

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association of serum uric acid with all-cause and cardiovascular mortality in peritoneal dialysis patients: a systematic review and meta-analysis of observational studies

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052274
Article Type:	Original research
Date Submitted by the Author:	13-Apr-2021
Complete List of Authors:	Xue, Xue; Beijing University of Chinese Medicine, Centre for Evidence- Based Chinese Medicine Lu, Chun-li; Beijing University of Chinese Medicine Jin, Xin-yan; Beijing University of Chinese Medicine Liu, Xue-han; Beijing University of Chinese Medicine Yang, Min; Hubei Provincial Hospital of Traditional Chinese Medicine Wang, Xiao-qin ; Hubei Provincial Hospital of Traditional Chinese Medicine Cheng, Hong; Hubei Provincial Hospital of Traditional Chinese Medicine Yuan, Jun; Hubei Provincial Hospital of Traditional Chinese Medicine Liu, Qiang ; Hubei Provincial Hospital of Traditional Chinese Medicine Liu, Qiang ; Hubei Provincial Hospital of Traditional Chinese Medicine Liu, Jian-Ping; Beijing University of Chinese Medicine Liu, Jian-Ping; Beijing University of Chinese Medicine, Centre for Evidence-Based Chinese Medicine
Keywords:	Nephrology < INTERNAL MEDICINE, End stage renal failure < NEPHROLOGY, Dialysis < NEPHROLOGY

SCHOLARONE[™] Manuscripts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1	Title Page
2	Title: Association of serum uric acid with all-cause and cardiovascular mortality in
3	peritoneal dialysis patients: a systematic review and meta-analysis of observational
4	studies
5	Authors: Xue Xue1,2, Chun-li Lu2, Xin-yan Jin2, Xue-han Liu2, MinYang3, Xiao-
6	qin Wang4, Hong Cheng4, Jun Yuan4, Qiang Liu4, Ruo-xiang Zheng2, and Jian-ping
7	Liu2*
8	1 The first clinical college and affiliated hospital, Hubei University of Traditional
9	Chinese Medicine, Wuhan, Hubei, 430061, China
10	2 Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese
11	Medicine, Beijing, 100029, China
12	3 Basic Medical School and affiliated hospital, Hubei University of Traditional Chinese
13	Medicine, Wuhan, Hubei, 430061, China
14	4 Department of nephrology, Hubei provincial hospital of Traditional Chinese
15	Medicine, Wuhan, Hubei, 430061, China
16	Key words: serum uric acid, all-cause mortality, cardiovascular mortality, peritoneal
17	dialysis, systematic review.
18	Email addresses: Xue Xue (xue025004138@163.com); Chun-li Lu (annyzhenni@
19	163.com); Xin-yan Jin (20170941260@bucm.edu.cn); Xue-han Liu (xuehan_liu@
20	foxmail.com); MinYang (1750096103@qq.com); Xiao-qin Wang (wangxiao773@
21	hotmail.com); Hong Cheng (chenghong@hbhtcm.com); Jun Yuan (yjun_92@
22	hbtcm.edu.cn); Qiang Liu (leonjordan23@sina.com); Ruo-xiang Zheng (zhengruox@

2
4
- -
6
7
2 2
0
9 10
10
11
12
13
14 17
15
10
17
10
3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 8 9 10 11 23 24 25 26 27 28 9 30 132 34 35 34 35
20
21
22
23
24
25
26
2/
28
29
30
31
32
33
34 35 36 37 38
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	C '1	<u>, т. </u>	T ' /	$\mathbf{r} \cdot \cdot \mathbf{n} = \mathbf{n}$	1 \
23	foxmail.con	$11 \cdot 119n_nnm$	1 111 (1 11110(a) b11c	m edu ent
23		I, Jian-ping	LIUI	$L_{1}u_{1}u_{1}u_{2}u_{3}u_{4}u_{4}u_{5}u_{6}u_{5}u_{6}u_{6}u_{5}u_{6}u_{5}u_{6}u_{5}u_{6}u_{6}u_{6}u_{6}u_{6}u_{6}u_{6}u_{6$	m.cuu.cm/.

24 *Corresponding

- 25 Jian-ping Liu*
- 26 Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine,
- 27 Beijing, 100029, China. E-mail: Liujp@bucm.edu.cn
- 28 Telephone number: 13718004410.
- 29 Word count of full text: 3469.
- 30

31 Abstract

Objectives To analyze association of serum uric acid (SUA) with all-cause and
 cardiovascular (CV) mortality in peritoneal dialysis (PD) patients to inform clinical
 practice and further research.

35 **Design** A systematic review of observational studies.

36 Data sources We searched PubMed, Embase, Web of Science, the Cochrane Library,

37 CNKI, SinoMed, VIP and Wan Fang electronic databases from their inception to

38 January 2021. We included cohort studies and case-control studies reporting SUA and

39 mortality in PD patients.

40 Methods Effect estimates were presented as hazard ratio (HR) with 95% confidence

- 41 interval (CI) in meta-analysis using STATA 16.0, and synthesized studies qualitatively
- 42 when data not suitable for pooling analysis.
- 43 **Results** Fourteen cohort studies with 24031 patients involved were finally included. No
- 44 case-control study was identified. In prospective cohort study, pooled result of highest

2	
3	
4 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	
59	

60

1

45	SUA category was significantly higher than lowest for all-cause (1 study; 1287
46	participants; HR 1.79; 95%CI 1.17-2.75) and CV mortality (1 study; 1287 participants;
47	HR 2.63; 95%CI 1.62-4.27). And an increase of 1mg/dl in SUA level was associated
48	with an 16% increased risk of all-cause mortality (1 study; 1287 participants; HR 1.16;
49	95%CI 1.03-1.32) and 34% increased CV mortality risk (1 study; 1287 participants;
50	HR 1.34; 95%CI 1.16-1.55). While, in retrospective cohort studies, highest SUA
51	category was not found to elevate all-cause (5 studies; 4570 participants; HR 1.09;
52	95%CI 0.70-1.70) and CV mortality (3 studies; 3748 participants; HR 1.00; 95%CI
53	0.44-2.31) compared with lowest. And there was also no increase in all-cause (8 studies;
54	11541 participants; HR 0.94; 95%CI 0.88-1.02) and CV mortality (3 studies; 7427
55	participants; HR 0.90; 95%CI 0.76-1.06) with every 1mg/dl increase in SUA level.
56	Conclusions Results of prospective cohort study and retrospective cohort studies were
57	inconsistent. Consequently, prospective, multicenter, long term follow-up studies are
58	required in future to confirm association of SUA and mortality in PD patients.
59	Trial registration number International Platform of Registered Systematic Review and
60	Meta-analysis Protocols (INPLASY.COM) registration number:202140020.
61	Strengths and limitations of this study
62	This is the first systematic review of observational studies exploring the correlation
63	between SUA level and mortality in PD patients.
64	We used critical systematic review and subgroup analysis to describe the results and

64 We used critical systematic review and subgroup analysis to describe the results, and65 proposed future research direction.

66 In spite of many important confounding factors had been adjusted in the studies,

Page 5 of 40

BMJ Open

residual and unknown confounding still can not be excluded entirely.
Part of necessary data in the studies was not obtained, exploration of dose-response
relationship failed, it needs to be further determined in future.

70 Introduction

End-stage renal disease (ESRD) is one of the major diseases affecting human health, which causes enormous pressure and burden on medical care and society. Peritoneal dialysis (PD), as one of the effective alternative treatments for ESRD, has many features, such as stable hemodynamics, protection of residual renal function (RRF), good removal of middle molecular toxins, low risk of infectious disease infection, health economics advantage and home treatment [1]. Currently, PD has been widely used all over the world. Epidemiological survey results showed that as of 2013, the total number of people receiving peritoneal dialysis worldwide reached approximately 220,000 [2]. Of concern, patients with ESRD treated with dialysis still have a high mortality rate [3]. Therefore, the identification of potential risk factors that can be intervened is still an important topic in the field of PD, which is of great significance for improving the prognosis of patients and increasing the quality of life.

Uric acid (UA) is the final product of purine nucleotide metabolism in humans. Previous studies have demonstrated that elevated serum uric acid (SUA) was closely related to the increased risk of hypertension, peripheral arterial disease, cardiovascular (CV) event and chronic kidney disease (CKD) in general population [4-7]. And higher SUA level also appeared to be an independent risk factor for all-cause and CV mortality in CKD subjects [8,9]. However, there were conflicting results about the relationship

between SUA level and risk of death among dialysis patients. For hemodialysis population, many studies have confirmed that hypouricemia significantly increased the mortality of maintenance hemodialysis patients [10-12]. Nevertheless, SUA's role for all-cause and CV mortality in PD patients has been controversial. One study in PD patients indicated that elevated SUA level was an independent risk factor for all-cause and CV mortality in men treated with PD [13]. The result of another study showed that the prognostic value of SUA in all-cause and CV mortality was weak in PD patients [14]. Whereas hyperuricemia was found to predict lower risk of all-cause mortality in PD patients with lower relative appendicular skeletal muscle in another study [15]. In short, results regarding the effect of SUA on the prognosis of PD patients appeared to be inconsistent.

At present, there is a lack of systematic reviews on the relationship between SUA, all-cause and CV mortality in PD population. We hypothesized that there may be exist independent correlation between elevated SUA level and mortality in participants with PD. Thus, we systematically analyze available studies to determine whether the hypothesis was right.

105 Methods

Protocol and registration

Methods of this review were specified in advance and documented in International
Platform of Registered Systematic Review and Meta-analysis Protocols
(INPLASY.COM). (Registration number:202140020). The content of this review
was reported according to the guidelines of "Meta-analysis of Observational Studies in

2		
3 4	111	Epidemiology guidelines" (MOOSE) [16].
5	111	Epidemiology guidenines (info03E) [10].
6	110	Fligibility anitaria
7	112	Eligibility criteria
8 9	110	
9 10	113	Types of studies
11		
12	114	Cohort studies and case-control studies were identified.
13		
14 15	115	Participants
16		
17	116	All participants who had received PD for more than 3 months. There was no restriction
18		
19	117	on the type of PD, including continuous ambulatory PD, intermittent PD, automated
20	117	on the type of 1D, mendang continuous anounatory 1D, mermittent 1D, automated
21 22		
23	118	PD, continuous cyclic PD and tidal PD.
24		
25	119	Exposure factor
26		
27 28	120	Hyperuricemia in PD population was the exposure factor of this study. Either
28		
30	121	categorization according to baseline SUA level or time-average SUA concentration
31		
32	122	was acceptable. Definition of hyperuricemia and the categorization for the SUA level
33 34	122	was acceptable. Definition of hyperaricennia and the categorization for the Soft level
35	172	was based on the definition in each included article respectively.
36	123	was based on the definition in each included article respectively.
37		4
38	124	Outcome
39		
40 41	125	Primary outcome: all-cause mortality. The death was determined by the hospital
42		
43	126	medical record and death certificate.
44		
45	127	Secondary outcome: CV mortality. The definition of "CV events": coronary
46 47		secondary succome. Et moranty. The administration of Et events . coronary
47	120	events (myocardial infarction, unstable angina), cardio myopathy, cardiac arrest,
49	128	events (myocardiar infarction, unstable angina), cardio myopatny, cardiac arrest,
50		
51	129	cardiac dysrhythmia, congestive heart failure, ischemic brain injury, cerebrovascular
52		
53 54	130	accident and peripheral vascular disease. The cause of death was determined through
55		
56	131	medical history, hospital medical records and death certificates.
57		
58	132	Exclusion criteria
59		

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13 14	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46 47	
47 48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

(1) Hazard ratio (HR) and its corresponding 95% confidence interval (CI) (or other data 133 to calculate them) of all-cause or CV mortality for 1mg/dl change in SUA level, or for 134 the highest versus lowest SUA category or the lowest versus highest category could not 135 be obtained from the original article; (2) Cohort studies with a total sample size of less 136 than 100 participants; (3) If studies originated from the same series of cohort samples, 137 or part of the cohort samples were published repeatedly, only the literature with the 138 largest sample size and the longest follow-up could be included, and the rest of the 139 literature need to be excluded. 140

141 Search strategy

Two authors (X.X. and H.C.) searched the following Chinese and English databases 142 from their inception to 15th January 2021. Chinese databases included China National 143 144 Knowledge Infrastructure (CNKI), SinoMed, Chinese Science and Technology Journal Database (VIP), and Wan Fang Database. English databases included PubMed, 145 EMBASE, the Cochrane Library, and Web of Science. Trial registers including Clinical 146 Trials. gov and the World Health Organization International Clinical Trials Registry 147 Platform were also searched. Additionally, related reviews, conference papers, 148 references lists and gray literatures also were searched manually to minimize the 149 missed detection rate. No language or publication type was imposed, published 150 abstracts were also considered. If there was a lack of information in the retrieved 151 literature, it was necessary to contact the author via email to obtain the missing data to 152 ensure that literatures could be included in a comprehensive way. Taking "PubMed" as 153 an example, the retrieval strategy was as follows: ("Uric Acid" [Mesh] OR "Uric Acid" 154

Page 9 of 40

1

BMJ Open

2	
3	
4	
5	
6	
-	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

OR "serum uric acid") AND ("Mortality" [Mesh] OR "Mortality") AND ("Peritoneal
Dialysis" [Mesh] OR "Peritoneal Dialysis" OR "PD" OR "continuous ambulatory PD"
OR "CAPD" OR "intermittent PD" OR "IPD" OR "automated PD" OR "APD" OR
"continuous cyclic PD" OR "CCPD" OR "tidal PD" OR "TPD").

159 Studies selection and data extraction

The titles and the abstracts were screened first, then the full-text versions were checked 160 according to inclusion and exclusion criteria. Two authors (X.X. and Q.L.) examined 161 the full text to identify the eligible trials independently. We made a data extraction 162 163 sheet in advance. Two authors (X.X. and H.C.) extracted data independently. Disagreements of studies selection and data extraction were resolved by consulting 164 corresponding author JP Liu. Information was extracted from each included trial on: 165 166 first author, publication year, age, gender, study design, dialysis duration, sample size, study location, center, length of follow up, categories according to serum uric acid, 167 comparison, adjustments, adjusted HR (95%CI). 168

169

60

Methodological quality assessment

The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the quality
of observational studies [17]. NOS allocated a maximum of 9 points for quality of
selection, comparability, and outcome of study population. Two authors (X.X. and J.Y.)
assessed and validated the quality of included studies independently. Any
disagreements were resolved by discussion with corresponding author JP Liu. Overall
study quality scores were defined as poor (0–3), fair (4–6), or good (7–9).

176 Statistical analysis

> SUA was analyzed not only as a categorical variable, but also as a continuous variable in the included studies. The statistical analysis for the overall association between SUA levels and death risk (all-cause and CV mortality) were based on random effects model and on comparisons of highest versus lowest category of SUA level, or by increase of 1mg/dl. HR and 95% CI were used as effect indicators. HR and corresponding 95% CI of each study were transformed to their natural logarithm (lnHR, lnlCI and lnUCI), and overall HR and its 95% CI was calculated by exponentiation of the pooled lnHR, lnlCI and lnUCI.

> If data of cases, person-years, and HR and 95% CI for each category were available in included studies, then a dose-response analysis would be performed to further explore the relationship between SUA and mortality. The potential non-linearity association was examined by modeling SUA levels using restricted cubic splines with three knots at 25, 50, and 75% of the distribution. We assigned the median or middle point of the upper and lower boundaries in each category as the corresponding dose to the related HR for each study. In case of P value > 0.05, the linear regression model should be considered.

> square (I^2) was applied to test the statistical heterogeneity among studies (Higgins and Thompson, 2003) [19]. When $I^2 > 85\%$, we believed that the results could not be poolled. Data not suitable for statistical pooling were synthesized qualitatively. To explore the source of heterogeneity among studies, subgroup analyses were conducted according to study design, study location, publication years, adjustment for sex, adjustment for DM and adjustment for albumin. Additionally, the meta-regression

BMJ Open

analysis was also performed to detect potential heterogeneity based on the above
variables when about 10 studies were included. Sensitivity analysis was performed with
removing one study at a time to explore the robustness of results if data were available.
The possibility of publication bias was detected by funnel plots and Egger's test if there
were about 10 studies. STATA16.0 software (StataCorp, College Station, Texas, 77845
USA) was used for data analysis.

205 Patient and Public Involvement statement

206 Patients or the public WERE NOT involved in the design, or conduct, or reporting, or

207 dissemination plans of our study.

208 Results

209 Search results

Two hundred and forty-two relevant citations were retrieved. After scanning the full texts, five literatures were excluded. We excluded cohort samples of the same series [13,15,20], only the studies with the largest sample size and the longest follow-up time were included [21,22]. Besides, we excluded a published abstract [23], due to its total sample size of entire cohort was only 60 participants. And another study was excluded due to whose pooled effect estimation were reported as odds ratio (OR) with 95% CI [24]. Finally, fourteen literatures were eligible for this review. Details of search and selection process were illustrated in Fig.1.

Characteristic of included trials

A total of fourteen literatures involving 24031 participants were included [14,21,22,2535]. The included studies were all cohort studies, including prospective and

retrospective studies. The main characteristics of included studies were demonstratedin Table 1.

223 Methodological quality of included studies

The overall quality of included studies was good with a mean NOS score of 7.57, with a range of 7–9. All studies receiving a NOS greater than or equal to 7 (eTable1 in the Supplement). Among them, in terms of "comparability", the most important confounding factors that need to be adjusted should include indicators of estimated glomerular filtration rate (eGFR) or serum creatinine (Scr) or urinary volume (UV) or residual renal function (RRF), which can reflect the patient's current residual renal function status. In addition, according to literature and clinical observations, other confounding factors that need to be adjusted should include gender, age, diabetes history, cardiovascular disease (CVD) history, Kt/v (urea clearance index, representing dialysis adequacy), use of UA-lowering drugs, and serum albumin (representing nutritional status).

Primary outcome

236 Association of serum uric acid in categories with all-cause mortality

In order to reduce the heterogeneity of methodology, we discussed the results respectively according to different study designs. In prospective cohort studies, summary HR and 95% CI of all-cause mortality for the highest SUA category compared with the lowest category came from one included study including 1287 patients [21]. As presented in Fig.2, pooled result of the highest SUA category was significantly higher than the lowest for all-cause mortality (HR 1.79; 95% CI 1.17-2.75).

