japan. Table 1. Japanese population by each age and gender (as
7 8	430		of October 1, 2016) https://www.stat.go.jp/data/jinsui/2016np/index.html#a05k28-b,
9 10 11	431		(accessed 16 April 2020).
12 13 14 15 16 17 18 19 20	432	[12]	University of Occupational and Environmental Health, Japan.,. Ethics Committee of
	433		Medical Research, University of Occupational and Environmental Health, Japan.
	434		https://www.uoeh-u.ac.jp/IndustryCooperation/kenkyu/top.html, (accessed 17 April
21 22 23	435		2020).
24 25 26	436	[13]	Dumas F, Cariou A, Manzo-Silberman S et al. Immediate percutaneous coronary
27 28 29	437		intervention is associated with better survival after out-of-hospital cardiac arrest:
30 31 32	438		insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry.
33 34 35	439		Circ Cardiovasc Interv 2010;3:200-7.
 36 37 38 39 40 41 42 43 44 	440		https://doi.org/10.1161/circinterventions.109.913665
	441	[14]	Kojima S, Matsui K, Ogawa H. Temporal trends in hospitalization for acute
	442		myocardial infarction between 2004 and 2011 in Kumamoto, Japan. Circ J
45 46 47	443		2013;77:2841-3. https://doi.org/10.1253/circj.cj-13-1011
48 49 50	444	[15]	Yusuf S, Teo KK, Pogue J et al. Telmisartan, ramipril, or both in patients at high risk
51 52 53	445		for vascular events. N Engl J Med 2008;358:1547-59.
54 55	446		https://doi.org/10.1056/NEJMoa0801317
56 57 58 59 60	447	[16]	Turnbull F, Neal B, Pfeffer M et al. Blood pressure-dependent and independent

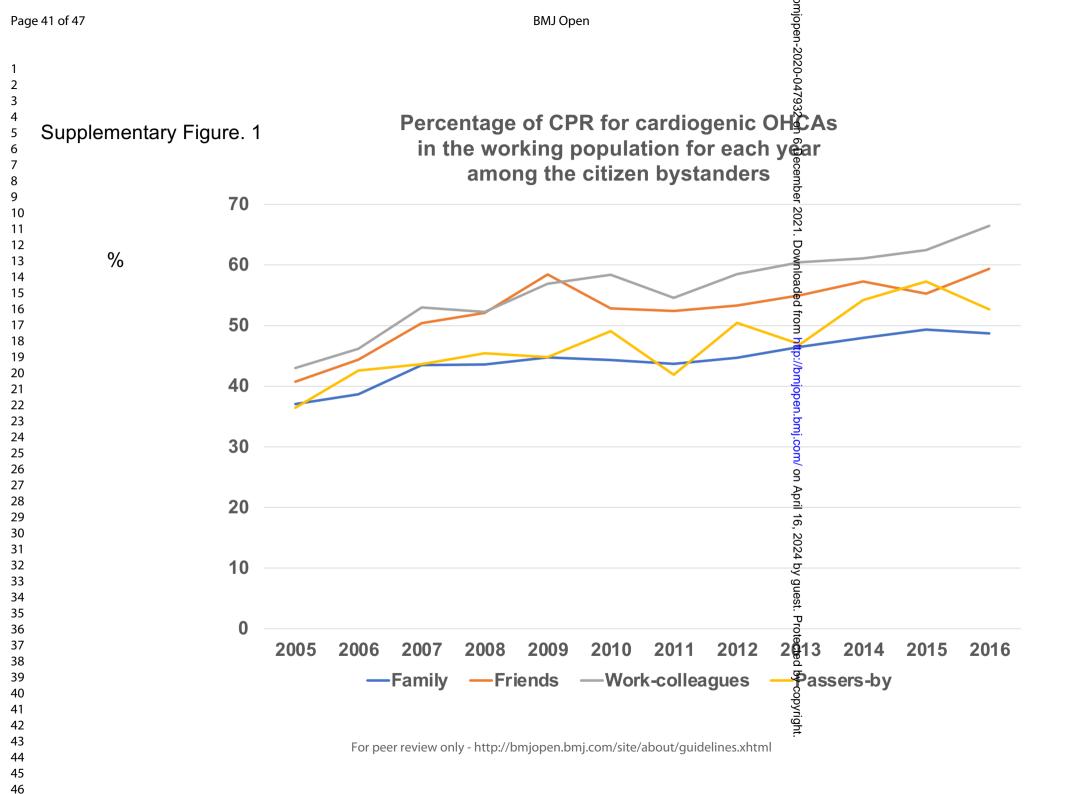
2 3 4	448		effects of agents that inhibit the renin-angiotensin system. J Hypertens
5	440		encets of agents that minore the remin-anglotensin system. 5 Trypertens
6 7 8	449		2007;25:951-8. https://doi.org/10.1097/HJH.0b013e3280bad9b4
9 10 11	450	[17]	Imano H, Noda H, Kitamura A et al. Low-density lipoprotein cholesterol and risk of
12 13 14	451		coronary heart disease among Japanese men and women: the Circulatory Risk in
15 16 17	452		Communities Study (CIRCS). Prev Med 2011;52:381-6.
18 19 20	453		https://doi.org/10.1016/j.ypmed.2011.02.019
21 22 23	454	[18]	Cui Y, Hao K, Takahashi J et al. Age-Specific Trends in the Incidence and
24 25 26	455		In-Hospital Mortality of Acute Myocardial Infarction Over 30 Years in
27 28 29	456		Japan—Report From the Miyagi AMI Registry Study—. Circulation Journal
30 31 32	457		2017:CJ-16-0799. https://doi.org/10.1253/circj.CJ-16-0799
33 34 35	458	[19]	Nishiuchi T, Hiraide A, Hayashi Y et al. Incidence and survival rate of
36 37 38	459		bystander-witnessed out-of-hospital cardiac arrest with cardiac etiology in Osaka,
39 40 41	460		Japan: a population-based study according to the Utstein style. Resuscitation
42 43 44	461		2003;59:329-35. https://doi.org/10.1016/S0300-9572(03)00241-7
45 46 47	462	[20]	Sakabe M, Fujiki A, Tani M et al. Proportion and prognosis of healthy people with
48 49 50	463		coved or saddle-back type ST segment elevation in the right precordial leads during
51 52 53	464		10 years follow-up. Eur Heart J 2003;24:1488-93.
54 55 56	465		https://doi.org/10.1016/S0195-668X(03)00323-3
57 58 59 60	466	[21]	Hermida JS, Lemoine JL, Aoun FB et al. Prevalence of the brugada syndrome in an

1 2			
3 4 5	467		apparently healthy population. Am J Cardiol 2000;86:91-4.
6 7 8	468		https://doi.org/10.1016/S0002-9149(00)00835-3
9 10 11	469	[22]	Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation
12 13 14	470		and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A
15 16 17	471		multicenter report. J Am Coll Cardiol 1992;20:1391-6.
18 19 20	472		https://doi.org/10.1016/0735-1097(92)90253-J
21 22 23	473	[23]	Nademanee K, Veerakul G, Nimmannit S et al. Arrhythmogenic marker for the
24 25 26	474		sudden unexplained death syndrome in Thai men. Circulation 1997;96:2595-600.
27 28 29	475		https://doi.org/10.1161/01.cir.96.8.2595
30 31 32	476	[24]	Porzer M, Mrazkova E, Homza M et al. Out-of-hospital cardiac arrest. Biomed Pap
33 34 35	477		Med Fac Univ Palacky Olomouc Czech Repub 2017;161:348-353.
36 37 38	478		https://doi.org/10.5507/bp.2017.054
39 40 41	479	[25]	Kivimäki M, Kawachi I. Work Stress as a Risk Factor for Cardiovascular Disease.
42 43 44	480		Curr Cardiol Rep 2015;17:630. https://doi.org/10.1007/s11886-015-0630-8
45 46 47	481	[26]	Ministry of Health, Labour and Welfare.,. Table 1. actual working hours in Japanese.
48 49 50	482		https://www.mhlw.go.jp/toukei/youran/indexyr_d.html, (accessed 16 April 2020).
51 52 53	483	[27]	Cabinet Office. Employment Situation in Japanese.
54 55 56	484		https://www8.cao.go.jp/kourei/whitepaper/w-2018/html/zenbun/s1_2_1.html,
57 58 59	485		(accessed 17 April 2020).
60			