Page 13 of 40

1

BMJ Open

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

261

In retrospective cohort studies, five studies with 4570 patients reported HR and 243 95% CI of all-cause mortality for the highest versus the lowest SUA category 244 [14,28,29,33,34]. The highest SUA category was not found to elevate all-cause 245 mortality (HR 1.09; 95% CI 0.70-1.70; Fig.2) compared with the lowest category of 246 PD patients. 247 HR and corresponding 95% CI were reported in three retrospective cohort studies 248 for the lowest versus the highest SUA category [26,27,31]. Among them, the data of 249 one of the articles [27] was supplemented by the corresponding author Changxiu via e-250 251 mail. The pooled HR was 1.52 (95%CI 0.79-2.89), with heterogeneity of I²=32.8%. Association of Serum uric acid per 1mg/dl increase with all-cause mortality 252 Only one prospective study with 1287 PD patients reported HR and 95% CI of all-253 254 cause mortality for 1mg/dl increase in SUA level [21]. And pooled result showed that for every 1mg/dl increase in SUA level, risk of all-cause death increased by 16% (HR 255 1.16; 95%CI 1.03-1.32; Fig.3). 256 In retrospective cohort studies, eight studies with 11541 PD patients reported HR 257 and 95% CI of all-cause mortality for 1mg/dl increase in SUA level [14,22,27-258 30,33,35]. When the unit of SUA concentration in the literature was different, 60 μ 259 mol/l was approximately equal to 1mg/dl. In short, each 1mg/dl increase in SUA level 260

262 (HR 0.94; 95% CI 0.88-1.02; Fig.3).

263 **Dose-response relationship between serum uric acid with all-cause mortality**

Most of the included literature [14,21,22,26,28,30,31,33-35] only reported the number

didn't appear to significantly increase the risk of all-cause mortality in PD population

Page 14 of 40

BMJ Open

of outcomes of the entire cohort population, we were unable to obtain the number of
all-cause and CV deaths and person-years in each category. Despite we tried our best
to contact authors by email or phone in order to acquire necessary data for non-linearity
test, only one auther responded and provided relevant data [27]. At last, dose-response
analysis failed.
Secondary outcome
Association of serum uric acid in categories with cardiovascular mortality

One prospective cohort study with 1287 patients reported HR and 95% CI of CV
mortality for the highest SUA category compared with the lowest [21]. Pooled result
of HR in the highest versus the lowest category was 2.63 (95% CI 1.62-4.27). (eFigure1
in the Supplement)

Three retrospective cohort studies with 3748 patients reported HR and 95% CI of CV mortality for the highest versus the lowest SUA category [14,28,29]. And the highest SUA category was not found to increase CV mortality (HR 1.00; 95% CI 0.44-2.31) compared with the lowest category of PD patients (eFigure1 in the Supplement). Association of serum uric acid per 1mg/dl increase with cardiovascular mortality

One prospective cohort study with 1287 patients reported HR and 95% CI of CV mortality for 1mg/dl increase in SUA level [21]. And an increase of 1mg/dl in SUA level was associated with an 34% increased risk of CV mortality (HR 1.34; 95%CI 1.16-1.55; eFigure2 in the Supplement).

Three retrospective cohort studies with 7427 patients reported HR and 95% CI of
CV mortality for 1mg/dl increase in SUA level [14,29,35]. By meta-analysis, each 1

BMJ Open

287	mg/dl increase in SUA level didn't appear to significantly increase the risk of CV death
288	in PD population (HR 0.90; 95% CI 0.76-1.06; eFigure2 in the Supplement).
289	Additional analysis
290	Subgroup analysis and meta-regression
291	We explored the source of heterogeneity for subgroup analysis and meta-regression.
292	Subgroup analysis only included literatures which were on comparisons of the highest
293	versus the lowest category of SUA level, or by change of 1mg/dl increase. The pooled
294	HR (95% CI) and I^2 of subgroup analysis for association of SUA with all-cause and
295	CV mortality were presented in Table 2a and Table 2b, respectively.
296	As mentioned before, whether SUA was a categorical variable or a continuous
297	variable, results of prospective cohort studies differed from those of retrospective
298	studies. Besides, combined with the results of subgroup analysis, when SUA was
299	estimated as a categorical variable, association of higher SUA level with increased all-
300	cause and CV mortality was significant in studies of mainland in China, but not in the
301	rest of the locations. SUA as a continuous variable, relationship of higher CV mortality
302	for 1 mg/dl increase in SUA level was significant in studies of mainland China, but not
303	in the rest of the locations. Furthermore, we analyzed the relevant studies published in
304	the past ten years, and results of studies completed during 2011-2016 were different
305	from the results during 2017-2021 period.
306	In addition, in studies of association between SUA (as a continuous variable) and
307	all-cause mortality, study design, study location, publication years, adjusted for sex and
308	DM were the heterogeneous sources by meta-regression (Table 2a).

309 Test of Publication bias

The funnel plots and Egger's test (t=1.07, p=0.309) indicated that there was no obvious publication bias of studies for association of all-cause mortality and SUA level per 1mg/dl increase. The funnel plot was presented in eFigure3 in the Supplement.

313 Sensitivity analysis

In retrospective cohort studies, primary outcome showed that there was no significant effect on the pooled HR values of other studies with one study removed at a time. The above indicated that the results were robust.

Discussion

Principal findings and comparison with prior reviews

For PD population, previous original studies indicated inconsistent relationship between SUA and mortality. After searching systematically, we found that there were some meta-analyses of investigating the correlation between SUA and mortality in different population [36-39], however, we have not yet found one only for PD patients. A systematic review published in 2016 showed that elevated SUA level was significantly associated with the risk of death in patients with CKD, including dialysis and non-dialysis subjects [40]. Subgroup analysis of this review demonstrated that hyperuricemia was an independent predictor for mortality in PD population, while, this predictive value was not found in the hemodialysis (HD) population. Only 1 prospective cohort study and 2 retrospective cohort studies were included in PD subgroup. In our study, we included a total of 14 cohort studies, of which 2 were prospective studies and 12 were retrospective studies. Quality of all studies was good

BMJ Open

by NOS assessment. Only one prospective cohort study suggested that regardless of
whether SUA was estimated as a continuous or a categorical variable, elevated SUA
level was significantly associated with increased risk of all-cause and CV mortality in
PD patients. Whereas, no significant associations between them in retrospective study.
Considering that only one prospective study [21] was included in analysis, so the result
should be interpreted with caution.

Although the detrimental effect of SUA is obvious, which is an endothelial toxin and plays a role in endothelial dysfunction [41], as a powerful free radical scavenger in human at the same time, SUA may be expected to offer a number of benefits within the CV system in PD patients [42,43]. Besides, the problem of protein loss and malnutrition is prominent in PD population [44]. "Malnutrition-inflammation complex syndrome (MICS)" is believed to be the main cause of high rate of CV atherosclerotic disease and increased mortality and hospitalization in HD patients [45,46]. The underlying mechanism of MICS may also be present in PD patients. As a nutritional marker, SUA might be involved in the MICS axis. The pooled result of the retrospective studies did not find that elevated SUA was associated with increased risk of mortality, perhaps related to complex interaction mechanisms. Further investigations are warranted to clarify the precise mechanisms.

In addition, heterogeneous among included studies was generally high. The different study location was one of the main sources of heterogeneity among studies by meta-regression test. Subgroup analysis results further suggested that hyperuricemia was associated with a high risk of CV death in the PD population in mainland China.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20 29	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50	
51 52	
52 53	
54	
55	
56	
57	
58	
59	
60	

1

As a result, the correlation between the SUA level and the risk of death in different
regions needs to be explored and verified by prospective studies in future.

355 Implications further research

Since the results of prospective and retrospective cohort studies were inconsistent, and different regions of the study seemed to produce different result. Therefore, prospective, multicenter, long term follow-up studies are required in future to explore the correlation between SUA level and the risk of death in different regions, as well as to determine the range of SUA concentrations which can reduce mortality and improve prognosis in PD patients.

Additionally, since PD patients often suffered from underlying diseases and 362 complex conditions. Therefore, confounding factors must be adjusted comprehensively 363 364 in observational study to explore the relationship between etiology and prognosis in future. For PD population, the following confounding factors should be considered to 365 make the conclusion more convincing. Such as: traditional independent risk factors of 366 367 CV events (age, gender, total lipoprotein cholesterol, low or high density lipoprotein cholesterol, hypertension, diabetes, smoking [47]), history of CV, emotion status, 368 residual renal function, the related parameters of PD, the parameters of nutritional 369 status, use of diuretic and lower UA agents and so forth. 370

Besides, necessary information should be reported in detail in study report. Not only can readers become more familiar with the details of the study, but also can conveniently carry out secondary research and avoid waste of research resources.

374 **Conclusions**

BMJ Open

The results of the prospective and retrospective cohort studies were inconsistent. Only one prospective cohort study showed that elevated SUA level was significantly associated with increased risk of all-cause and CV mortality in PD patients. Nevertheless, pooled result of retrospective cohort studies did not appear to indicate a prominent association. So it is necessary to use SUA-lowering agents with caution for PD patients in clinics. And prospective, multicenter, long term follow-up studies are needed in future to investigate the correlation between SUA level and the risk of death in different regions, as well as to explore the range of SUA concentration associated with the lowest mortality in PD patients. Acknowledgements Centre for Evidence-Based Chinese Medicine of Beijing University of Chinese Medicine hosted the study and provided learning guidance to domestic visiting scholars. And we greatly thanked Fang-fang Zhao from Xivuan Hospital, China Academy of Chinese Medical Sciences, for the suggestion during the revision process. Author Contributions Research idea and study design: XX and JPL. Protocol and Registration: XX, CLL, XYJ and XHL. Acquisition, analysis, or interpretation of data: XX, HC, QL, JY, and JPL. Drafting of the manuscript: XX, XHL, CLL, XYJ and RXZ. Statistical analysis: MY, XX and XQW. Critical revision of the manuscript: XQW and JPL. Supervision: JPL. **Funding** This work was supported by the key project of the National Natural Science Foundation of China (No.81830115). Competing interests None. **Provenance and peer review** Not commissioned; externally peer reviewed. Data sharing statement The datasets used for meta-analyses are available from the corresponding author on reasonable request. REFERENCES 1. Li PKT, Chow KM, Van de Luijtgaarden MWM, et al. Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol 2017;13:90. 2. Yin FT, Yu YS. Current status and challenges of peritoneal dialysis treatment. Chinese J Nephrol Dialysis Transplantation 2015;24:186-9. 3. Bloembergen WE, Port FK, Mauger EA, et al. A comparison of mortality between patients treated with hemodialysis and peritoneal dialysis. J Am Soc Nephrol 1995;6:177-83. 4. Johnson RJ, Kang DH, Feig D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 2003;41: 1183-90.

Page 20 of 40

BMJ Open

1 2		
3	410	5. Shankar A. Klain PEK. Niata E. L. at al. Approxiption between corum uria acid loval and paripharal artarial
4	410	 Shankar A, Klein BEK, Nieto FJ, et al. Association between serum uric acid level and peripheral arterial disease. <i>Atherosclerosis</i> 2008:196:749-55.
5	411	
6 7		6. Gagliardi AC, Miname MH, Santos RD. Uric acid: a marker of increased cardiovascular risk.
8	413	Atherosclerosis 2009;202:11-7.
9	414	7. Ryoo JH, Choi JM, Oh CM, et al. The association between uric acid and chronic kidney disease in
10	415	Korean men: a 4-year follow-up study. <i>J Korean Med Sci</i> 2013:28:855.
11 12	416	8. Madero M, Sarnak MJ, Wang X, et al. Uric acid and long-term outcomes in CKD. Am J Kidney Dis
13	417	2009;53:796-803.
14	418	9. Kanbay M, Yilmaz MI, Sonmez A, et al. Serum uric acid independently predicts cardiovascular events
15 16	419	in advanced nephropathy. Am J Nephrol 2012;36:324-31.
16 17	420	10. Li M, Ye ZC, Li CM, et al. Low serum uric acid levels increase the risk of all-cause death and
18	421	cardiovascular death in hemodialysis patients. Ren Fail 2020;42:315-22.
19	422	11. Kim CS, Jin DC, Yun YC, et al. Relationship between serum uric acid and mortality among
20 21	423	hemodialysis patients: retrospective analysis of Korean end-stage renal disease registry data. Kidney
21	424	Res Clin Pract 2017;36:368.
23	425	12. Latif W, Karaboyas A, Tong L, et al. Uric acid levels and all-cause and cardiovascular mortality in the
24	426	hemodialysis population. Clin J Am Soc Nephrol 2011;6:2470-7.
25 26	427	13. Xia X, He F, Wu X, et al. Relationship between serum uric acid and all-cause and cardiovascular
27	428	mortality in patients treated with peritoneal dialysis. Am J Kidney Dis 2014;64:257-64.
28	429	14. Dong J, Han QF, Zhu TY, et al. The associations of uric acid, cardiovascular and all-cause mortality
29	430	in peritoneal dialysis patients. <i>PloS one</i> 2014;9:e82342.
30 31	431	15. Xiao X, Yi C, Peng Y, et al. The association between serum uric acid and appendicular skeletal muscle
32	432	mass and the effect of their interaction on mortality in patients on peritoneal dialysis. Kidney Blood
33	433	Pressure Res 2020;45:969-81.
34 35	434	16. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: A
36	435	proposal for reporting. Meta-analysis of observational studies in epidemiology (moose) group. JAMA
37	436	2000;283:2008-12.
38	437	17. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality
39 40	438	of nonrandomised studies in meta-analyses. 2000.
40	439	18. Chen W, Fang SN, Liu JP, et al. The development and current situation of international evidence-
42	440	based medicine evidence classification system. Chin Nephrol J Integr Tradit West Med.2017:37:1413-19.
43	441	19. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ
44 45	442	2003;327:557-60.
46	443	20. Li W, Xiong L, Fan L, et al. Association of baseline, longitudinal serum high-sensitive C-reactive
47	444	protein and its change with mortality in peritoneal dialysis patients. <i>BMC nephrology</i> 2017;18:1-10.
48 40	445	21. Xia X, Zhao C, Peng FF, et al. Serum uric acid predicts cardiovascular mortality in male peritoneal
49 50	446	dialysis patients with diabetes. <i>Nutr Metab Carbiovasc Dis</i> 2016;26:20-6.
51	447	22. Xiao X, Ye JH, Peng Y, et al. Effect of the interaction between estimated glomerular filtration rate and
52	447	serum uric acid on all-cause and cardiovascular mortality in patients on peritoneal dialysis. <i>Chinese J</i>
53 54	440 449	
54 55		Nephrol 2020;36:703-10.
56	450	23. Stepanova N, Burdeyna O, Snisar L. Hyperuricemia is associated with cardiovascular events and all-
57	451	cause mortality in peritoneal dialysis patients. <i>Nephrol Dial Transplant</i> 2019;34 (Supplement_1): gfz106.
58 59	452	FP587.
60	453	24. Lu AJ. The effect of serum uric acid level on the prognosis of maintenance peritoneal dialysis patients.

Page 21 of 40

1		
2 3		
4	454	J Clin Res 2020;37:1589-91.
5	455	25. Feng S, Jiang L, Shi Y, et al. Uric acid levels and all-cause mortality in peritoneal dialysis patients.
6	456	Kidney Blood Pressure Res 2013;37:181-9.
7 8	457	26. Bae E, Cho HJ, Shin N, Kim SM, Yang SH, et al. Lower serum uric acid level predicts mortality in
9	458	dialysis patients. <i>Medicine</i> 2016;95(24).
10	459	27. Chang W, Zhang W, Wang X, et al. The association of longitudinal serum uric acid and all-cause
11	460	mortality in incident peritoneal dialysis patients. Blood Purif 2019;47:185-92.
12 13	461	28. Zhang QL, Wang JN, Wang YM, et al. Effects of serum uric acid level on all-cause death and
14	462	cardiovascular death in patients of maintaining peritoneal dialysis. Chinese J Nephrol 2018;34:809-15.
15	463	29. Lai KJ, Kor CT, Hsieh YP. An inverse relationship between hyperuricemia and mortality in patients
16 17	464	undergoing continuous ambulatory peritoneal dialysis. J Clin Med 2018;7:416.
18	465	30. Yang FY. The Associations of Time-averaged Serum Uric Acid with Cardiovascular Mortality and All-
19	466	Cause Mortality in Peritoneal Dialysis Patients. Ningxia Medical University.2018.
20	467	31. Chang W, Uchida S, Qi PP, et al. Decline in serum uric acid predicts higher risk for mortality in
21 22	468	peritoneal dialysis patients—a propensity score analysis. J Nephrol 2019;1-9.
23	469	32. Xiang S, Zhang X, Xie X, et al. High serum uric acid level is a mortality risk factor in peritoneal dialysis
24	470	patients: a retrospective cohort study. Nutr. Metab 2019;16:1-10.
25 26	471	33. Qiu SF, Teng J, Shen B, et al. Correlation of serum uric acid before dialysis and all-cause
20	472	mortality in peritoneal dialysis patients. Chinese J Clin Med 2020;27:815-21.
28	473	34. Coelho ID, Rodriguez C, Rodriguez-Carmona A, et al. Serum Uric Acid, Mortality, and Decline of
29	474	Residual Kidney Function in Patients Undergoing Chronic Peritoneal Dialysis. J Am Soc Nephrol
30 31	475	2020;31:420.
32	476	35. Sugano N, Maruyama Y, Ohno I, et al. Effect of uric acid levels on mortality in Japanese peritoneal
33	477	dialysis patients. Perit Dial Int 2020;0896860820929476.
34 35	478	36. Zhao G, Huang L, Song M, et al. Baseline serum uric acid level as a predictor of cardiovascular
36	479	disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis
37	480	2013;231:61-8.
38	481	37. Wang R, Song Y, Yan Y, et al. Elevated serum uric acid and risk of cardiovascular or all-cause
39 40	482	mortality in people with suspected or definite coronary artery disease: a meta-analysis. Atherosclerosis
41	483	2016;254:193-9.
42	484	38. Tamariz L, Harzand A, Palacio A, et al. Uric acid as a predictor of all-cause mortality in heart failure:
43 44	485	a meta-analysis. <i>Congest Heart Fail</i> 2011;17:25-30.
44	486	39. Li L, Yang C, Zhao Y, et al. Is hyperuricemia an independent risk factor for new-onset chronic kidney
46	487	disease?: a systematic review and meta-analysis based on observational cohort studies. BMC Nephrol
47	488	2014;15:1-12.
48 49	489	40. Xia X, Luo Q, Li B, et al. Serum uric acid and mortality in chronic kidney disease: A systematic review
50	490	and meta-analysis. Metab-Clin Exp 2016;65:1326-41.
51	491	41. Yu MA, Sánchez-Lozada LG, Johnson RJ, et al. Oxidative stress with an activation of the renin-
52 53	492	angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced
54	493	endothelial dysfunction. J Hypertens 2010;28:1234-42.
55	494	42. Nieto FJ, Iribarren C, Gross MD, et al. Uric acid and serum antioxidant capacity: a reaction to
56 57	495	atherosclerosis?. Atherosclerosis 2000;148:131-9.
57 58	496	43. Suzuki T. Nitrosation of uric acid induced by nitric oxide under aerobic conditions. <i>Nitric oxide</i>
59	497	2007;16:266-73.
60		,

44. Sánchez-Villanueva R, Bajo A, Del Peso G, et al. Higher daily peritoneal protein clearance when initiating peritoneal dialysis is independently associated with peripheral arterial disease (PAD): a possible new marker of systemic endothelial dysfunction?. Nephrol Dial Transplant 2009;24:1009-14. , se. 17:36:30. Block G, et al. Leider MG, et al. Tradition. terosis in theumatoid arthritis. 45. Hur I, Choi SJ, Kalantar-Zadeh K. Serum uric acid and mortality risk among maintenance hemodialysis

- patients. Kidney Res Clin Pract 2017;36:302.
- 46. Kalantar-Zadeh K, Ikizler TA, Block G, et al. Malnutrition-inflammation complex syndrome in dialysis
 - patients: causes and consequences. Am J Kidney Dis 2003;42: 864-81.
 - 47. Dessein PH, Joffe BI, Veller MG, et al. Traditional and nontraditional cardiovascular risk factors are
 - associated with atherosclerosis in rheumatoid arthritis. J rheumatology 2005;32:435-42.