1 2			
3 4 5	486	[28]	Cabinet Office. Annual report on aged society in Japan.
6 7 8	487		https://www8.cao.go.jp/kourei/whitepaper/w-2019/zenbun/pdf/1s2s_01.pdf, (accessed
9 10 11	488		5 July 2020).
12 13 14	489	[29]	Iwami T, Hiraide A, Nakanishi N et al. Age and sex analyses of out-of-hospital
15 16 17	490		cardiac arrest in Osaka, Japan. Resuscitation 2003;57:145-52.
18 19 20	491		https://doi.org/10.1016/S0300-9572(03)00035-2
21 22 23	492	[30]	Suematsu Y, Zhang B, Kuwano T et al. Citizen bystander-patient relationship and
24 25 26	493		1-month outcomes after out-of-hospital cardiac arrest of cardiac origin from the
27 28 29	494		All-Japan Utstein Registry: a prospective, nationwide, population-based,
30 31 32	495		observational study. BMJ Open 2019;9:e024715.
33 34 35	496		http://dx.doi.org/10.1136/bmjopen-2018-024715
36 37 38	497	[31]	Tanaka Y, Maeda T, Kamikura T et al. Potential association of bystander-patient
39 40 41	498		relationship with bystander response and patient survival in daytime out-of-hospital
42 43 44	499		cardiac arrest. <i>Resuscitation</i> 2015;86:74-81.
45 46 47	500		https://doi.org/10.1016/j.resuscitation.2014.11.004
48 49 50	501	[32]	Descatha A, Dagrenat C, Cassan P et al. Cardiac arrest in the workplace and its
51 52 53	502		outcome: a systematic review and meta-analysis. Resuscitation 2015;96:30-6.
54 55 56	503		https://doi.org/10.1016/j.resuscitation.2015.07.004
57 58 59 60	504	[33]	Part 4: the automated external defibrillator: key link in the chain of survival.


1 2			
3 4 5	505		European Resuscitation Council. Resuscitation 2000;46:73-91.
6 7 8	506		https://doi.org/10.1016/s0300-9572(00)00272-0
9 10 11	507	[34]	Isobe T, Yoshikawa T. ANALYSIS AND EVALUATION OF THE TIME
12 13 14	508		REQUIRED TO ARRIVE AT THE SPOT FOR FIRST AID IN LARGE-SCALE
15 16 17	509		URBAN FACILITIES. Journal of Architecture and Planning (Transactions of AIJ)
18 19 20	510		2015;80:145-155. https://doi.org/10.3130/aija.80.145
21 22 23 24	511	[35]	Descatha A, Dumas F, Bougouin W et al. Work factors associated with return to work
24 25 26 27	512		in out-of-hospital cardiac arrest survivors. Resuscitation 2018;128:170-174.
27 28 29 30	513		https://doi.org/10.1016/j.resuscitation.2018.05.021
31 32 33	514		
34 35 36	515		
37 38 39	516		
40 41 42	517		
43 44 45	518		
46 47 48	519		
49 50 51	520		
52 53 54	521		
55 56 57	522		
58 59 60	523		


524 LEGENDS


	525	Figure 1. A flow diagram of patients with OHCAs
) <u>2</u>	526	Of the 1,423,338 OHCA patients included in the All-Japan Utstein registry between 2005 and
3 1 5	527	2016, we excluded cases with missing data of age $(n=62)$ or patients who were over 120
5 7 3	528	years old (n=8). Cardiogenic and non-cardiogenic groups comprised 57.2% and 42.8% of the
) 	529	total OHCA population (n=1,423,268), respectively. We excluded non-cardiogenic OHCA
- 3 4	530	group. In the cardiogenic OHCA group, 212,961 OHCA patients aged 20-69 years (working
5 7 2	531	population) were enrolled in this study. After excluding those who did not receive OHCA
)	532	resuscitation ($n = 4,907$) or those who lacked a witness ($n = 109,761$), the working population
2 3	533	was further divided into four bystander groups (family, friends, work-colleagues, and
+ 5 5 7	534	passers-by). Abbreviation: OHCA, out-of-hospital cardiac arrest.
, 3 9	535	
) 2	536	Figure 2. Absolute number and incidence of cardiogenic OHCAs in the working
3 4 5	537	population. Both the absolute number and incidence of cardiogenic OHCAs in the working
ע 7		
3	538	population were mostly unchanged over the period of 12 years, from 17,403 (20 per 100,000
, 3 9 0 1	538 539	population were mostly unchanged over the period of 12 years, from 17,403 (20 per 100,000 population) in 2005 to 17,917 (22 per 100,000 population) in 2016. Abbreviation: OHCA,
, 3 9 0 1 2 3 4		
, 3 9 0 1 2 3 4 5 5 7 5	539	population) in 2005 to 17,917 (22 per 100,000 population) in 2016. Abbreviation: OHCA,

1 2		
3 4 5	543	Figure 3. Proportion of CPR, AED, 1-month survival, and favourable neurological
6 7 8	544	outcome in the working population for each year. The percentage of CPR and AED
9 10 11	545	increased each year from 32.3% and 0.2% in 2005 to 47.7% and 4.9% in 2016, respectively.
12 13 14	546	One-month survival rate of cardiogenic OHCAs in the working population increased from
15 16 17	547	7.8% in 2005 to 16.3% in 2016, and the 1-month survival with favourable neurological
18 19 20	548	outcome also increased from 4.5% in 2005 to 11.7% in 2016. Abbreviations: CPR,
21 22 23	549	cardiopulmonary resuscitation; AED, automated external defibrillator; CPC, cerebral
24 25 26	550	performance category.
27 28 29 30	551	
30 31 32 33	552	
33 34 35 36 37	553	
38 39 40 41	554	
42 43 44 45	555	
46 47 48 49	556	
50 51 52 53	557	
54 55 56 57 58	558	
58 59 60	559	

Supplementary Table 1. Information about the abnormal value of time course

	-	Time course, minutes	
	< 0	0 - 60	60 <
Witness call, n (%)	13.784 (20.7)	52.281 (78.6)	472 (0.7)
Call to contact, n (%)	20 (0.0)	66,440 (99.9)	83 (0.1)
Witness-initiated CPR by bystander, n (%)	40 (0.1)	30,264 (99.4)	152 (0.5)
Witness-initial defibrillation, n (%)	112 (0.4)	31,190 (98.8)	253 (0.8)

Abbreviations: CPR, cardiopulmonary resuscitation.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract \rightarrow Page 1, Lines 1-2: The incidence of out-of-hospital cardiac arrests and surviva
		rates after one-month among the Japanese working population: A cohort study
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found
		\rightarrow Page 2-3, Lines 19-43: ABSTRACT
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported \rightarrow Page 5, Lines 62-70: Japan and other developed countries have aging populations.[1] Out of concern for future labour shortages due to the aging population the Japanese parliament enacted a partial amendment to the law with respect to the stabilisation of the employment of elderly persons that recommended an extension of the retirement age from 65 to 70 years. This reform bill came into effect for
Ohiastiwas	2	companies from April 1, 2021.
Objectives	3	State specific objectives, including any prespecified hypotheses \rightarrow Page 5, Lines 68-70: Although the age distribution of the working population is
		expected change continuously, few reports have examined the long-term condition of
		OHCAs in the working population, according to age. (hypotheses)
		\rightarrow Page 6, Lines 78-80: The aim of this study was to determine the incidence of
		OHCAs and the survival rates after 1 month, among the Japanese working population
		defined by age, considering the changing age distribution. (objectives)
Methods		O,
Study design	4	Present key elements of study design early in the paper
		\rightarrow Page 6, Lines 88: In this population-based study, we analysed data collected
		between 2005 and 2016 from the All-Japan Utstein registry of the Fire and Disaster
		Management Agency (FDMA); a prospective, nationwide, population-based registry
		of OHCA victims based on the standardised Utstein style.[6]
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection
		\rightarrow Page 6-7, Lines 91-97: As described in previous reports that used the Utstein
		data,[2,7,8] EMS personnel filled the information sheet and updated the OHCA
		patient information based on the information recorded by the treating physician,
		including sex, age, prefecture, time of occurrence, initial cardiac rhythm, witness
		status, type of bystander, time course of resuscitation, bystander-initiated
		cardiopulmonary resuscitation (CPR), use of an automated external defibrillator
		(AED), administration of intravenous fluids, tracheal intubation, and
		prehospitalisation return of spontaneous circulation.
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of