Page 23 of 40								BMJ Open	bmjopen-2021-052274		
									n-20		
1 2									21-(
3									0522		
4									274		
5 508	Table	1 Charact	teristics of	included s	studies				on 1		
Study ID	Study	Study	Age	Male/	Dialysis	Follow-up	Deaths	Definition of hyperuricemia	Comparison 18 Octob	Adjustments	Adjusted HR
8	location	design/	(years)	Total	duration	(months)	AC/CV	or categories according to	ctot		(95%CI)
9	(Region)	Center		Sample(n)	(months)		(n)	serum uric acid	oer N		
Sheng F 2013	China:	RCS/	54.1±17.4	98/156	31.3±17.5	31.3±17.5	41/23	Group 1:≤7.0mg/dl;	Group 1 vs. Group	Age, Alb, DM, HN, RRF ,	ACM: 1.15(0.20-2.57)
11 [25] 12	Mainlan	Single						Group 2: 7.0-10.0 mg/dl;	Group 3 vs. Group 🔁	phosphate , Log CRP	ACM: 2.96(1.29-6.80)
13	d							Group 3: ≥10.0 mg/dl.	own		
JIAD 2014	China:	RCS/	58.1±15.5	1078/2193	At least > 3	Median	586/231	Men: Tertile 1: 2.09-5.79mg/dl;	Tertile 3 vs. Tertile	Age, RRF, Hb, Alb,	ACM: 1.21(0.85-1.73)
15 [14] 16	Mainlan	7 centers				26.5		Tertile 2: 5.80-7.38 mg/dl;	(Gender-specific)	phosphate, LDLC, CRP,	CVM: 1.35(0.74-2.46)
10	d							Tertile 3: 7.39-16.7 mg/dl.	Tertile 2 vs. Tertile	histroy of CVD and DM, BMI,	ACM: 1.23(0.90-1.70)
18								FM: Tertile 1: 1.74-5.37mg/dl;	(Gender-specific)	MAP, center size, gender	CVM: 1.29(0.75-2.23)
19								Tertile 2: 5.38-6.65 mg/dl;	Per 1 mg/dl increas	adjusted only SUA as	ACM: 1.05(0.96-1.14)
20 21								Tertile 3: 6.66-8.08 mg/dl.	mjc	continuous variable.	CVM: 1.04(0.89-1.20)
21 X2 2016	China:	PCS/	47.6±15.0	757/1287	At least > 3	Median	231/126	Men: Tertile 1: < 6.46mg/dl;	Tertile 3 vs. Tertile	Age, gender, BMI, history of	ACM: 1.46(0.92-2.32)
[2] 24	Mainlan	Single				30.7		(DM)Tertile 2: 6.46-7.38 mg/dl;	(DM: Gender speci	CVD and hypertension, Hb,	CVM: 2.26(1.14-4.48)
	d							Tertile 3: ≥7.38 mg/dl.	Tertile 3 vs. Tertile	Alb, Scr, P, HDL-C; RRF, log-	ACM: 2.26(1.36-3.75)
25 26								Men: Tertile 1: <7.00mg/dl;	(NDM: Gender spe@fic)	transformed Hs-CRP,	CVM: 3.07(1.54-6.08)
27								(NDM)Tertile2: 7.70-7.89mg/dl;	Per 1 mg/dl increase	glycated Hb, use of allopurinol	ACM (DM, MEN):1.09(0.91-1.32);
28								Tertile 3: ≥7.89 mg/dl.		and ACEI or ARB.	ACM (DM, FM):1.06(0.83-1.35);
29 30								FM: Tertile 1: < 5.89mg/dl;	ril 19, :		ACM(NDM, MEN):1.36(1.14-1.64);
30								(DM)Tertile 2: 5.89-7.09 mg/dl;	2024		ACM (NDM, FM):1.09(0.80-1.47);
32								Tertile 3: ≥7.09 mg/dl.	4 by		CVM (DM, MEN):1.42(1.13-1.79);
33								FM: Tertile 1: < 6.46mg/dl;	nb		CVM (DM, FM):1.12(0.78-1.61);
34 35								(NDM)Tertile2: 6.46-7.48mg/dl;	est.		CVM(NDM, MEN):1.41(1.09-1.82);
36								Tertile 3: ≥7.48 mg/dl.	Prote		CVM (NDM, FM):1.24(0.85-1.82).
37 Eunjin B2016 38	South	DCC /mult	NR	NR/651	At least > 2	Madian	AC 106	-	C C	Age any PMI SPD Co. D	
	South	PCS/mult	INIT	NR/031	At least > 3	Median	AC 106	Group 1: TA-UA<5.5 mg/dl;	Group 1 vs. Group 🙍	Age, sex, BMI, SBP, Ca, P,	ACM: 1.478(0.602-3.627)
39 40									by copyright.		
41									ругі		
42								22	ight.		
43					For peer	review only	- http://b	mjopen.bmj.com/site/about/g	-		
44 45											
43 46											

Page 24 of 40

								BMJ Open	bmjopen-2021-052274		Page 24 of 40
									n-2(
1									021-		
2 3									052		
4									274		
[g 6]	Korea	-icenter				43.9		Group 2: TA-UA≥5.5 mg/dl.	S S	Alb, TC, DM, SGA.	
G hangWX2018	China:	RCS/	55.2±14.9	171/300	At least > 3	22.6±15.9	AC 44	Group1: TA-UA < 6mg/dL;	Group 3 vs. Group	Sex, age, DM, CVD history,	ACM: 4.69(1.24-17.72)
7 [27] 8	Mainlan	Single						Group2: TA-UA 6–8mg/dL;	O Group 1 vs. Group 왍	RRF, BMI, SBP, Hb, Alb, BUN,	ACM: 3.24(1.25-8.39)
o 9	d							Group3: TA-UA ≥8mg/dL.	Group 1 vs. Group 💇	SCr, Na, K, CO2, Ca, P, LDL-	ACM: 0.603 (0.158-2.309)
10									Per 1 mg/dl increas	C, CRP, RASi, diuretic.	ACM: 0.86(0.67-1.12)
11									(Baseline-UA)		
12 ZhangQL2018	China:	RCS/	Median 51	557/1063	At least > 6	Median	167/64	Group 1: < 420µmol/l;	Group 2 vs. Group 4	Age, Scr, P, Alb, BG, iPTH,	ACM: 1.572(1.155-2.141)
[28]	Mainlan	Single				33		Group 2: ≥420µmol/l;	nloa	history of DM, DBP, Charlson	CVM: 1.734(1.033-2.912)
15	d	-						Hyperuricemia≥420µmol/l	ص Per 1 µmol/l increa	score.	ACM: 1.002(1.001-1.004)
16 Lai KJ 2018 17	China:	RCS/	53.5±15.3	237/492	At least > 3	Median	127/74	Men: Tertile 1: ≤6.8mg/dl;	Tertile 3 vs. Tertile	Age, sex, BMI, pre-dialysis	ACM: 0.4(0.24-0.68)
17 [2] 12]	Taiwan	Single				36.4		Tertile 2: 6.9-8mg/dl;	∃ (Gender-specific) ⊒	status, smoking, present	CVM: 0.4(0.2-0.81)
19		Ū						Tertile 3: ≥8.1mg/dl.	Tertile 2 vs. Tertile 🛬	medications, comorbidities of	ACM: 1.06(0.7-1.58)
20								FM: Tertile 1: ≤6.5mg/dl;	(Gender-specific)	CVD, hyper-tension, DM,	CVM: 1.04(0.62-1.77)
21								Tertile 2: 6.6-7.6mg/dl;	Men: Per 1mg/dl in@ease	Charlson score, PD related	ACM: 0.84(0.69-0.9)
22 23								Tertile 3: ≥7.7mg/dl.		parameters, Kt/v, BUN, Scr,	CVM: 0.79(0.61-1.01)
24									크. FM: Per 1 mg/dl inœase	GPT, WBC, ALP, Alb, Hb,	
25								Men: Hyperuricemia≥7mg/dl			ACM: 0.57(0.44-0.73)
26								FM: Hyperuricemia≥6mg/dl	On	ferritin, TC, TG, Ca, P, iPTH,	CVM: 0.6(0.41-0.87)
27 .28									کې Per 1 mg/dl increase پې	transferrin saturation.	
28 29 [30] 30	China:	RCS/	51.8±14.4	232/487	Median	Median	197/109	Men: Hyperuricemia≥7mg/dl;	Per 1 mg/dl increas	Sex,, BMI, hypertension ,	ACM: 0.773(0.62-0.97)
	Mainlan	Single			29.5	29.5		FM: Hyperuricemia≥6mg/dl.	, 2024	dialysis duration, eGFR, Kt/v,	
31	d									LDL-C, iPTH.	
GhangWX2019 33	China:	RCS/	18—80	150/309	At least > 3	NR	AC 50	Group 1: SUA decliner;	Group 1 vs. Group 🕏	Gender, age, BMI, SBP, Hb,	ACM: 2.23(1.13-4.40)
33 [31] 34	Mainlan	Single						Group 2: SUA non-decliner.	uest.	Na, K, Cl, BUN, Scr, CO2, Ca,	
35	d							("SUA decliner" and "SUA non -	ס	P, Alb, TG, FBG, CRP, RRF,	
36								decliner" according to run - in and	rotected	PET type, Kt/V, DM, use of	
37 38								longitudinal changes in the follow-up)	cted	CCB, RASi , diuretic , β -	
39									ЬУ		
40									сор		
41								23	copyright		
42 43									•		
43					For peer	review only	/ - http://b	mjopen.bmj.com/site/about/gui	delines.xhtml		
45											
46											

Page 25 of 40)							BMJ Open	bmjopen-2021-052274 on		
									en-2		
1									021		
2									-052		
3 4									227,		
5									4 on	blocker.	
Rang SL 2019	China:	RCS/	52.5±14.6	5163/9405	At least > 3	Median	1226/515	Quintile1: < 6.06mg/dl;	Quintile5 vs. Quintile8 Quintile5 vs. Quintile8 Quintile4 vs. Quintile3	Age, sex, BMI, DM, CVD,	ACM: 1.482(1.187-1.849)
7 [32] 8	Mainlan	98centers				29.4		Quintile2: 6.06-6.67mg/dl;	Oct	RRF, Hb, Alb, K, Na, P, Ca,	CVM: 1.144(0.786-1.665)
9	d							Quintile3: 6.68–7.27mg/dl	요uintile4 vs. Quintil @ 3	iPTH, Scr, FPG.	ACM: 1.335(1.073-1.662)
10								Quintile4: 7.28-8.03mg/dl;	r 20:		CVM: 1.146(0.796-1.648)
11								Quintile5: ≥8.04 mg/dl.	Quintile2 vs. Quintile3		ACM: 1.160(0.938-1.434)
12								Hyperuricemia≥7.28mg/dl.	O S		CVM: 1.311(0.932-1.843)
13 14								· · · · · · · · · · · · · · · · · · ·	⊇ Quintile1 vs. Quintile3		ACM: 1.162(0.945-1.427)
15									Quintile1 vs. Quinti		CVM: 1.166(0.820-1.657)
16 Qiy SF 2020	China:	RCS/	44—65	63/140	Median	Median	AC 48	Tertile 1: < 387µmol/l;	Tertile 3 vs. Tertile	Gender, age, DM ,	ACM: 2.308(1.062-5.017)
[38]	Mainlan	Single			31.9	31.9		Tertile 2: 387-519µmol/l;	ਤ Tertile 2 vs. Tertile <mark>ਕ</mark> ੂ	hypertension, CVD, BMI, K,	ACM: 0.959(0.423-2.174)
19	d							Tertile 3: ≥519µmol/l.	Per 20µmo/l increase	ESA, RRF , use of diuretic	ACM: 1.003(1.00-1.005)
20									omjop	and LUA.	
21 Gogelho I 2020	Portugal	RCS/	60.2±14.6	407/682	At least > 3	31.4±25.6	NR	Group 1: below median;	Group 2 vs. Group 🖞	Age, comorbidities, DM and	ACM: 0.997(0.74-1.35)
[24]		Single						Group 2: above median.	ı.bm	baseline RRF.	
24 Naoki S 2020 25 [35]	Japan	RCS/mult	63±14	2916/4742	Median	Deadline :	AC 379	Group 1: < 5.0mg dl;	Group 1 vs. Group 8	Age, gender, BMI , UV ,	ACM: 1.80(1.13-2.86)
25 [35]		-icenter			28	the end of		Group 2: 5.0- < 5.5mg dl;	Group 2 vs. Group 8	dialysis duration, under-lying	ACM: 1.43(0.88-2.32)
27						2012		Group 3: 5.5- < 6.0mg dl;	Group 3 vs. Group ∯	disease, comorbid disease,	ACM: 1.22(0.75-1.98)
28								Group 4: 6.0- < 6.5mg dl;	Group 4 vs. Group	medication and laboratory	ACM: 1.37(0.86-2.20)
29 30								Group 5: 6.5- < 7.0mg dl;	Group 5 vs. Group 6	data.	ACM: 1.54(0.75-2.49)
31								Group 6: 7.0- < 7.5mg dl;	Group 7 vs. Group		ACM: 1.58(0.94-2.63)
32								Group 7: 7.5- < 8.0mg dl;	Group 8 vs. Group		ACM: 1.88(1.06-3.35)
33 34								Group 8: 8.0- < 8.5mg dl;	ထ Group 9 vs. Group နို		ACM: 1.93(1.15-3.24)
34 35								Group 9: ≥8.5mg dl;	ې Per 10µmo/l increase		ACM: 1.00(0.99-1.02)
36											CVM: 1.00(0.98-1.03)
37 Xiao X 2020 38	China:	RCS/	47.0±15.2	1269/2124	At least > 3	Median	554/275	Tertile 1: < 384µmol/l;	Tertile 3 vs. Tertile &	Age, sex, DM,CVD,BMI,	ACM: 0.924(0.547-1.727)
38 39									by		
40									cop		
41								24	by copyright.		
42								24	-		
43 44					For peer	review only	/ - http://br	mjopen.bmj.com/site/about/gui	delines.xhtml		
45											
46											