		 selection of participants. Describe methods of follow-up <i>Case-control study</i>—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls <i>Cross-sectional study</i>—Give the eligibility criteria, and the sources and methods of selection of participants →Page 7-8, Lines 109-113: In this study, the cardiogenic OHCA group of the working population (aged 20–69 years) were analysed. After excluding those who did not receive OHCA resuscitations (n = 4,907) or those who lacked witnesses (n = 109,761), the working population was further divided into four bystander groups (family, friends, work-colleagues, and passers-by). (b) <i>Cohort study</i>—For matched studies, give matching criteria and number of exposed and unexposed <i>Case-control study</i>—For matched studies, give matching criteria and the number of controls per case →not applicable
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable \rightarrow Page 7, Lines 103-107: As reported in a previous study,[9] the cardiogenic group was defined as those having confirmed absence of signs of circulation, with the following exclusion criteria: cerebrovascular diseases, respiratory diseases, malignant tumours, external factors, drug overdoses, drownings, traffic accidents, hypothermia, anaphylactic shocks, and other non-cardiac factors. \rightarrow Page 8, Line 119-123: The neurological outcomes were evaluated by physicians based on the Cerebral Performance Category (CPC) scale: Category 1, good cerebral performance; Category 2, moderate cerebral disability; Category 3, severe cerebral disability; Category 4, coma or vegetative state; and Category 5, death or brain death.[2,6] Favourable neurological outcomes at 1 month after admission were defined as Categories 1 or 2.
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group →Page 6-7, Lines 91-97: As described in previous reports that used the Utstein data,[2,7,8] EMS personnel filled the information sheet and updated the OHCA patient information based on the information recorded by the treating physician, including sex, age, prefecture, time of occurrence, initial cardiac rhythm, witness status, type of bystander, time course of resuscitation, bystander-initiated cardiopulmonary resuscitation (CPR), use of an automated external defibrillator (AED), administration of intravenous fluids, tracheal intubation, and prehospitalisation return of spontaneous circulation.
Bias	9	Describe any efforts to address potential sources of bias →Page 9-10, Lines 144-149: Univariate and multivariable logistic regression models were used to estimate the relationships between the prehospitalisation factors, such as age, sex, bystander chest compressions, shock by public-access AEDs, first documented rhythms, types of bystander, onset times of day, onset years, times from witnessing OHCAs to bystander-initiated CPRs, times from witnessing OHCAs to the initial defibrillations, call to contact times, and 1-month survival with favourable neurological outcomes after OHCAs.

Study size	10	Explain how the study size was arrived at \rightarrow Page 7, Lines 100-101: The data of 1,423,338 patients were collected between January 1, 2005 and December 31, 2016.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
-		describe which groupings were chosen and why
		\rightarrow Page 9, Lines 138-140: We used the Mann-Whitney U test to compare the
		differences between the two independent groups, when the dependent variable was
		either ordinal or continuous but not normally distributed
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding \rightarrow Page 9-10, Lines 137-153: Statistical analysis ~
		(b) Describe any methods used to examine subgroups and interactions
		→Page 9-10, Lines 137-153: Statistical analysis ~
		(c) Explain how missing data were addressed
		\rightarrow Figure 1
		→Page 8-9, Lines 128-133: According to the FDMA (Fire and Disaster Managemen
		Agency), until 2012, patients with null values for bystander use of AEDs were
		converted automatically into the group 'without bystander use of AEDs'; however,
		since 2013, they did not automatically convert the null value into the group 'without
		bystander use of AEDs' and these data were handled as missing data. To homogenis
		these data, we included all the cases with missing AED data ($n = 8,180$) in the group
		without bystander use of AEDs.
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was
		addressed
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of
		sampling strategy
		→not applicable
		(<u>e</u>) Describe any sensitivity analyses
		\rightarrow As sensitivity analyses, univariate and multivariable logistic regression are
		performed with and without time data. We confirmed that these methods of data
		analysis did not change the main results.
Continued on next page		