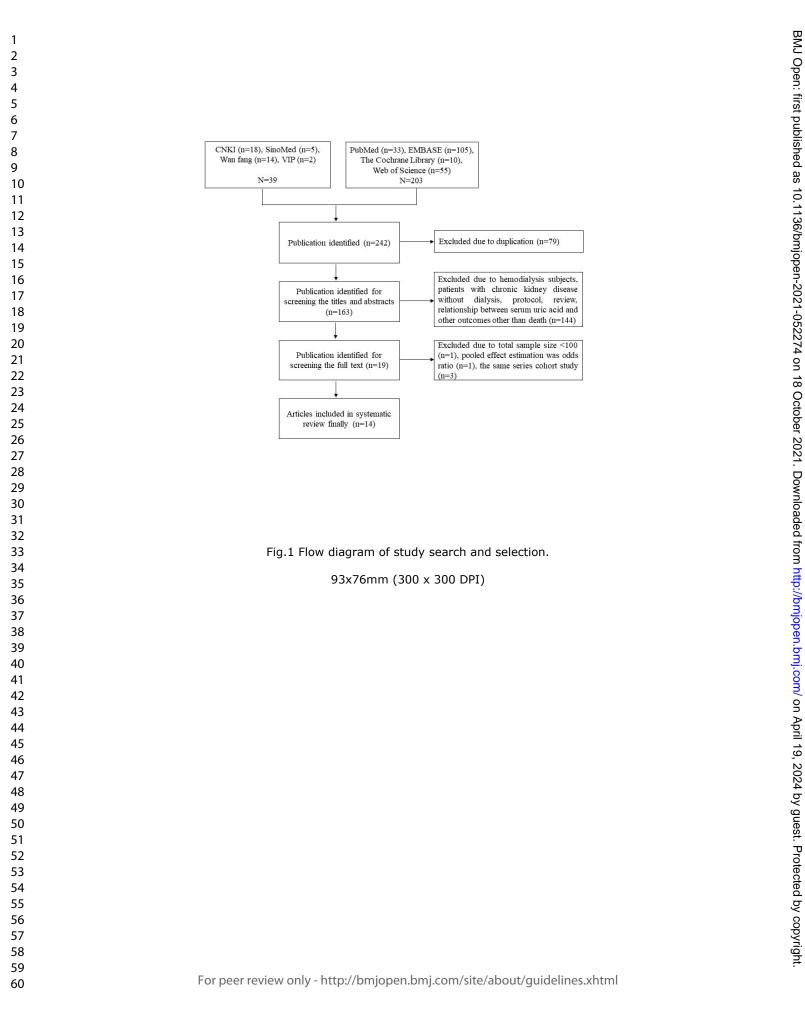
42 43

44 45 46

				BMJ Open	bmjopen		Page 26 of
1 2 3					bmjopen-2021-05227		
4 [g 2]		Mainlan Single	42	Tertile 2: 384-460µmol/l;	4 Tertile 1 vs. Tertile ع	eGFR, DBP, use of diuretic	ACM: 0.993(0.598-1.651)
6		d		Tertile 3: > 460µmol/l.	Per 1µmol/l increas	and LUA, Hb, Alb, TC.	ACM: 0.999(0.997-1.001)
7	509	Abbreviations: AC: All-cause; AC	: M: All-cause mortality; CV: Cardiovascular; CVN	И: Cardiovascular mortality; CVD: (Cardiovascular disease; 🕀: Ha	zard ratio; CI: Confidence i	nterval; RCS:
8 9	510		Prospective cohort study; vs.: versus; Alb: Serum		ŏ		
10	511		otein; BMI: Body mass index; Hb:Hemoglobin; SU		N		
11	512		Ca: Serum calcium; K: Serum potassium; Cl: Serum			-	
12 13	513		lipoprotein cholesterol; Hs-CRP: High-sensitivity		e e e e e e e e e e e e e e e e e e e		
14	514		Time average-uric acid; SBP: Systolic blood pressu				
15	515		intact parathyroid hormone; PD: Peritoneal dial		d d		
16	516	-	ted glomerular filtration rate; FBG: Fasting blood g				
17 18	517		Extracellular water/Total body water; ASMI: Appel		· _		
19	517		Attaccilular watch rotar body watch, Asivil, Appel				
20					//bmjopen.bmj.com/ on April 19, 2024 by gu		
21					lope		
22 23					ň.b		
24					<u></u> .		
25							
26					On On		
27 28					Apri		
29					ii 19		
30					., 20		
31					241		
32 33					by g		
34					luest.		
35					ר. ד		
36					rote		
37 38					ctec		
39					d by		
40					င်ဝ		
41				25	Protected by copyright.		
42 43				25			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 40				BMJ C	Open		bmjopen:		
1 2 3 4							bmjopen-2021-052274		
5 518 Table 2a Subgro			udies for the as d (categorical va	ssociation of serur	n uric acid with	all-cause n	<u> </u>	cid (continuous var	iabla)
7	No. of study	Sample size	HR (95%CI)	Heterogeneity(I ²)	No. of study	Sample size	HR (95% B)	Heterogeneity (I ²)	Meta-regression (<i>P</i> value)
8 9	NO. OF Study	Sample Size	116 (35%CI)	heterogeneity(i)	NO. OF Study	Sample Size	0 0 0	neterogeneity (i)	weta-regression (r value)
10							r 202		
11 12 Study design							1. D		P=0.007
13 Prospective cohort study	1	1287	1.79(1.17-2.75)	35.8%	1	1287	1.16(1.03 4.32)	25.5%	
14 Retrospective cohort study	5	4570	1.09(0.70-1.70)	83.1%	8	11541	0.94(0.88a.02)	83.7%	
¹⁵ Study location 16							led f		
17 China—mainland	4	4683	1.57(1.26-1.96)	21.1%	7	7594	1.04(0.979.11)	73.0%	P=0.000
18 China—Taiwan	1	492	0.40(0.24-0.68)	-	1	492	0.70(0.48 .03)	85.9%	
19 Other	1 (Portugal)	682	1.00(0.74-1.35)	-	1 (Japan)	4742	1.00(0.89	-	P=0.002
20 21 Publication years							mjo		
22 2011—2016	2	3480	1.53(1.08-2.18)	48.9%	2	3480	1.12(1.019.24)	37.9%	P=0.017
23 2017-2021	4	2377	1.07(0.59-1.93)	87.3%	7	9348	0.92(0.84 .01)	85.5%	
24 25 No. of center							.con		P=0.539
26 Single center	5	3664	1.27(0.82-1.98)	83.7%	7	5893	0.97(0.89垚.06)	83.3%	
27 Multicenter	1	2193	1.21(0.85-1.73)	-	2	6935	1.03(0.96.)	0%	
28 29 Adjusted for sex							rii 1		P=0.000
30 Yes	4	4112	1.27(0.72-2.26)	84.9%	8	11765	0.97(0.90 <u>1</u> .04)	76.7%	
31 No	2	1745	1.25(0.80-1.95)	76.7%	1	1063	1.13(1.06월.20)	_	
³² Adjusted for diabetes mellitus							by g		P=0.019
34 ^{Yes}	6	5857	1.26(0.88-1.81)	80.5%	8	12341	1.00(0.94 2.07)	80.0%	
35 No	0	0	-	-	1	487	0.77(0.62-0.97)	-	
³⁶ Adjusted for serum albumin							rote		P=0.108
37 38 Yes	4	5035	1.22(0.76-1.96)	84.7%	7	12201	0.99(0.90 ⁹ .09)	81.0%	
39							by		
40							by copyright.		
41 42					26		/righ		
43		E	or peer roviow or	nly - http://bmjopen.		ut/auidalinas	-		
44		Г	or peer review of	ny - mup.//bmjopen.	bing.com/site/ab0	ad guidennes			
45									


					DIVI	J Open		opei		Page 28 of 40
1								bmjopen-2021-052274		
1 2								21-0		
3								5227		
4 5	No	2	822	1.40(0.62-3.14)	74.4%	2	627	0.00/0.709.17)	81.6%	
6	519	Abbreviations: HR: Hazard ratio; CI:	Confidence inte	erval; l ² : l-square; No.: N	umber.			18		
7 8								8 October 2021.		
8 9								ober		
10								202		
11 12								1. D		
13								nwo		
14								load		
15 16								ed fr		
17								Om		
18 19								http:		
20								://bm		
21								njope		
22 23								Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.		
23								<u></u> .		
25								om/		
26 27								on /		
28								April		
29								19,		
30 31								202		
32								4 by		
33								gue		
34 35										
36								Prote		
37								Protected		
38 39										
40								сор		
41						27		by copyright.		
42 43				For poor we down and	http://burston		(autolalia)	-		
44				For peer review only	- nttp://bmJope	n.bmj.com/site/about	guideline	es.xntmi		
45 46										

40				BMJ Open		bmjopen-2021-05227		
Table 2b Subgroup anal	yses of cohor		ne association of d (categorical varia				(continuous varia	blo)
	No. of study	Sample size	HR (95%CI)	Heterogeneity(I ²)	No. of study	Sample Size	HR (95%CI)	Heterogeneity (I ²
Study design								
Prospective cohort study	1	1287	2.63(1.62-4.27)	0.0%	1	. Dog 12851 7420 ded f	1.34(1.16-1.55)	0.0%
Retrospective cohort study	3	3748	1.00(0.44-2.31)	82.5%	3	デ 742日	0.90(0.76-1.06)	70.2%
Study location						ded		
, China—mainland	3	4543	1.93(1.39-2.68)	13.9%	2	3480 3480	1.22(1.05-1.43)	44.6%
China—Taiwan	1	492	0.40(0.20-0.80)	-	1		0.71(0.55-0.93)	29.5%
Other					1 (Japan)	49 <mark>2</mark> 4748	1.00(0.91-1.10)	-
Publication years						omjo		
2011—2016	2	3480	2.06(1.27-3.34)	38.7%	2	3489	1.22(1.05-1.43)	44.6%
2017—2021	2	1555	0.85(0.20-3.57)	90.8%	2	523	0.82(0.62-1.08)	77.7%
No. of center						j.co		
Single center	3	2842	1.49(0.66-3.38)	84.7%	2	1779	1.06(0.80-1.39)	80.3%
Multicenter	1	2193	1.35(0.74-2.46)	-	2		1.01(0.93-1.09)	0.0%
Adjusted for sex			. ,			69 35 =:	,	
Yes	3	3972	1.39(0.60-3.24)	84.4%	4		1.05(0.90-1.23)	74.0%
No	1	1063	1.73(1.03-2.91)	-	0	1947024 by gupest. Protecied 8770024 by gupest. Protecied 8788888888888888888888888888888888888		_
Adjusted for diabetes mellitus			. ,			t by	_	_
Yes	4	5035	1.46(0.78-2.74)	79.7%	4	یں 871ھ	1.05(0.90-1.23)	74.0%
No	0	0	-	-	0	от 0-т		_
Adjusted for serum albumin						rote	_	
Yes	4	5035	1.46(0.78-2.74)	79.7%	4	č 87104	1.05(0.90-1.23)	74.0%
				28		d by copyright.		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

						BMJ Open			bmjopen			Page 30 of 40
									bmjopen-2021-052274			
_	No		0	0	-	-	0		2274 on	_	-	_
521	Abbreviations:	HR:	Hazard	ratio;	CI:	Confidence	interval;	l ² :	18 I-square; Octo	No.:	Number.	
0									October 2021.			
1 2									21. Dov			
3 4 5									vnloade			
5 5 7									ed from			
8 9									http://b			
) 1 2									omjoper			
2 3 4									Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest.			
5									om/ on			
7 3 9									April 19			
D 1									9, 2024			
2 3									by gue			
4 5 6									st. Pro			
7 3									Protected by			
9 0									by copy			
1 2 2						29			r copyright.			
3 4 5			Fo	or peer review o	only - http://l	omjopen.bmj.com/	'site/about/guide	lines.xhtml				
5												

Page	31 of 40	BMJ Open
1 2 3 4		BMJ Open BMJ Open Figure legends 61 Fig.1 Flow diagram of study search and selection. 80
5	522	Figure legends 9
6 7 8	523 524	Fig.1 Flow diagram of study search and selection.
9	525	Fig.2 Forest plot and pooled HR for association of SUA in categories (the highest SUA category versus the lowest) with all-gause mortality in PD patients
10 11	526 527	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; PD: Peritoneal dialysis.
12 13	528	Fig.3 Forest plot and pooled HR for association of SUA per 1mg/dl increase with all-cause mortality in PD patients.
14 15 16 17	529 530 531	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; DM: Diabetes mellitus; NDM: Non-diabetes mellitus; FM: Fagnale; PD: Peritoneal dialysis.
18	532	Supplement legends
19	533	eFigure 1. Forest plot and pooled HR for association of SUA in categories (the highest SUA category versus the lowest) with cardiovascular mortality in PD patients
20 21 22	534 535	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; PD: Peritoneal dialysis.
22	536	eFigure 2. Forest plot and pooled HR for association of SUA per 1mg/dl increase with cardiovascular mortality in PD patients.
24 25	537 538	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; DM: Diabetes mellitus; NDM: Non-diabetes mellitus; FM: Fashale; PD: Peritoneal dialysis.
26 27 20	539	eFigure 3. Funnel plot for association of serum uric acid level per 1mg/dl increase with all-cause mortality in peritoneal dialysis patients.
28 29 30 31 32 33 34 35 36 37 38 39	540 541 542	eTable 1. Methodological quality assessment of the cohort studies utilizing the Newcastle-Ottawa Scale (NOS)
39 40 41		сору
41		30 Tright
43 44 45		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
46		

1	
1	
2	
3	
4	
5	
6	
7 8	
8	
9 10	
10	
11	
12	
13 14	
14	
15	
16 17	
10	
18	
19	
20	
21	
22	
23	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
22	
36	
37	
38	
39	
40	
41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	
60	

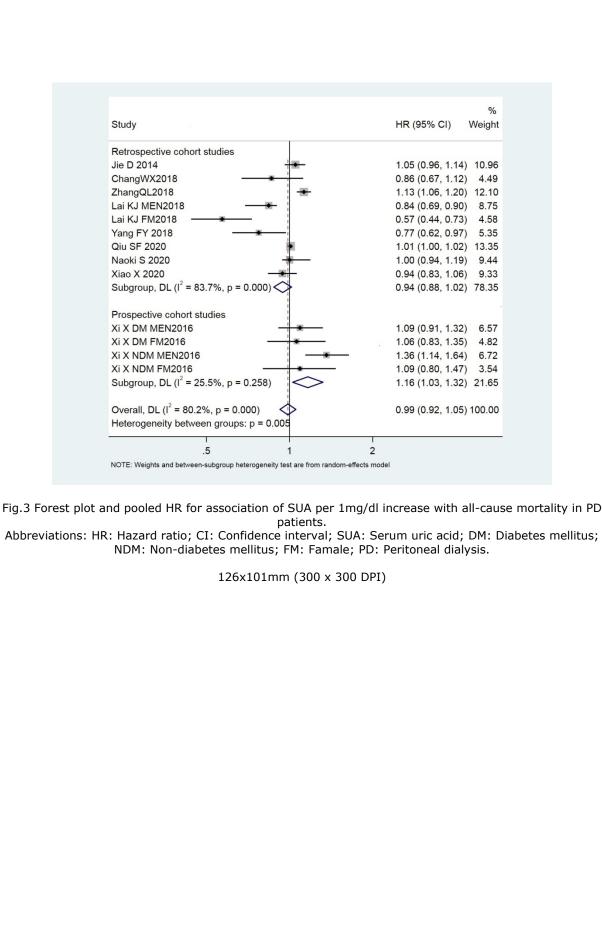

Study	HR (95% CI)	% Weigh
Study	HR (95% CI)	weight
Retrospective cohort studies		
Jie D 2014	1.21 (0.85, 1.73)	15.78
ZhangQL2018	1.57 (1.15, 2.14)	16.40
Lai KJ 2018	0.40 (0.24, 0.68)	13.43
Qiu SF 2020	• 2.31 (1.06, 5.02)	10.01
Coelho I 2020	1.00 (0.74, 1.35)	16.50
Subgroup, DL (I ² = 83.1%, p = 0.000)	1.09 (0.70, 1.70)	72.11
Prospective cohort studies		
Xi X DM2016	- 1.46 (0.92, 2.32)	14.27
Xi X NDM2016	 ▲ 2.26 (1.36, 3.75) 	13.62
Subgroup, DL (l ² = 35.8%, p = 0.212)	> 1.79 (1.17, 2.75)	27.89
Overall, DL ($l^2 = 80.5\%$, p = 0.000)	1.26 (0.88, 1.81)	100.00
Heterogeneity between groups: $p = 0.114$	1.20 (0.00, 1.01)	100.00
Heterogeneity between groups: p = 0.114		
.25 1	4	

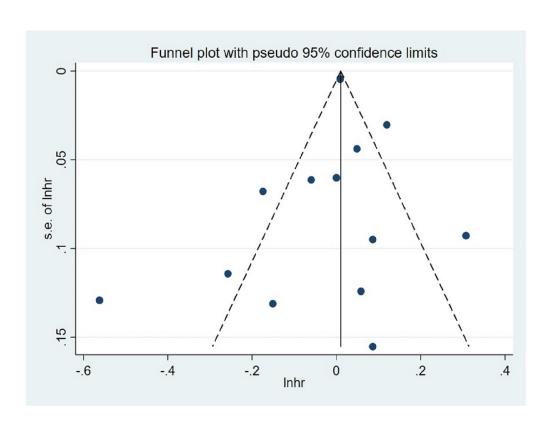
Fig.2 Forest plot and pooled HR for association of SUA in categories (the highest SUA category versus the lowest) with all-cause mortality in PD patients

Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; PD: Peritoneal dialysis.

135x101mm (300 x 300 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-052274 on 18 October 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

Study		HR (95% CI)	% Weight
Retrospective cohort studies Jie D 2014 ZhangQL2018 Lai KJ 2018 Subgroup, DL (I^2 = 82.5%, p = 0.003) Prospective cohort studies Xi X DM2016 Xi X NDM2016 Subgroup, DL (I^2 = 0.0%, p = 0.536) Overall, DL (I^2 = 79.7%, p = 0.001) Heterogeneity between groups: p = 0.050		1.35 (0.74, 2.46) 1.73 (1.03, 2.91) 0.40 (0.20, 0.81) 1.00 (0.44, 2.31) 2.26 (1.14, 4.48) 3.07 (1.54, 6.08) 2.63 (1.62, 4.27) 1.46 (0.78, 2.74)	20.49 21.53 19.21 61.22 19.40 19.37 38.78 100.00
I .125 NOTE: Weights and between-subgroup heterogeneity test are f		8	
135×10	01mm (300 x 300 DPI)		


Page 36 of 40

BMJ Open: first published as 10.1136/bmjopen-2021-052274 on 18 October 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

2	
2	
3	
4	
5 6 7 8	
6	
7	
/	
8	
9 10	
10	
11	
11	
12	
13	
14	
15	
13	
16	
17	
11 12 13 14 15 16 17 18 19	
10	
19	
20 21 22 23 24 25	
21	
22	
23	
25	
24	
25	
26	
27	
27	
28	
29	
30 31 32	
31	
27	
52	
36	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	

		%
Study	HR (95% CI)	Weight
Retrospective cohort studies		
Jie D 2014 -	1.04 (0.89, 1.20)	16.28
Lai KJ MEN2018	0.79 (0.61, 1.01)	12.68
Lai KJ FM2018	0.60 (0.41, 0.87)	8.94
Naoki S2020	1.00 (0.94, 1.13)	17.99
Subgroup, DL (l ² = 70.2%, p = 0.018)	0.90 (0.76, 1.06)	55.89
Prospective cohort studies		
Xi X DM MEN2016	1.42 (1.13, 1.79)	13.45
Xi X DM FM2016	1.12 (0.78, 1.61)	9.30
Xi X NDM MEN2016	1.41 (1.09, 1.82)	12.53
Xi X NDM FM2016	1.24 (0.85, 1.82)	8.83
Subgroup, DL (l ² = 0.0%, p = 0.683)	1.34 (1.16, 1.55)	44.11
Overall, DL (l ² = 74.0%, p = 0.000)	1.05 (0.90, 1.23)	100.00
Heterogeneity between groups: p = 0.000		

135x101mm (300 x 300 DPI)

101x76mm (300 x 300 DPI)

				BMJ Open			bmjopen-2021-052274		
eTable 1 Study ID	Methodological qu	uality assessment o		idies utilizing the	e Newcastle-Ottaw Comparability	a Scale (NO	052274 29 052274 052774 0527774 0527774 052777777777777777777777777777777777777		Total sco
	Representativeness of exposed group	Representativeness of non-exposed group	Ascertainment of exposure	Demonstration that outcome was not present at start of study	Comparability of groups on the basis of design or analysis	Assessment of outcome	OFollow up long Benough 2022 2022 2022 2022 2022 2022 2022 20	Adequacy of follow-up of groups	
Sheng F 2013[25]	\$	*	*	\$	\$	☆	ownloa	-	7
Jie D 2014[14]	*	☆	*	☆	*	☆	$\frac{1}{2}$ Downloaded from http://bmjopen.bmj.com/ on April 19,	☆	8
Xi X 2016[21]	*	*	*	*	*	☆	n http://	☆	8
Eunjin B2016[26]	☆	☆	☆	*	_	☆	bmjope	☆	7
ChangWX2018[27]	*	☆	☆	\$	*	☆	n.bmj.c	☆	8
ZhangQL2018[28]	*	☆	☆	\$	*	☆	om∕ on ⊁	-	7
Lai KJ 2018[29]	☆	☆	☆	\$	**	\$		☆	9
Yang FY 2018 [30]	\$	\$	☆	\$	\$	*	2024 by	-	7
ChangWX2019[31]	\$	\$	☆	\$	\$	☆	guest.	-	7
Xiang SL 2019[32]	\$	*	*	*	*	☆	2024 by guest. Protected by copyright.	☆	8
		For pee	r review only - htt	:p://bmjopen.bmj.c	:om/site/about/guidel	ines.xhtml	copyright.		

Page 39	9 of 40				BM	U Open		bmjopen		
1 2 3								بخ bmjopen-2021-052274 on 18 October 2021.		
4 5 6	Qiu SF 2020[33]	☆	\$	\$	☆	*	\$	4 on 18	-	7
7 8	Coelho I 2020[34]	☆	늈	\$	\$	\$	*	Octobe	-	7
9 10 11	Naoki S 2020[35]	☆	*	\$	\$	\$	*	r 2021.	☆	8
12 13 14	Xiao X 2020[22]	☆	*	☆	*	k	*	Download	\$	8
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45						☆		led from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.		

BMJ Open Page 40 of MOOSE Checklist—A Proposed Reporting Checklist for Authors, Editors, and Reporting Meta-analyses of Observational Studies

hecklist Item	Answer
eporting of background should include	18
Problem definition	Introductionနှိုsection
Hypothesis statement	Introduction
Description of study outcome(s)	Introduction
Type of exposure or intervention used	Introduction
Type of study designs used	Introduction
Study population	Introduction
eporting of search strategy should include	ade
Qualifications of searchers (eg, librarians and investigators)	Methods seation—Search strategy
Search strategy, including time period included in the synthesis and keywords	Methods segtion—Search strategy
Effort to include all available studies, including contact with authors	Methods segtion—Search strategy
Databases and registries searched	Methods segtion—Search strategy
Search software used, name and version, including special features used (eg, explosion)	Methods section—Search strategy
Use of hand searching (eg, reference lists of obtained articles)	Methods section—Search strategy
List of citations located and those excluded, including justification	Methods segtion—Search strategy
Method of addressing articles published in languages other than English	✓ Methods segtion—Search strategy
Method of handling abstracts and unpublished studies	Methods section—Search strategy
Description of any contact with authors	Methods segtion—Search strategy
eporting of methods should include	Less
Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	Methods segtion—Eligibility criteria
Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	Methods section—Studies selection and dat extraction $\frac{1}{2}$
Documentation of how data were classified and coded (eg, multiple raters, blinding, and interrater reliability)	Bethods section—Statistical analysis

Page 41 of 40 MOOSE Checklist—A Proposed Reporting Checklist for Authors, Editors, and Reviewers of Meta-analyses of Observational Studies

	227
Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	Methods section—Methodological quality assessment $\overset{\rightarrow}{\circ}$
Assessment of study quality, including blinding of quality assessors; stratification or regression on possible predictors of study results	Methods section—Methodological quality assessment
Assessment of heterogeneity	Methods section—Statistical analysis
Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	Methods sestion—Statistical analysis
Provision of appropriate tables and graphics	Results section
Reporting of results should include	3
Graphic summarizing individual study estimates and overall estimate	Results section—Fig.1 and Fig.2
Table giving descriptive information for each study included	Results section—Table 1
Results of sensitivity testing (eg, subgroup analysis)	Results section—Additional analysis
Indication of statistical uncertainty of findings	عد العندية Results sect
Reporting of discussion should include	e e
Quantitative assessment of bias (eg, publication bias)	Results sect
Justification for exclusion (eg, exclusion of non–English-language citations)	Results section—Search results
Assessment of quality of included studies	Results section—Methodological quality of included studies
Reporting of conclusions should include	lues
Consideration of alternative explanations for observed results	Conclusions
Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review	Conclusions Section ନ୍ଥି
Guidelines for future research	Conclusions
Disclosure of funding source	Article Information
Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of ob Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000 Apr 19;283(15):2008-12.	ght.

Relationship between serum uric acid, all-cause mortality and cardiovascular mortality in peritoneal dialysis patients: systematic review and meta-analysis of cohort studies

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052274.R1
Article Type:	Original research
Date Submitted by the Author:	19-Aug-2021
Complete List of Authors:	Xue, Xue; Beijing University of Chinese Medicine, Centre for Evidence- Based Chinese Medicine Lu, Chun-li; Beijing University of Chinese Medicine Jin, Xin-yan; Beijing University of Chinese Medicine Liu, Xue-han; Beijing University of Chinese Medicine Yang, Min; Hubei Provincial Hospital of Traditional Chinese Medicine Wang, Xiao-qin ; Hubei Provincial Hospital of Traditional Chinese Medicine Cheng, Hong; Hubei Provincial Hospital of Traditional Chinese Medicine Yuan, Jun; Hubei Provincial Hospital of Traditional Chinese Medicine Liu, Qiang ; Hubei Provincial Hospital of Traditional Chinese Medicine Liu, Qiang ; Hubei Provincial Hospital of Traditional Chinese Medicine Liu, Qiang ; Hubei Provincial Hospital of Traditional Chinese Medicine Liu, Qiang ; Hubei Provincial Hospital of Traditional Chinese Medicine Zheng, Ruo-xiang; Beijing University of Chinese Medicine Robinson, Nicola; London South Bank University, Liu, Jian-Ping; Beijing University of Chinese Medicine, Centre for Evidence-Based Chinese Medicine
Primary Subject Heading :	Renal medicine
Secondary Subject Heading:	Renal medicine, Evidence based practice
Keywords:	Nephrology < INTERNAL MEDICINE, End stage renal failure < NEPHROLOGY, Dialysis < NEPHROLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

	Title Page
2	Title: Relationship between serum uric acid, all-cause mortality and cardiovascular
3	mortality in peritoneal dialysis patients: systematic review and meta-analysis of cohort
4	studies
5	Authors: Xue Xue1,2, Chun-li Lu2, Xin-yan Jin2, Xue-han Liu2, MinYang3, Xiao-
6	qin Wang4, Hong Cheng4, Jun Yuan4, Qiang Liu4, Ruo-xiang Zheng2, Nicola
7	Robinson2,5, and Jian-ping Liu2*
8	1 The First Clinical College and Affiliated Hospital, Hubei University of Traditional
9	Chinese Medicine, Wuhan, Hubei, 430061, China
10	2 Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese
11	Medicine, Beijing, 100029, China
12	3 Basic Medical School and Affiliated Hospital, Hubei University of Traditional
13	Chinese Medicine, Wuhan, Hubei, 430061, China
14	4 Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese
15	Medicine, Wuhan, Hubei, 430061, China
16	5 Institute of Health and Social Care, London South Bank University, 103 Borough
17	Road, London SE1 0AA, UK
18	Key words: serum uric acid, all-cause mortality, cardiovascular mortality, peritoneal
19	dialysis, systematic review.
20	Email addresses: Xue Xue (xue025004138@163.com); Chun-li Lu (annyzhenni@
21	163.com); Xin-yan Jin (20170941260@bucm.edu.cn); Xue-han Liu (xuehan_liu@
22	foxmail.com); MinYang (1750096103@qq.com); Xiao-qin Wang (wangxiao773@

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
∠∪ ⊃1
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
58 59
60

23	hotmail.com); Hong Cheng (chenghong@hbhtcm.com); Jun Yuan (yjun_92@
24	hbtcm.edu.cn); Qiang Liu (leonjordan23@sina.com); Ruo-xiang Zheng (zhengruox@
25	foxmail.com); Nicola Robinson (nicky.robinson@lsbu.ac.uk); Jian-ping Liu
26	(Liujp@bucm.edu.cn).
27	*Corresponding
28	Jian-ping Liu*
29	Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine,
30	Beijing, 100029, China. E-mail: Liujp@bucm.edu.cn
31	Telephone number: 13718004410.
32	Word count of full text: 4105.
33	
34	Abstract
35	Objectives To analyze the relationship between serum uric acid (SUA), all-cause
36	mortality and cardiovascular (CV) mortality in peritoneal dialysis (PD) patients to
37	inform clinical practice and future research.
38	Design A systematic review of observational studies.
39	Data sources PubMed, Embase, Web of Science, the Cochrane Library, CNKI,
40	SinoMed, VIP and Wan Fang electronic databases were searched from their inception
41	to January 2021 for cohort and case-control studies reporting SUA and mortality in PD
42	patients.
43	Methods Effect estimates were presented as hazard ratios (HR) with 95% confidence

44 intervals (CI) in a meta-analysis using STATA 16.0. Data not suitable for pooling were

45 synthesized qualitatively.

Results Fourteen cohort studies with 24031 patients were included. No case-control studies were identified. For prospective cohort studies, pooled results for the highest SUA category was significantly greater than the lowest for all-cause (1 study: 1287 participants; HR 1.79; 95%CI 1.17-2.75) and CV mortality (1 study; 1287 participants; HR 2.63; 95%CI 1.62-4.27). An increase of 1mg/dl in SUA level was associated with a 16% increased risk of all-cause mortality (1 study; 1287 participants; HR 1.16; 95%CI 1.03-1.32) and 34% increased CV mortality risk (1 study; 1287 participants; HR 1.34; 95%CI 1.16-1.55). For retrospective cohort studies, the highest SUA category did not demonstrate an elevated all-cause mortality (5 studies; 4570 participants; HR 1.09; 95%CI 0.70-1.70) or CV mortality (3 studies; 3748 participants; HR 1.00; 95%CI 0.44-2.31) compared with the lowest SUA category. Additionally, there was no increase in all-cause mortality (8 studies; 11541 participants; HR 0.94; 95%CI 0.88-1.02) or CV mortality (3 studies; 7427 participants; HR 0.90; 95%CI 0.76-1.06) for every 1mg/dl increase in SUA level.

Conclusions Results of prospective and retrospective cohort studies were inconsistent.
 Consequently, prospective, multi-center, long term follow-up studies are required to
 confirm the relationship between SUA and mortality in PD patients.

63 Strengths and limitations of this study

This is the first systematic review of observational studies which has explored the
 relationship between SUA level and mortality in PD patients.

• We used critical appraisal of included studies and subgroup analysis to present the

Page 5 of 42

BMJ Open

results, and proposed future research directions based on the results.

68 • Of the included studies, eleven were conducted in China, two in other Asian countries
69 and one in Europe, this limits the generalizability of our results.

70 • Dose-response relationship could not be determined from these data.

71 Introduction

End-stage renal disease (ESRD) is one of the major diseases affecting human health, and causes enormous pressure and burden on medical care and society. One of the effective treatments for ESRD is peritoneal dialysis (PD) which is characterized by enabling stable hemodynamics, protecting residual renal function (RRF), and demonstrates good removal of middle molecular toxins, and is associated with a low risk of infection, and can be delivered at home [1]. Currently, PD is widely used globally. The total number of people receiving PD worldwide in 2013 reached approximately 220,000 [2]. Of concern is that patients with ESRD treated with dialysis still have high mortality [3]. The identification of potential risk factors has great significance if patients' prognosis and quality of life is to be improved.

⁸²Uric acid (UA) is the final product of purine nucleotide metabolism in humans. ⁸³Previous studies have demonstrated that elevated serum uric acid (SUA) is closely ⁸⁴related to the increased risk of hypertension, peripheral arterial disease, cardiovascular ⁸⁵(CV) event and chronic kidney disease (CKD) in the general population [4-7]. Higher ⁸⁶SUA levels also appear to be an independent risk factor for all-cause and CV mortality ⁸⁷in CKD subjects [8,9]. However, there have been conflicting results about the ⁸⁸relationship between SUA level and risk of death among dialysis patients. In the

89	hemodialysis population, hypouricemia significantly increased mortality [10-12].
90	Nevertheless, the role of SUA in all-cause and CV mortality in PD patients has been
91	controversial. An elevated SUA level has been shown to be an independent risk factor
92	for all-cause and CV mortality in men treated with PD [13]. Another study showed that
93	the prognostic value of SUA in all-cause and CV mortality was weak in PD patients
94	[14]. Hyperuricemia has also been found to predict lower risk of all-cause mortality in
95	PD patients with lower relative appendicular skeletal muscle [15]. In short, the effect
96	of SUA on the prognosis of PD patients appears to be inconsistent.
97	Currently, systematic reviews on the relationship between SUA, all-cause and CV
98	mortality in the PD population are lacking. We hypothesized that there may be an
99	independent correlation between elevated SUA level and mortality in participants with
100	PD. Thus, we systematically analyzed available studies to determine whether this
101	hypothesis could be confirmed.
102	Methods
103	The methods in this review were specified in advance. The review was reported
104	according to the "Meta-analysis of Observational Studies in Epidemiology guidelines"
105	(MOOSE) [16].
106	Eligibility criteria
107	Types of studies
108	Cohort and case-control studies were identified.

109 Participants

110 Participants had to receive PD for more than 3 months. There was no restriction on the

BMJ Open

type of PD, including continuous ambulatory PD, intermittent PD, automated PD, 111 continuous cyclic PD and tidal PD. 112 113 **Exposure factor** Hyperuricemia in PD population was the exposure factor in this study. Either 114 categorization according to baseline SUA level or time-average SUA concentration 115 was acceptable. Definition of hyperuricemia and the categorization for the SUA level 116 was based on the definition reported in each included article. 117 118 Outcome The primary outcome was all-cause mortality and death was determined by the hospital 119 medical record or death certificate. 120 The secondary outcome was CV mortality, defined as a "CV events": coronary 121 events (myocardial infarction, unstable angina), cardio myopathy, cardiac arrest, 122 cardiac dysrhythmia, congestive heart failure, ischemic brain injury, cerebrovascular 123 accident and peripheral vascular disease. The cause of death was determined through 124 125 medical history, hospital medical records or death certificates. 126 **Exclusion criteria** (1) Unable to obtain the following information from the original article. Hazard ratio 127 (HR) and its corresponding 95% confidence interval (CI) (or other data required in 128 order perform the calculation) for all-cause or CV mortality for 1mg/dl change in SUA 129 level, or for the highest versus lowest SUA category or the lowest versus highest 130 category; (2) Cohort studies with a total sample size of less than 100 participants; (3) 131 Studies originating from the same cohort sample, or part of a cohort sample that had 132

been previously published. Only the literature which reported the largest sample sizeand the longest follow-up could be included.

135 Search strategy

Two authors (X.X. and H.C.) searched the following Chinese and English databases from their inception to 15th January 2021. Chinese databases included China National Knowledge Infrastructure (CNKI), SinoMed, Chinese Science and Technology Journal Database (VIP), and Wan Fang Database. English databases included PubMed, EMBASE, the Cochrane Library, and Web of Science. Trial registers including Clinical Trials. gov and the World Health Organization International Clinical Trials Registry Platform were also searched. Additionally, related reviews, conference papers, references lists and gray literatures were also searched manually. No language or publication type was imposed, published abstracts were also considered. If the retrieved literature had missing information, it was necessary to contact the author via email to obtain the data to ensure that literature could be included. Taking "PubMed" as an example, the searching strategy was as follows: ("Uric Acid" [Mesh] OR "Uric Acid" [Title/Abstract] OR "serum uric acid"[Title/Abstract]) AND ("Mortality"[Mesh] OR "Mortality"[Title/Abstract]) AND ("Peritoneal Dialysis" [Mesh] OR "Peritoneal Dialysis"[Title/Abstract] OR "PD"[Title/Abstract] OR "continuous ambulatory PD" [Title/Abstract] OR "CAPD" [Title/Abstract] OR "intermittent PD" [Title/Abstract] OR "IPD" [Title/Abstract] OR "automated PD" [Title/Abstract] OR "APD" [Title/Abstract] OR "continuous cyclic PD"[Title/Abstract] OR "CCPD"[Title/Abstract] OR "tidal PD"[Title/Abstract] OR "TPD"[Title/Abstract]). The searching strategies for other

Page 9 of 42

BMJ Open

databases are presented in eTable1 in the Supplement.

156 Studies selection and data extraction

The titles and the abstracts were initially screened, then the full-text versions were checked according to the inclusion and exclusion criteria. Two authors (X.X. and O.L.) examined the full text to identify the eligible studies independently. Two authors (X.X. and H.C.) extracted data independently and entered information into a data extraction sheet. Disagreements on study selection and data extraction were resolved by consulting corresponding author JP Liu. The following information was extracted from each included study: first author, publication year, age, gender, study design, dialysis duration, sample size, study location, center, length of follow up, categories according to SUA, comparison, adjustments, and adjusted HR (95%CI).

166 Methodological quality assessment

The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to appraise the quality of observational studies [17]. NOS allocates a maximum of 9 points for quality of selection, comparability, and outcome of study population. Two authors (X.X. and X.Y.J.) appraised the quality of included studies independently. Any disagreements were resolved by discussion with corresponding author JP Liu. Overall study quality scores were defined as poor (0–3), fair (4–6), or good (7–9).

173 Statistical analysis

SUA was analyzed not only as a categorical variable, but also as a continuous variable
in the included studies. The statistical analysis for the overall relationship between SUA
level and death risk (all-cause and CV mortality) were based on the random effects

model and on comparisons of the highest versus the lowest category of SUA level, or
by increase of 1mg/dl. HR and 95% CI were used as effect indicators. HR and
corresponding 95% CI of each study were transformed to their natural logarithm (lnHR,
lnlCI and lnUCI), and overall HR and its 95% CI was calculated by exponentiation of
the pooled lnHR, lnlCI and lnUCI.

If data on cases, person-years, and HR and 95% CI for each category were available in the included studies, then a dose-response analysis would be performed to further explore the relationship between SUA and mortality. The potential non-linearity association was examined by modeling SUA levels using restricted cubic splines with three knots at 25, 50, and 75% of the distribution. We assigned the median or middle point of the upper and lower boundaries in each category as the corresponding dose to the related HR for each study. In general, if there is a dose-response relationship between SUA and mortality, and *P* value for non-linear < 0.05, non-linear regression model should be considered. When the P value was close to the critical value of 0.05, both linear and non-linear models needed to be fitted.

The square (I^2) was applied to test the statistical heterogeneity among studies (Higgins and Thompson, 2003) [18]. When $I^2 > 85\%$, we believed that the results could not be pooled. Data not suitable for statistical pooling were synthesized qualitatively. To explore the source of heterogeneity among studies, subgroup analyses were conducted according to study design, study location, publication years, adjustment for sex, adjustment for DM and adjustment for albumin. Additionally, the meta-regression analysis was also performed to detect potential heterogeneity based on the above

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
46 47	
48 49	
49 50	
50 51	
51 52	
52 53	
55 54	
55	
56	
57	
58	
50 59	

60

variables when about 10 studies were included. Sensitivity analysis was performed
removing one study at a time to explore the robustness of results if data were available.
The possibility of publication bias was detected by funnel plots and Egger's test if there
were about 10 studies. STATA16.0 software (StataCorp, College Station, Texas, 77845
USA) was used for data analysis.

204 Patient and Public Involvement statement

Patients or the public WERE NOT involved in the design, or conduct, or reporting, ordissemination plans of our study.

207 **Results**

208 Search results

Two hundred and forty-two relevant citations were retrieved. After scanning the full 209 210 texts, five articles were excluded. Cohort samples from the same study were excluded [13,15,19], and only the studies with the largest sample size and the longest follow-up 211 time were included [20,21]. In addition, a published abstract was excluded, because the 212 total sample size of the entire cohort was only 60 participants [22]. Another study was 213 excluded due to its pooled effect estimation which was reported as an odds ratio (OR) 214 with 95% CI [23]. Finally, fourteen studies were eligible for this review. Details of the 215 search and selection process are illustrated in Fig.1. 216 **Characteristic of included trials** 217

A total of fourteen studies consisting of 24031 participants were included [14,20,21,24-

219 34]. All were cohort studies, including prospective and retrospective studies. The main

characteristics of included studies are given in Table 1 and Table2.

221	Methodological quality of included studies
221	methodological quality of methodol studies

The overall quality of included studies was good with a mean NOS score of 7.57 (range 7–9). All studies scored greater than or equal to 7 (eTable2 in the Supplement). In terms of "comparability", the most important confounding factors that required adjustment were: estimated glomerular filtration rate (eGFR) or serum creatinine (Scr) or urinary volume (UV) or residual renal function (RRF). The above indicators can reflect the patient's current residual renal function status. In addition, according to the literature and clinical observations, other confounding factors needing adjustment should include gender, age, diabetes history, cardiovascular disease (CVD) history, Kt/v (urea clearance index, representing dialysis adequacy), use of UA-lowering drugs, and serum albumin (representing nutritional status).

Primary outcome

233 Relationship between serum uric acid by categories and all-cause mortality

In order to reduce the heterogeneity of methodology, we discussed the results according
to different study designs. For prospective cohort studies, the summary HR and 95%
CI of all-cause mortality for the highest SUA category compared with the lowest
category came from one study which included 1287 patients [20]. As presented in Fig.2,
the pooled result of the highest SUA category was significantly higher than the lowest
for all-cause mortality (HR 1.79; 95% CI 1.17-2.75).

In retrospective cohort studies, five studies with 4570 patients reported HR and 95% CI of all-cause mortality for the highest versus the lowest SUA category [14,27,28,32,33]. All cause mortality (HR 1.09; 95% CI 0.70-1.70; Fig.2) was not Page 13 of 42

1

BMJ Open

2	
3	
4	
5	
-	
6	
7	
8	
9	
10	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
23 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	

60

significantly elevated compared with the lowest category of PD patients.

HR and corresponding 95% CI were reported in three retrospective cohort studies
for the lowest versus the highest SUA category [25,26,30]. Among them, the data from
one article [26] was supplemented by the corresponding author via e-mail. The pooled
HR was 1.52 (95%CI 0.79-2.89), with heterogeneity of I²=32.8%. *Relationship between serum uric acid per 1mg/dl increase and all-cause mortality*Only one prospective study with 1287 PD patients reported HR and 95% CI of allcause mortality for every 1mg/dl increase in SUA level [20]. The pooled result showed

that for every 1mg/dl increase in SUA level, risk of all-cause death increased by 16%

252 (HR 1.16; 95%CI 1.03-1.32; Fig.3).

For the retrospective cohort studies, eight studies with 11541 PD patients reported HR and 95% CI of all-cause mortality for every 1mg/dl increase in SUA level [14,21,26-29,32,34]. When the units of SUA concentration in the literature were different, 60μ mol/l was approximately equal to 1mg/dl. In short, each 1mg/dl increase in SUA level did not appear to significantly increase the risk of all-cause mortality in the PD population (HR 0.94; 95% CI 0.88-1.02; Fig.3).

259 Dose-response relationship between serum uric acid and all-cause mortality

Most of the included studies [14,20,21,25,27,29,30,32-34] only reported the number of outcomes for the entire cohort population. It was not possible to obtain the number of all-cause and CV deaths and person-years for each category. We tried our best to contact authors by email or phone in order to acquire the necessary data for the nonlinearity test, only one author responded and provided relevant data [26]. A dose-

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	
60	

response analysis was not possible.

266 Secondary outcome

267 **Relationship between serum uric acid by categories and cardiovascular mortality**

One prospective cohort study with 1287 patients reported HR and 95% CI of CV mortality for the highest SUA category compared with the lowest [20]. The pooled result of HR comparing the highest versus the lowest category was 2.63 (95% CI 1.62-

271 4.27). (Fig.4).

Three retrospective cohort studies with 3748 patients reported HR and 95% CI of CV mortality for the highest versus the lowest SUA category [14,27,28]. The highest SUA category was no more in terms of elevated CV mortality (HR 1.00; 95% CI 0.44-275 2.31) compared with the lowest category of PD patients. (Fig.4).

276 Relationship between serum uric acid per 1mg/dl increase and cardiovascular mortality

One prospective cohort study with 1287 patients reported HR and 95% CI of CV
mortality for per 1mg/dl increase in SUA level [20]. An increase of each 1mg/dl in
SUA level was associated with a 34% increased risk of CV mortality (HR 1.34; 95%CI
1.16-1.55). (Fig.5).

Three retrospective cohort studies with 7427 patients reported HR and 95% CI of CV mortality per1mg/dl increase in SUA level [14,28,34]. Meta-analysis showed that each 1 mg/dl increase in SUA level did not appear to significantly increase the risk of CV death in PD population (HR 0.90; 95% CI 0.76-1.06). (Fig.5).

- 285 Additional analysis
- 286 Subgroup analysis and meta-regression

Page 15 of 42

BMJ Open

We explored the source of heterogeneity through subgroup analysis and metaregression. Subgroup analysis only included literature which compared the highest
versus the lowest category of SUA level, or explored a change of 1mg/dl increase. The
pooled HR (95% CI) and I² of subgroup analysis of the relationship between SUA and
all-cause and CV mortality are presented in Table 3 and Table 4, respectively.
As mentioned before, whether SUA was a categorical variable or a continuous
variable, the results of the prospective cohort study differed from those of retrospective

studies. Besides, combined with the results of subgroup analysis, when SUA was estimated as a categorical variable, the association of higher SUA level with increased all-cause and CV mortality was significant in studies from mainland China, but not in other countries. SUA as a continuous variable showed that the relationship of higher CV mortality for 1 mg/dl increase in SUA level was significant in studies from mainland China, but not elsewhere. Furthermore, we analyzed the relevant studies published in the past ten years, and results of studies completed during 2011-2016 were different from the results during 2017-2021 period.

In addition, in studies of the relationship between SUA (as a continuous variable)
 and all-cause mortality, study design, study location, publication years, adjusted for sex
 and DM were heterogeneous by meta-regression (Table 3).

305 Test of Publication bias

Funnel plots and Egger's test (t=1.07, p=0.309) indicated there was no obvious publication bias of studies for the relationship between all-cause mortality and SUA level per 1mg/dl increase. The funnel plot is presented in eFigure1 in the Supplement.

Sensitivity analysis

In retrospective cohort studies, results of primary outcome showed there was no significant effect on the pooled HR values of other studies with one study removed at a time. The above indicated the results were robust.

Discussion

Principal findings and comparison with prior reviews

For PD population, previous original studies indicated inconsistent relationship between SUA and mortality. After searching systematically, we found that there were some meta-analyses investigating the correlation between SUA and mortality in different populations [35-38], however, we have not yet found a review only of PD patients. A systematic review published in 2016 showed that elevated SUA level was significantly associated with the risk of death in patients with CKD, including dialysis and non-dialysis subjects [39]. Subgroup analysis in this review demonstrated that hyperuricemia was an independent predictor for mortality in PD population, while, this predictive value was not found in the hemodialysis (HD) population. As only 1 prospective cohort study and 2 retrospective cohort studies were included in the subgroup analysis, results should be interpreted with caution.

In our study, we included a total of 14 cohort studies, of which 2 were prospective studies and 12 were retrospective studies. There was no obvious publication bias of studies according to funnel plots and Egger's test. Researchers can not control the process of data accumulation in retrospective cohort studies, but researchers can directly acquire relevant data on exposure and outcome according to the study design

Page 17 of 42

BMJ Open

in prospective studies, so the risk of bias is small. Thus, instead of pooling results of the two studies, we reported them individually. Only one prospective cohort study suggested that regardless of whether SUA was estimated as a continuous or a categorical variable, elevated SUA level was significantly associated with increased risk of all-cause and CV mortality in PD patients. Whereas, there was no significant associations between them in the retrospective studies. Below we have attempted to discuss the inconsistency of the results from the aspects of participants, exposure, comparability and outcomes.

First of all, the prospective cohort study clearly indicated that participants on PD were consecutively enrolled. It is well known that consecutive recruitment is very important to reduce selection bias. While, in some retrospective studies, the process of enrollment was not detailed. The follow-up of the participants was also a prominent issue, including the duration and adequacy of follow-up and the rate of loss to follow-up. In a prospective study, effective measures can be taken to reduce the loss to follow-up rate to avoid bias. The rate of loss to follow-up in a prospective study by Xia X et al. (2016) was only 3.5% [20], but in some retrospective cohorts, the adequacy and lost follow-up rates were not reported.

Second, hyperuricemia in the PD population was the exposure factor of this study. Both prospective and retrospective cohort studies, the definition of hyperuricemia and the categorization for the SUA level was based on the definition provided in each included article. It should be noted that in retrospective multi-center studies, the measurement methods of SUA may not be uniform across centers. This may lead to

353 measurement bias and have a slight impact on results.

Third, control of the most important and other confounding factors is very important for the comparability between the groups. The most important confounding factors included indicators that can reflect the patient's current residual renal function status. Other confounding factors need to be adjusted and should include gender, age, diabetes history, CVD history, Kt/v, use of UA-lowering drugs, and serum albumin. Most of the studies did not adjust for all potential risk factors. For example, the prospective study of Xia X et al. (2016) lacked adjustment for the confounding factor Kt/v [20]. Therefore, we can not exclude the potential impact of these uncontrolled confounding factors.

Regarding the outcomes, the definition of all-cause and cardiovascular death was clear. However, the handling of patients transferring to hemodialysis therapy, loss to follow-up, and renal transplantation was different for prospective and retrospective studies. The above information from patients was used as censoring data for survival analysis in the prospective study [20]. Whereas, in some retrospective studies, they were directly excluded from the study [32]. This may affect the results and lead to inconsistencies between the prospective and retrospective studies. Although the risk of bias in the design type of prospective study was relatively small, the interpretation of the results should still be cautious due to the limited quality and quantity of prospective study.

SUA, known for its detrimental effect, is an endothelial toxin and plays a role in
endothelial dysfunction [40]. However, as a powerful free radical scavenger in human

Page 19 of 42

BMJ Open

at the same time, SUA may be expected to offer a number of benefits within the CV system in PD patients [41,42]. Besides, the problem of protein loss and malnutrition is prominent in PD population [43]. "Malnutrition-inflammation complex syndrome (MICS)" is believed to be the main cause of the high rate of CV atherosclerotic disease and increased mortality and hospitalization in HD patients [44,45]. The underlying mechanism of MICS may also be present in PD patients. As a nutritional marker, SUA might be involved in the MICS axis. Therefore, the relationship between SUA and mortality in PD patients is a complex proposition. Taking into account the feature of SUA itself, we hypothesize that both extremely low and high SUA level may increase the risk of death. In our study, we also would like to explore the dose-response relationship between SUA level and mortality in PD population, but in the end the analysis to explore a dose-response relationship was impossible due to insufficient data. Further investigations are warranted to clarify this relationship and explore the range of SUA concentration associated with the lowest mortality in the PD patients.

Moreover, in addition to different study designs, different study location was also one of the main sources of heterogeneity among studies according to the metaregression test. Subgroup analysis results further suggested hyperuricemia was associated with a high risk of CV death in PD population only in mainland China. As a result, the relationship between SUA level and the risk of death in different regions needs to be explored and verified by prospective studies in future.

- **Implications further research**
- 396 Since the results of prospective and retrospective cohort studies were inconsistent, and

> the different regions seemed to lead to different results, prospective, multicenter, long term follow-up studies are required in future. It is important to explore the relationship between SUA level and the risk of death in different regions, as well as to determine the range of SUA concentrations which can reduce mortality and improve prognosis in the PD patients.

> Additionally, since PD patients often suffer from underlying diseases and complex conditions, adjustment is required for confounding factors to explore the relationship between these factors and prognosis. For the PD population, the following confounding factors should be considered to make the evidence more compelling. Such as: traditional independent risk factors of CV events (age, gender, total lipoprotein cholesterol, low or high density lipoprotein cholesterol, hypertension, diabetes, smoking [46]), history of CV, emotion status, residual renal function, the related parameters of PD, the parameters of nutritional status, use of diuretic and lower UA agents etc.

411 Comprehensive information should be reported in detail in the study report so that
412 readers can become more familiar with the details of the study, and can conduct
413 secondary research to avoid wasting research resources.

414 Study limitations

There were several limitations in this review. Systematic reviews of observational studies can provide a higher level of evidence, but they also have methodological limitations. For example, the included original studies may differ in their design, data collection methods, and definitions of exposure, confounding factors and outcomes.

BMJ Open

These differences may have a slight influence on the true effect size. Second, in this review, the included studies were mainly from Asian populations (only one from Europe), and the generalizability of the results was limited. Third, in spite of many important confounding factors that to be adjusted in the studies, residual and unknown confounding factors can not be entirely excluded. Fourth, the duration of follow up in all studies was less than 5 years. It is difficult to determine long-term impact of elevated SUA level on mortality. Finally, some necessary data was not obtained, and the exploration of dose-response relationship could not be conducted, but will need to be determined in future studies.

Conclusions

The results from the prospective and retrospective cohort studies were inconsistent. Only one prospective cohort study showed that elevated SUA level was significantly associated with increased risk of all-cause and CV mortality in PD patients. Nevertheless, the pooled result of retrospective cohort studies did not appear to indicate a prominent association. So it is necessary to use SUA-lowering agents with caution for PD patients in clinics. International prospective, multicenter, long term follow-up studies are needed in the future to investigate the relationship between SUA level and the risk of death, and to explore the range of SUA concentrations associated with the lowest mortality in the PD patients.

Acknowledgements Centre for Evidence-Based Chinese Medicine of Beijing
University of Chinese Medicine hosted the study and provided learning guidance to
domestic visiting scholars. And we greatly thanked Fang-fang Zhao from Xiyuan
Hospital, China Academy of Chinese Medical Sciences, for the suggestion during the
revision process.

Author Contributions Research idea and study design: XX and JPL. Protocol and Author Contributions Research idea and study design: XX and JPL.

Registration: XX, CLL, XYJ and XHL. Acquisition, analysis, or interpretation of data: XX, HC, QL, JY, and JPL. Drafting of the manuscript: XX, XHL, CLL, XYJ and RXZ. Statistical analysis: MY, XX and XQW. Critical revision of the manuscript: XQW, NR and JPL. Supervision: JPL. Funding This work was supported by the key project of the National Natural Science Foundation of China (No.81830115). Prof. Nicola Robinson (visiting professor of Beijing University of Chinese Medicine) is funded by International development and capacity enhancement of evidence-based Chinese medicine Project, Ministry of Science and Technology of the People's Republic of China (G20200001187). Competing interests None. Provenance and peer review Not commissioned; externally peer reviewed. Data sharing statement The datasets used for meta-analyses are available from the corresponding author on reasonable request. REFERENCES 1. Li PKT, Chow KM, Van de Luijtgaarden MWM, et al. Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol 2017;13:90. 2. Yin FT, Yu YS. Current status and challenges of peritoneal dialysis treatment. Chinese J Nephrol Dialysis Transplantation 2015;24:186-9. 3. Bloembergen WE, Port FK, Mauger EA, et al. A comparison of mortality between patients treated with hemodialysis and peritoneal dialysis. J Am Soc Nephrol 1995;6:177-83. 4. Johnson RJ, Kang DH, Feig D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 2003;41: 1183-90. 5. Shankar A, Klein BEK, Nieto FJ, et al. Association between serum uric acid level and peripheral arterial disease. Atherosclerosis 2008:196:749-55. 6. Gagliardi AC, Miname MH, Santos RD. Uric acid: a marker of increased cardiovascular risk. Atherosclerosis 2009;202:11-7. 7. Ryoo JH, Choi JM, Oh CM, et al. The association between uric acid and chronic kidney disease in Korean men: a 4-year follow-up study. J Korean Med Sci 2013:28:855. 8. Madero M, Sarnak MJ, Wang X, et al. Uric acid and long-term outcomes in CKD. Am J Kidney Dis 2009;53:796-803. 9. Kanbay M, Yilmaz MI, Sonmez A, et al. Serum uric acid independently predicts cardiovascular events in advanced nephropathy. Am J Nephrol 2012;36:324-31. 10. Li M, Ye ZC, Li CM, et al. Low serum uric acid levels increase the risk of all-cause death and cardiovascular death in hemodialysis patients. Ren Fail 2020;42:315-22. 11. Kim CS, Jin DC, Yun YC, et al. Relationship between serum uric acid and mortality among hemodialysis patients: retrospective analysis of Korean end-stage renal disease registry data. Kidney Res Clin Pract 2017;36:368. 12. Latif W, Karaboyas A, Tong L, et al. Uric acid levels and all-cause and cardiovascular mortality in the hemodialysis population. Clin J Am Soc Nephrol 2011;6:2470-7. 13. Xia X, He F, Wu X, et al. Relationship between serum uric acid and all-cause and cardiovascular mortality in patients treated with peritoneal dialysis. Am J Kidney Dis 2014;64:257-64. 14. Dong J, Han QF, Zhu TY, et al. The associations of uric acid, cardiovascular and all-cause mortality in peritoneal dialysis patients. PloS one 2014;9:e82342.

Page 23 of 42

1

BMJ Open

2		
3	488	15. Xiao X, Yi C, Peng Y, et al. The association between serum uric acid and appendicular skeletal muscle
4 5	489	mass and the effect of their interaction on mortality in patients on peritoneal dialysis. Kidney Blood
6	490	Pressure Res 2020;45:969-81.
7	491	16. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: A
8	492	proposal for reporting. Meta-analysis of observational studies in epidemiology (moose) group. JAMA
9 10	493	2000;283:2008-12.
11	494	17. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality
12	495	of nonrandomised studies in meta-analyses. 2000.
13 14	496	18. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ
15	497	2003;327:557-60.
16	498	19. Li W, Xiong L, Fan L, et al. Association of baseline, longitudinal serum high-sensitive C-reactive
17	499	protein and its change with mortality in peritoneal dialysis patients. <i>BMC nephrology</i> 2017;18:1-10.
18 19	500	20. Xia X, Zhao C, Peng FF, et al. Serum uric acid predicts cardiovascular mortality in male peritoneal
20	501	dialysis patients with diabetes. Nutr Metab Carbiovasc Dis 2016;26:20-6.
21	502	21. Xiao X, Ye JH, Peng Y, et al. Effect of the interaction between estimated glomerular filtration rate and
22 23	503	serum uric acid on all-cause and cardiovascular mortality in patients on peritoneal dialysis. <i>Chinese J</i>
23	504	Nephrol 2020;36:703-10.
25	505	22. Stepanova N, Burdeyna O, Snisar L. Hyperuricemia is associated with cardiovascular events and all-
26	506	cause mortality in peritoneal dialysis patients. <i>Nephrol Dial Transplant</i> 2019;34 (Supplement_1): gfz106.
27 28	507	FP587.
29	508	23. Lu AJ. The effect of serum uric acid level on the prognosis of maintenance peritoneal dialysis patients.
30	509	J Clin Res 2020;37:1589-91.
31 32	509 510	
33	510	24. Feng S, Jiang L, Shi Y, et al. Uric acid levels and all-cause mortality in peritoneal dialysis patients.
34	512	Kidney Blood Pressure Res 2013;37:181-9.
35		25. Bae E, Cho HJ, Shin N, Kim SM, Yang SH, et al. Lower serum uric acid level predicts mortality in dislusis patients. <i>Madiaira</i> 2016;05(24)
36 37	513	dialysis patients. <i>Medicine</i> 2016;95(24).
38	514	26. Chang W, Zhang W, Wang X, et al. The association of longitudinal serum uric acid and all-cause
39	515	mortality in incident peritoneal dialysis patients. <i>Blood Purif</i> 2019;47:185-92.
40	516	27. Zhang QL, Wang JN, Wang YM, et al. Effects of serum uric acid level on all-cause death and
41 42	517	cardiovascular death in patients of maintaining peritoneal dialysis. <i>Chinese J Nephrol</i> 2018;34:809-15.
43	518	28. Lai KJ, Kor CT, Hsieh YP. An inverse relationship between hyperuricemia and mortality in patients
44	519	undergoing continuous ambulatory peritoneal dialysis. J Clin Med 2018;7:416.
45	520	29. Yang FY. The Associations of Time-averaged Serum Uric Acid with Cardiovascular Mortality and All-
46 47	521	Cause Mortality in Peritoneal Dialysis Patients. Ningxia Medical University.2018.
48	522	30. Chang W, Uchida S, Qi PP, et al. Decline in serum uric acid predicts higher risk for mortality in
49	523	peritoneal dialysis patients—a propensity score analysis. <i>J Nephrol</i> 2019;1-9.
50	524	31. Xiang S, Zhang X, Xie X, et al. High serum uric acid level is a mortality risk factor in peritoneal dialysis
51 52	525	patients: a retrospective cohort study. Nutr. Metab 2019;16:1-10.
53	526	32. Qiu SF, Teng J, Shen B, et al. Correlation of serum uric acid before dialysis and all-cause mortality in
54	527	peritoneal dialysis patients. Chinese J Clin Med 2020;27:815-21.
55 56	528	33. Coelho ID, Rodriguez C, Rodriguez-Carmona A, et al. Serum Uric Acid, Mortality, and Decline of
50 57	529	Residual Kidney Function in Patients Undergoing Chronic Peritoneal Dialysis. J Am Soc Nephrol
58	530	2020;31:420.
59	531	34. Sugano N, Maruyama Y, Ohno I, et al. Effect of uric acid levels on mortality in Japanese peritoneal
60		

dialysis patients. Perit Dial Int 2020;0896860820929476. 35. Zhao G, Huang L, Song M, et al. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis 2013;231:61-8. 36. Wang R, Song Y, Yan Y, et al. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in people with suspected or definite coronary artery disease: a meta-analysis. Atherosclerosis 2016;254:193-9. 37. Tamariz L, Harzand A, Palacio A, et al. Uric acid as a predictor of all-cause mortality in heart failure: a meta-analysis. Congest Heart Fail 2011;17:25-30. 38. Li L, Yang C, Zhao Y, et al. Is hyperuricemia an independent risk factor for new-onset chronic kidney disease?: a systematic review and meta-analysis based on observational cohort studies. BMC Nephrol 2014;15:1-12. 39. Xia X, Luo Q, Li B, et al. Serum uric acid and mortality in chronic kidney disease: A systematic review and meta-analysis. Metab-Clin Exp 2016;65:1326-41. 40. Yu MA, Sánchez-Lozada LG, Johnson RJ, et al. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens 2010;28:1234-42. 41. Nieto FJ, Iribarren C, Gross MD, et al. Uric acid and serum antioxidant capacity: a reaction to atherosclerosis?. Atherosclerosis 2000;148:131-9. 42. Suzuki T. Nitrosation of uric acid induced by nitric oxide under aerobic conditions. Nitric oxide 2007;16:266-73. 43. Sánchez-Villanueva R, Bajo A, Del Peso G, et al. Higher daily peritoneal protein clearance when initiating peritoneal dialysis is independently associated with peripheral arterial disease (PAD): a possible new marker of systemic endothelial dysfunction?. Nephrol Dial Transplant 2009;24:1009-14. 44. Hur I, Choi SJ, Kalantar-Zadeh K. Serum uric acid and mortality risk among maintenance hemodialysis patients. Kidney Res Clin Pract 2017;36:302. 45. Kalantar-Zadeh K, Ikizler TA, Block G, et al. Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am J Kidney Dis 2003;42: 864-81. 46. Dessein PH, Joffe BI, Veller MG, et al. Traditional and nontraditional cardiovascular risk factors are associated with atherosclerosis in rheumatoid arthritis. J rheumatology 2005;32:435-42.

um uric acid,
based on the
study, ethics
lese

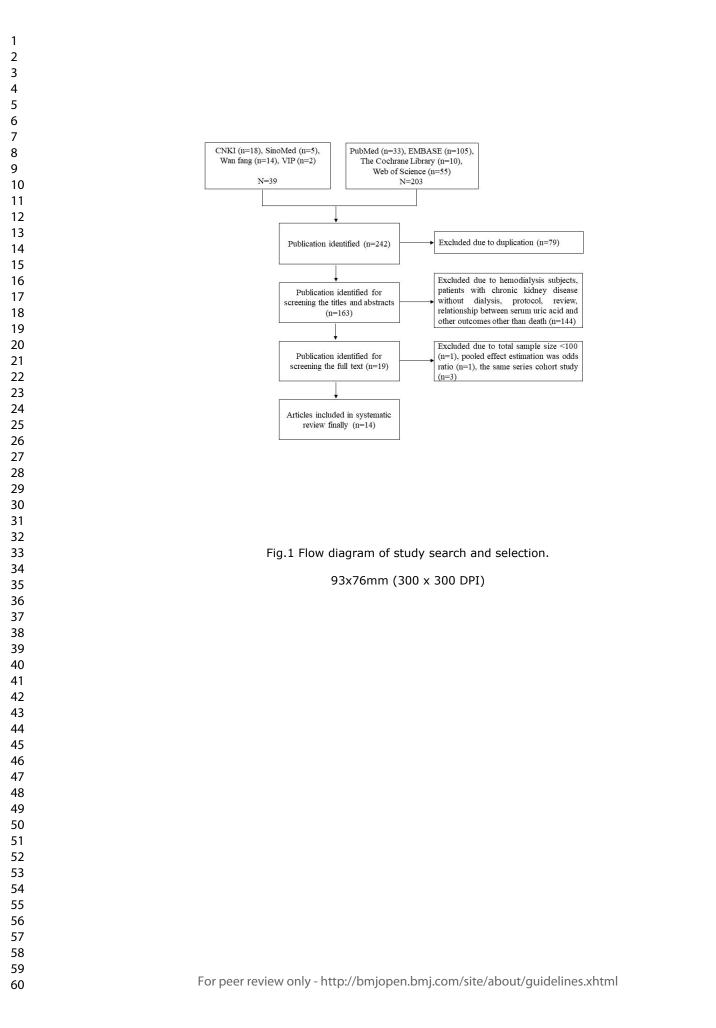
								BMJ Open	bmjopen-2021-052274		Page 26 of 42
1									-202		
2									1-0		
3									522		
4	T 11 1	C1	• .•	1 1 1 /	1. (201)	0.010	``		74 (
5 578	Table I	Characte	ristics of i	ncluded st	udies (201)	3-2018 yea	ars)		on 1		
Study ID	Study	Study	Age	Male/	Dialysis	Follow-up	Deaths	Definition of hyperuricemia	Comparison & O CC CC CC CC CC CC	Adjustments	Adjusted HR
8	location	design/	(years)	Total	duration	(months)	AC/CV	or categories according to	cto		(95%CI)
_9	(Region)	Center		Sample(n)	(months)		(n)	serum uric acid	<u> </u>		
Sheng F 2013	China:	RCS/	54.1±17.4	98/156	31.3±17.5	31.3±17.5	41/23	Group 1:≤7.0mg/dl;	Group 1 vs. Group හ	Age, Alb, DM, HN, RRF ,	ACM: 1.15(0.20-2.57)
[24]	Mainland	Single						Group 2: 7.0-10.0 mg/dl;	Group 3 vs. Group 🕰	phosphate, Log CRP	ACM: 2.96(1.29-6.80)
12								Group 3: ≥10.0 mg/dl.	Dov		
Ĵ i ∂D 2014	China:	RCS/	58.1 ± 15.5	1078/2193	At least > 3	Median	586/231	Men: Tertile 1: 2.09-5.79mg/dl;	Tertile 3 vs. Tertile 🚠	Age, RRF, Hb, Alb,	ACM: 1.21(0.85-1.73)
[14] 15	Mainland	7 centers				26.5		Tertile 2: 5.80-7.38 mg/dl;	(Gender-specific)	phosphate, LDLC, CRP,	CVM: 1.35(0.74-2.46)
15								Tertile 3: 7.39-16.7 mg/dl.	Tertile 2 vs. Tertile 🖁	histroy of CVD and DM,	ACM: 1.23(0.90-1.70)
17								FM: Tertile 1: 1.74-5.37mg/dl;	(Gender-specific)	BMI, MAP, center size,	CVM: 1.29(0.75-2.23)
18								Tertile 2: 5.38-6.65 mg/dl;	Per 1 mg/dl increas	gender adjusted only SUA	ACM: 1.05(0.96-1.14)
19								Tertile 3: 6.66-8.08 mg/dl.	tp://	as continuous variable.	CVM: 1.04(0.89-1.20)
½0 2016	China:	PCS/	47.6 ± 15.0	757/1287	At least > 3	Median	231/126	Men: Tertile 1: < 6.46mg/dl;	Tertile 3 vs. Tertile	Age, gender, BMI, history of	ACM: 1.46(0.92-2.32)
[20]	Mainland	Single				30.7		(DM)Tertile 2: 6.46-7.38 mg/dl;	(DM: Gender specie)	CVD and hypertension, Hb,	CVM: 2.26(1.14-4.48)
22								Tertile 3: ≥7.38 mg/dl.	Tertile 3 vs. Tertile	Alb, Scr, P, HDL-C; RRF,	ACM: 2.26(1.36-3.75)
23								Men: Tertile 1: <7.00mg/dl;	(NDM: Gender speetfic)	log-transformed Hs-CRP,	CVM: 3.07(1.54-6.08)
24								(NDM)Tertile2: 7.70-7.89mg/dl;	Per 1 mg/dl increase	glycated Hb, use of	ACM (DM, MEN):1.09(0.91-1.32);
25 26								Tertile 3: ≥7.89 mg/dl.	7	allopurinol and ACEI or	ACM (DM, FM):1.06(0.83-1.35);
27								FM: Tertile 1: < 5.89mg/dl;	on A	ARB.	ACM(NDM, MEN):1.36(1.14-1.64);
28								(DM)Tertile 2: 5.89-7.09 mg/dl;	April 19,		ACM (NDM, FM):1.09(0.80-1.47);
29								Tertile 3: ≥7.09 mg/dl.	19		CVM (DM, MEN):1.42(1.13-1.79);
30								FM: Tertile 1: < 6.46mg/dl;			CVM (DM, FM):1.12(0.78-1.61);
31								(NDM)Tertile2: 6.46-7.48mg/dl;	2024 by		CVM(NDM, MEN):1.41(1.09-1.82);
32								Tertile 3: ≥7.48 mg/dl.			CVM (NDM, FM):1.24(0.85-1.82).
33 Eunjin B2016	South	PCS/mult	NR	NR/651	At least > 3	Median	AC 106	Group 1: TA-UA<5.5 mg/dl;	Group 1 vs. Group 🛱	Age, sex, BMI, SBP, Ca, P,	ACM: 1.478(0.602-3.627)
34 [25] 35 ChangWX2018	Korea	-icenter				43.9		Group 2: TA-UA≥5.5 mg/dl.	st.	Alb, TC, DM, SGA.	
ChangWX2018	China:	RCS/	55.2±14.9	171/300	At least > 3	22.6±15.9	AC 44	Group1: TA-UA < 6mg/dL;	Group 3 vs. Group 🖧	Sex, age, DM, CVD history,	ACM: 4.69(1.24-17.72)
[36]	Mainland	Single						Group2: TA-UA 6–8mg/dL;	Group 1 vs. Group 🕱	RRF, BMI, SBP, Hb, Alb,	ACM: 3.24(1.25-8.39)
38								Group3: TA-UA ≥8mg/dL.	Group 1 vs. Group 🙆	BUN, SCr, Na, K, CO2, Ca,	ACM: 0.603 (0.158-2.309)
39									by		
40									сор		
41								25	by copyright.		
42								25	jht.		
43					For peer re	eview only -	http://bm	njopen.bmj.com/site/about/gu	idelines.xhtml		
44 45											
45 46											

Page 27 of	42							BMJ Open	bmjope		
1 2 3									bmjopen-2021-052274		
4 5									کے Per 1 mg/dl increas	P, LDL-C, CRP, RASi,	ACM: 0.86(0.67-1.12)
6									(Baseline-UA) a	diuretic.	
ZhangQL2018	China:	RCS/	Median 51	557/1063	At least > 6	Median	167/64	Group 1: < 420µmol/l;	Group 2 vs. Group	Age, Scr, P, Alb, BG, iPTH,	ACM: 1.572(1.155-2.141)
[2 7] 9	Mainland	Single				33		Group 2: ≥420µmol/l;	Group 2 vs. Group C	history of DM, DBP,	CVM: 1.734(1.033-2.912)
		-						Hyperuricemia≥420µmol/l	Per 1 μmol/l increase	Charlson score.	ACM: 1.002(1.001-1.004)
10 Laj KJ 2018 11	China:	RCS/	53.5±15.3	237/492	At least > 3	Median	127/74	Men: Tertile 1: ≤6.8mg/dl;	Tertile 3 vs. Tertile	Age, sex, BMI, pre-dialysis	ACM: 0.4(0.24-0.68)
[28] [12]	Taiwan	Single				36.4		Tertile 2: 6.9-8mg/dl;	(Gender-specific)	status, smoking, present	CVM: 0.4(0.2-0.81)
13								Tertile 3: ≥8.1mg/dl.	Tertile 2 vs. Tertile ₹	medications, comorbidities	ACM: 1.06(0.7-1.58)
14								FM: Tertile 1: ≤6.5mg/dl;	(Gender-specific)	of CVD, hyper-tension, DM,	CVM: 1.04(0.62-1.77)
15								Tertile 2: 6.6-7.6mg/dl;	Men: Per 1mg/dl in or	Charlson score, PD related	ACM: 0.84(0.69-0.9)
16								Tertile 3: ≥7.7mg/dl.	d fro	parameters, Kt/v, BUN, Scr,	CVM: 0.79(0.61-1.01)
17								Men: Hyperuricemia≥7mg/dl	FM [.] Per 1 mg/dl ino#ease	GPT, WBC, ALP, Alb, Hb,	ACM: 0.57(0.44-0.73)
18 19								FM: Hyperuricemia≥6mg/dl	ttp	ferritin, TC, TG, Ca, P,	CVM: 0.6(0.41-0.87)
20									br	iPTH, transferrin saturation.	
Yang FY 2018	China:	RCS/	51.8±14.4	232/487	Median	Median	197/109	Men: Hyperuricemia≥7mg/dl;	Per 1 mg/dl increase	Sex,, BMI, hypertension ,	ACM: 0.773(0.62-0.97)
[2]	Mainland	Single			29.5	29.5		FM: Hyperuricemia≥6mg/dl.	pen.	dialysis duration, eGFR,	
23									bn	Kt/v, LDL-C, iPTH.	
24 579								y; CVD: Cardiovascular disease; HR: Haz	0	CS: Retrospective cohort study	
24 579 25 580	cohort study	; vs.: versus; /	Alb: Serum album	in; DM: Diabete	s mellitus; NDM:	Non diabetes m	ellitus; HN: Hy	pertensive nephropathy; RRF: Residual	renal function; CRP: C-reac	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body	mass index; SUA:
24 579 25 580 26 581	cohort study Serum uric a	/; vs.: versus; / acid; Scr: Seru	Alb: Serum album Im creatinine; MA	in; DM: Diabete P: Mean arteria	s mellitus; NDM: Il pressure; P: Ser	Non diabetes m um phosphorus	ellitus; HN: Hy s; HDL-C: High	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP	renal function; CRP: C-reaceve prote P: High-sensitivity C-reactiveprotein;	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting	mass index; SUA: enzyme inhibitor;
24 579 25 580	cohort study Serum uric a ARB: Angiote	/; vs.: versus; / acid; Scr: Seru ensin receptor	Alb: Serum album ım creatinine; MA r blocker; FM: Fen	in; DM: Diabete: P: Mean arteria nale; NR:Not rep	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Tiu	Non diabetes m rum phosphorus me average-uric	ellitus; HN: Hy ; HDL-C: High : acid; SBP: Sys	pertensive nephropathy; RRF: Residual	renal function; CRP: C-reactive prote 안 High-sensitivity C-reactivogorotein; ; TC: Total cholesterol; SGAxabi	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo	mass index; SUA: enzyme inhibitor; od urea nitrogen;
24 579 25 580 26 581 27 582	cohort study Serum uric a ARB: Angiote Na: Serum so	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Serr	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP colic blood pressure; Ca: Serum calcium;	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA subjectiv n-angiotensinsystem inhibitar; BG: Bl	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585	cohort study Serum uric a ARB: Angiote Na: Serum so DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGAssubjectiv n-angiotensinsystem inhibitar; BG: Bl pyruvic transaminase; WBC White t	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGAssubjectiv n-angiotensinsystem inhibitar; BG: Bl pyruvic transaminase; WBC White t	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGAssubjectiv n-angiotensinsystem inhibitar; BG: Bl pyruvic transaminase; WBC White t	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32 33 3	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive prote ; TC: Total cholesterol; SGA subjectiv n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WB White t	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32 33 34	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive prote ; TC: Total cholesterol; SGA subjectiv n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WB White t	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32 33 3	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive prote ; TC: Total cholesterol; SGA subjectiv n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WB White t	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32 33 34 35 36 37 37	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive prote ; TC: Total cholesterol; SGA subjectiv n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WB White t	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32 33 34 35 36 37 38	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive prote ; TC: Total cholesterol; SGA subjectiv n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WB White t	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32 33 34 35 36 37 38 39 39	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive prote ; TC: Total cholesterol; SGA subjectiv n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WB White t	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32 33 34 35 36 37 38 39 40	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive prote ; TC: Total cholesterol; SGA subjectiv n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WB White t	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32 33 34 35 36 37 38 39 40 41 1	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: Il pressure; P: Ser ported; TA-UA: Til e; CO2: Venous ca	Non diabetes m rum phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive prote ; TC: Total cholesterol; SGA subjectiv n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WB White t	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32 33 34 35 36 37 38 39 40	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: al pressure; P: Ser ported; TA-UA: Tiu e; CO2: Venous ca FR: estimated glo	Non diabetes m rum phosphorus me average-uric arbon dioxide; L omerular filtrati	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den on rate; Kt/v:	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin Urea clearance index; GPT: Glutamic-p	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGASubjective n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WBGWhite to 2024 by guest. Protected by copyright.	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32 33 34 35 36 37 38 39 40 41 42	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: al pressure; P: Ser ported; TA-UA: Tiu e; CO2: Venous ca FR: estimated glo	Non diabetes m rum phosphorus me average-uric arbon dioxide; L omerular filtrati	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den on rate; Kt/v:	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin Urea clearance index; GPT: Glutamic-p	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGASubjective n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WBGWhite to 2024 by guest. Protected by copyright.	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
24 579 25 580 26 581 27 582 28 583 29 584 30 585 31 32 33 34 35 36 37 38 39 40 41 42 43	cohort study Serum uric a ARB: Angiote Na: Serum se DBP: Diastol	r; vs.: versus; / acid; Scr: Seru ensin receptor odium; K: Seru lic blood pres	Alb: Serum album ım creatinine; MA r blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep : Serum chlorine	s mellitus; NDM: al pressure; P: Ser ported; TA-UA: Tiu e; CO2: Venous ca FR: estimated glo	Non diabetes m rum phosphorus me average-uric arbon dioxide; L omerular filtrati	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Sys DL-C: Low den on rate; Kt/v:	pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP tolic blood pressure; Ca: Serum calcium; sity lipoprotein cholesterol; RASi: Renin Urea clearance index; GPT: Glutamic-p	renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGASubjective n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WBGWhite to 2024 by guest. Protected by copyright.	CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;

								BMJ Open	bmjopen-2021-052274		Page 28 of 42
1									-202		
2									1-0		
3									522		
4				0. 1 1 1	1. (20)	10 0000	`				
5 586	Table 2	Charact	eristics of	f included s	studies (20	19-2020 ye	ears)		on 1		
Study ID	Study	Study	Age	Male/	Dialysis	Follow-up	Deaths	Definition of hyperuricemia	Comparison 0 Coto be	Adjustments	Adjusted HR
8	location	design/	(years)	Total	duration	(months)	AC/CV	or categories according to	cto		(95%CI)
_9	(Region)	Center		Sample(n)	(months)		(n)	serum uric acid			
գի թոցWX2019	China:	RCS/	18—80	150/309	At least > 3	NR	AC 50	Group 1: SUA decliner;	Group 1 vs. Group b	Gender, age, BMI, SBP, Hb,	ACM: 2.23(1.13-4.40)
[30]	Mainland	Single						Group 2: SUA non-decliner.	12	Na, K, Cl, BUN, Scr, CO2, Ca,	
12								("SUA decliner" and "SUA non -	Dow	P, Alb, TG, FBG, CRP, RRF,	
13 14								decliner" according to run - in and	nlo	PET type, Kt/V, DM, use of	
14								longitudinal changes in the follow-up)	Downloaded	CCB, RASi , diuretic , β -	
16									Ť	blocker.	
Xpipang SL 2019	China:	RCS/	52.5±14.6	5163/9405	At least > 3	Median	1226/515	Quintile1: < 6.06mg/dl;	Quintile5 vs. Quintile3	Age, sex, BMI, DM, CVD, RRF,	ACM: 1.482(1.187-1.849)
[38]	Mainland	98centers				29.4		Quintile2: 6.06-6.67mg/dl;	http	Hb, Alb, K, Na, P, Ca, iPTH,	CVM: 1.144(0.786-1.665)
19								Quintile3: 6.68–7.27mg/dl	Quintile4 vs. Quintile3	Scr, FPG.	ACM: 1.335(1.073-1.662)
20								Quintile4: 7.28-8.03mg/dl;	Ŭ,		CVM: 1.146(0.796-1.648)
21 22								Quintile5: ≥8.04 mg/dl.	Quintile2 vs. Quinti		ACM: 1.160(0.938-1.434)
22								Hyperuricemia≥7.28mg/dl.	n.br		CVM: 1.311(0.932-1.843)
24									ਤ Quintile1 vs. Quintiਵਿ3		ACM: 1.162(0.945-1.427)
25									ÖM		CVM: 1.166(0.820-1.657)
ର୍ଶ୍ୱରି SF 2020	China:	RCS/	44—65	63/140	Median	Median	AC 48	Tertile 1: < 387µmol/l;	Tertile 3 vs. Tertile	Gender, age, DM ,	ACM: 2.308(1.062-5.017)
27 [3 2] 28	Mainland	Single			31.9	31.9		Tertile 2: 387-519µmol/l;	Tertile 2 vs. Tertile-	hypertension, CVD, BMI, K,	ACM: 0.959(0.423-2.174)
		-						Tertile 3: ≥519µmol/l.	Per 20µmo/l increase	ESA, RRF, use of diuretic and	ACM: 1.003(1.00-1.005)
29 30								· ·	Ģ	LUA.	
30 Gjoqelho I 2020	Portugal	RCS/	60.2±14.6	407/682	At least > 3	31.4±25.6	NR	Group 1: below median;	Group 2 vs. Group N	Age, comorbidities, DM and	ACM: 0.997(0.74-1.35)
[32]	-	Single						Group 2: above median.	by	baseline RRF.	
Naoki S 2020	Japan	RCS/mult-	63±14	2916/4742	Median	Deadline :	AC 379	Group 1: < 5.0mg dl;	Group 1 vs. Group	Age, gender, BMI ,UV ,dialysis	ACM: 1.80(1.13-2.86)
34 [34] 35		icenter			28	the end of		Group 2: 5.0- < 5.5mg dl;	Group 2 vs. Group 8	duration, under-lying disease,	ACM: 1.43(0.88-2.32)
						2012		Group 3: 5.5- < 6.0mg dl;	Group 3 vs. Group 8	comorbid disease, medication	ACM: 1.22(0.75-1.98)
36 27								Group 4: 6.0- < 6.5mg dl;	Group 4 vs. Group 🕅	and laboratory data.	ACM: 1.37(0.86-2.20)
37 38								Group 5: 6.5- < 7.0mg dl;	Group 5 vs. Group 6		ACM: 1.54(0.75-2.49)
39											
40									by copyright		
41									oyri		
42								27	ght.		
43					For peer	review only	/ - http://br	mjopen.bmj.com/site/about/guic	delines.xhtml		
44							-				
45											

Page	29 of 42								BMJ Open	bmjopen		
1										-2021		
2										1-05227		
3 4										274		
5									Group 6: 7.0- < 7.5mg dl;	Group 7 vs. Group 🖁		ACM: 1.58(0.94-2.63)
6									Group 7: 7.5- < 8.0mg dl;	Group 8 vs. Group 👼		ACM: 1.88(1.06-3.35)
7									Group 8: 8.0- < 8.5mg dl;	Group 9 vs. Group 🙀		ACM: 1.93(1.15-3.24)
8 9									Group 9: ≥8.5mg dl;	Per 10µmo/l increase		ACM: 1.00(0.99-1.02)
10										r 20		CVM: 1.00(0.98-1.03)
Xiao X	2020	China:	RCS/	47.0±15.2	1269/2124	At least > 3	Median	554/275	Tertile 1: < 384µmol/l;	Tertile 3 vs. Tertile	Age, sex, DM , CVD , BMI ,	ACM: 0.924(0.547-1.727)
[22]		Mainland	Single				42		Tertile 2: 384-460µmol/l;	Tertile 1 vs. Tertile	eGFR, DBP, use of diuretic	ACM: 0.993(0.598-1.651)
13									Tertile 3: > 460µmol/l.	Per 1µmol/l increas	and LUA, Hb, Alb, TC.	ACM: 0.999(0.997-1.001)
14	587	Abbreviatio	ons: AC: All-	-cause; ACM: All-c	ause mortality; C	V: Cardiovascula	r; CVM: Cardi	ovascular morta	lity; CVD: Cardiovascular disease; H	IR: Hazard ratio; CI: Confidence interval	; RCS: Retrospective cohort study; P	CS: Prospective
15 16	588					-	· ·			a: Serum sodium; K: Serum pota gum;		
17	589									sting blood glucose; CRP: C-reactive pro		
18	590 591	•			-					: intact parathyroid hormone; FPG Fast	ing plasma glucose; ESA: Erythropoi	esis stimulating
19	291	agentts; LU	A: lower ur	ic acid agent; UV:	Urinary volume;	eGFR: estimated	glomerular fil	tration rate; DBF	P: Diastolic blood pressure; TC: Tota	al cholesterol.		
20									/bn			
21										jo po		
22										jopen.		
23										.bmj.o		
24												

Ity - http://bmjopen.bmj.com/site/about/guidelines.xhtml


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

				BMJ Of	ben		bmjopen-20		Page 30 of 4
1							-2021-052274		
2 3							0522		
4							274 (
			-	serum uric acid an	d all-cause mo	ortality	on 1		
6 7	S	erum uric ac	id (categorical va	riable)			0	cid (continuous var	iable)
8	No. of study	Sample size	HR (95%CI)	Heterogeneity(I ²)	No. of study	Sample size	HR (95% 🛃)	Heterogeneity (I ²)	Meta-regression (P value)
9							er N		
10							202		
11 12 Study design							1. Da		P=0.007
13 Prospective cohort study	1	1287	1.79(1.17-2.75)	35.8%	1	1287	1.16(1.03욬.32)	25.5%	
14 Retrospective cohort study	5	4570	1.09(0.70-1.70)	83.1%	8	11541	0.94(0.88 🛱 .02)	83.7%	
15 Study location							ded		
16 China—mainland	4	4683	1.57(1.26-1.96)	21.1%	7	7594	1.04(0.97큵.11)	73.0%	P<0.001
17 China—Taiwan 18 -	1	492	0.40(0.24-0.68)	-	1	492	0.70(0.48-1.03)	85.9%	
19 Other	1 (Portugal)	682	1.00(0.74-1.35)	-	1 (Japan)	4742	1.00(0.89 <mark>3</mark> .13)	-	P=0.002
20 Publication years							//bn		
21 2011—2016	2	3480	1.53(1.08-2.18)	48.9%	2	3480	1.12(1.01 <mark>ਰ</mark> ੂ.24)	37.9%	P=0.017
22 2017—2021	4	2377	1.07(0.59-1.93)	87.3%	7	9348	0.92(0.84 <mark>9</mark> .01)	85.5%	
²³ No. of center							bmj		P=0.539
24 Single center	5	3664	1.27(0.82-1.98)	83.7%	7	5893	0.97(0.89 <mark>9</mark> .06)	83.3%	
25 26 Multicenter	1	2193	1.21(0.85-1.73)	-	2	6935	1.03(0.96-1.11)	0%	
27 Adjusted for sex							n A		P<0.001
28 Yes	4	4112	1.27(0.72-2.26)	84.9%	8	11765	0.97(0.90 <u>4</u> .04)	76.7%	
29 No	2	1745	1.25(0.80-1.95)	76.7%	1	1063	1.13(1.06 <u></u> .20)	_	
³⁰ Adjusted for diabetes mellitus							20		P=0.019
31 Yes	6	5857	1.26(0.88-1.81)	80.5%	8	12341	1.00(0.94 4.07)	80.0%	
32 No 33 No	0	0	-	-	1	487	0.77(0.62 <u>-</u> 0.97)	-	
34 Adjusted for serum albumin							ues		P=0.108
35 Yes	4	5035	1.22(0.76-1.96)	84.7%	7	12201	0.99(0.90-1.09)	81.0%	
36 No	2	822	1.40(0.62-3.14)	74.4%	2	627	0.90(0.70 2.17)	81.6%	
37 593 Abbreviations: HR: Hazard	ratio; CI: Confidenc	e interval; I2: I-sq	uare; No.: Number.				cted		
38									
39 40							by copyright		
40							руг		
42					29		ight		
43		F	or neer review or	nly - http://bmjopen.b	mi.com/site/abo	ut/auideline			
44		I	- peer review of	,	,	s., galacinic.			

						bmjopen-2021-052274		
4 Table 4 Subgroup analy		_	een serum uric a d (categorical varia		-	Serum urc acid	l (continuous varia	ble)
	No. of study	Sample size	HR (95%CI)	Heterogeneity(I ²)	No. of study	Sampl e size	HR (95%CI)	Heterogeneity (I ²
						2021		
Study design						D		
Prospective cohort study	1	1287	2.63(1.62-4.27)	0.0%	1		1.34(1.16-1.55)	0.0%
Retrospective cohort study	3	3748	1.00(0.44-2.31)	82.5%	3	7427	0.90(0.76-1.06)	70.2%
Study location						Ided		
China-mainland	3	4543	1.93(1.39-2.68)	13.9%	2	3480 492	1.22(1.05-1.43)	44.6%
China—Taiwan	1	492	0.40(0.20-0.80)	-	1		0.71(0.55-0.93)	29.5%
Other					1 (Japan)	474	1.00(0.91-1.10)	-
Publication years						//bm		
2011—2016	2	3480	2.06(1.27-3.34)	38.7%	2	34	1.22(1.05-1.43)	44.6%
2017—2021	2	1555	0.85(0.20-3.57)	90.8%	2	52 <mark>3</mark> 4	0.82(0.62-1.08)	77.7%
No. of center						.bmj		
Single center	3	2842	1.49(0.66-3.38)	84.7%	2	17 🄁	1.06(0.80-1.39)	80.3%
Multicenter	1	2193	1.35(0.74-2.46)	-	2	6935 S	1.01(0.93-1.09)	0.0%
Adjusted for sex						on ≽		
Yes	3	3972	1.39(0.60-3.24)	84.4%	4	A 87望	1.05(0.90-1.23)	74.0%
No	1	1063	1.73(1.03-2.91)	-	0	00	_	_
Adjusted for diabetes mellitus						, 20		
Yes	4	5035	1.46(0.78-2.74)	79.7%	4	22 87堆	1.05(0.90-1.23)	74.0%
No	0	0	-	-	0	202耷by_gue	_	-
Adjusted for serum albumin								
Yes	4	5035	1.46(0.78-2.74)	79.7%	4	ېم 871 <u>4</u>	1.05(0.90-1.23)	74.0%
No	0	0	-	-	0	ote		-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		BMJ Open BMJ Open 2021-052274
1		
2		
3		2277
4 5		og og
6	596	Figure legends
7	597	Oct
8 9	598	Fig.1 Flow diagram of study search and selection.
9 10	599	r 20
11	600	Fig.2 Forest plot and pooled HR for relationship between SUA by categories (the highest SUA category versus the lowest) and all-cause mortality in PD patients
12	601	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; PD: Peritoneal dialysis.
13 14	602	
15	603	Fig.3 Forest plot and pooled HR for relationship between SUA per 1mg/dl increase and all-cause mortality in PD patients.
16	604	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; DM: Diabetes mellitus; NDM: Non-diabetes mellitus; FM: Fagale; PD: Peritoneal dialysis.
17 18	605	
19	606	Fig.4 Forest plot and pooled HR for relationship between SUA by categories (the highest SUA category versus the lowest) and cardiovascular mortality in PD patients.
20	607	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; PD: Peritoneal dialysis.
21 22	608	
22	609	Fig.5 Forest plot and pooled HR for relationship between SUA per 1mg/dl increase and cardiovascular mortality in PD patients.
24	610	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; DM: Diabetes mellitus; NDM: Non-diabetes mellitus; FM: Fahale; PD: Peritoneal dialysis.
25	611	
26 27	612	Supplement legends
28	613	eFigure 1. Funnel plot for relationship between serum uric acid level per 1mg/dl increase and all-cause mortality in peritoneat dialysis patients.
29	614	
30 31	011	202
32	615	eTable 1. Searching strategies for electronic databases eTable 2. Methodological quality assessment of the cohort studies utilizing the Newcastle-Ottawa Scale (NOS) 31
33	616	
34 25	617	eTable 2. Methodological quality assessment of the cohort studies utilizing the Newcastle-Ottawa Scale (NOS)
35 36	017	
37		
38		
39 40		Y CO
41		
42		31 G
43		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
44 45		

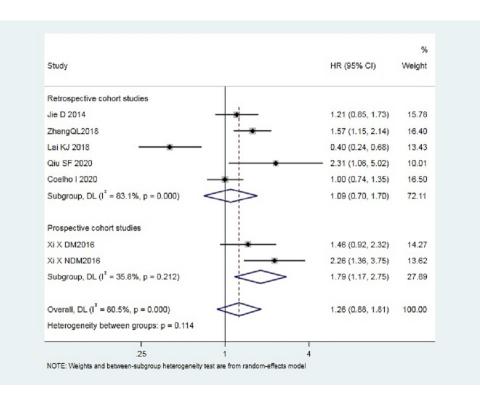


Fig.2 Forest plot and pooled HR for relationship between SUA by categories (the highest SUA category versus the lowest) and all-cause mortality in PD patients

Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; PD: Peritoneal dialysis.

211x154mm (120 x 120 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4			
5 6			
7			%
8 9	Study	HR (95% CI) Wei	
10	Retrospective cohort studies	4.05 /0.00 4.44	
11	Jie D 2014		.96 .49
12	ZhangQL2018		.10
13	Lai KJ MEN2018		.75
14	Lai KJ FM2018		.58 .35
15	Qiu SF 2020		.35
16	Naoki S 2020		.44
17	Xiao X 2020	0.94 (0.83, 1.06) 9	.33
18	Subgroup, DL (1 ² = 83.7%, p = 0.000)	0.94 (0.88, 1.02) 78	.35
19	Prospective cohort studies		
20	Xi X DM MEN2016	1.09 (0.91, 1.32) 6	.57
20 21	Xi X DM FM2016		.82
	Xi X NDM MEN2016	- 1.36 (1.14, 1.64) 6	.72
22	Xi X NDM FM2016		.54
23	Subgroup, DL (1 ² = 25.5%, p = 0.258)	1.16 (1.03, 1.32) 21	.65
24	Overall, DL (1 ² = 80.2%, p = 0.000)	0.99 (0.92, 1.05) 100	.00
25	Heterogeneity between groups: p = 0.005		
26		1	
27	.5 1	2	
28	NOTE: Weights and between-subgroup heterogeneity test are from random-effect	ts model	
29			
30 Fig. 3 Fores	plot and pooled HR for relationship between SUA	per 1mg/dl increase an	d all-cause mortality in
31	PD patients.	per img/armerease an	a an eause mortancy n
	ions: HR: Hazard ratio; CI: Confidence interval; S	UA: Serum uric acid; DI	 M: Diabetes mellitus;
33			
22	NDM: Non-diabetes mellitus; FM: Famal	e; PD: Peritoneal dialysi	S.
		-	S.
34	NDM: Non-diabetes mellitus; FM: Famal 371x270mm (47 x 4	-	S.
34 35		-	S.
34 35 36		-	s.
34 35 36 37		-	s.
34 35 36 37 38		-	s.
34 35 36 37 38 39		-	s.
34 35 36 37 38 39 40		-	s.
34 35 36 37 38 39 40 41		-	s.
34 35 36 37 38 39 40 41 42		-	s.
34 35 36 37 38 39 40 41 42 43		-	s.
34 35 36 37 38 39 40 41 42 43 44		-	s.
34 35 36 37 38 39 40 41 42 43 44		-	s.
34 35 36 37 38 39 40 41 41 42 43 44 45 46		-	s.
34 35 36 37 38 39 40 41 42 43 44		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 51 52 53 54		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57		7 DPI)	

BMJ Open: first published as 10.1136/bmjopen-2021-052274 on 18 October 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