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible,
1		examined for eligibility, confirmed eligible, included in the study, completing follow-up, as
		analysed
		→Figure 1
		(b) Give reasons for non-participation at each stage
		→Figure 1
		(c) Consider use of a flow diagram
		→Figure 1
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and informat
data		on exposures and potential confounders
		\rightarrow Page 6, Lines 85-87: OHCA patients who underwent resuscitation attempts by emergence
		medical service (EMS) personnel were transported to hospitals and then registered in the Utstein registry.
		(b) Indicate number of participants with missing data for each variable of interest
		\rightarrow Figure 1
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)
		→Page 7, Lines 99-100: The EMS personnel followed-up these OHCA patients for 1 month
		ascertain the survival rates and neurological outcomes.
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time
		\rightarrow Table 2.1 and 2.2.
		Case-control study-Report numbers in each exposure category, or summary measures of
		exposure
		→not applicable
		Cross-sectional study—Report numbers of outcome events or summary measures
		→not applicable
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for a
		why they were included
		\rightarrow Table 3.
		(b) Report category boundaries when continuous variables were categorized
		\rightarrow Table 3.
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaning
		time period
		→not applicable
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity
		analyses
		→Page 9-10, Lines 137-153: Statistical analysis ~
Discussion		
Key results	18	Summarise key results with reference to study objectives \rightarrow Page 18-19, Lines 230-243: We found that: (1) approximately 30% of all the OHCA case
		occurred in the working population, and that the working population comprised 26% of all
		cases in the cardiogenic OHCA group; (2) both the absolute number and the incidence of
		eases in the eardiogenic offer group, (2) both the absolute number and the medence of

Other information Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based \rightarrow Page 26, Line 371-373: FUNDING~
		the world.
		future, there is a possibility that the retirement age will be extended in many countries around
		aging of the population is progressing worldwide, especially in developed countries.[1] In the
		\rightarrow Page 22, Lines 300-303: Nevertheless, this is not a problem that is limited to Japan; the
Generalisability	21	Discuss the generalisability (external validity) of the study results
		approximately 19 s, the intermediate value 2 min, and the worst value 4 min.[34]
		a patient within the building (i.e. travel time) and found that the minimum travel time was
		a large-scale skyscraper, calculated the length of time taken by the emergency services to read
		within buildings may also have contributed to the delays. Another study that used the model of
		by stander group (8 vs. 7 min, respectively; $P < 0.001$). The travel distance and time to travel
		were significantly longer in the work-colleague bystander group than in the passers-by
		defibrillations being performed by EMS providers, and that the median call to contact interva
		the first defibrillation compared with passers-by may have been due to most of the initial
		\rightarrow Page 23-24, Lines 325-334: A possible reason why work-colleagues took longer to perform
		of analyses, results from similar studies, and other relevant evidence
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicit
		→Page 24-25, Lines 344-352: Limitations ~
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias
		favourable neurological outcomes.
		OHCAs to initial defibrillations was associated independently with 1-month survival with
		initial defibrillations than the passers-by bystander group, and the time from witnessing
		work-colleague bystanders had a significantly longer time from witnessing OHCAs to the
		proportion, highest 1-month survival rate, and best neurological outcomes. However, the
		citizen bystanders, the work-colleague bystander group had the highest bystander CPR/AED
		year, and the prognosis after 1 month improved in the working population; and (5) among the
		increasing with increasing age; (4) the proportion of CPRs and the use of AEDs increased ea
		in the incidence of cardiogenic OHCAs over the 12-year period, with the incidence of OHCA

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml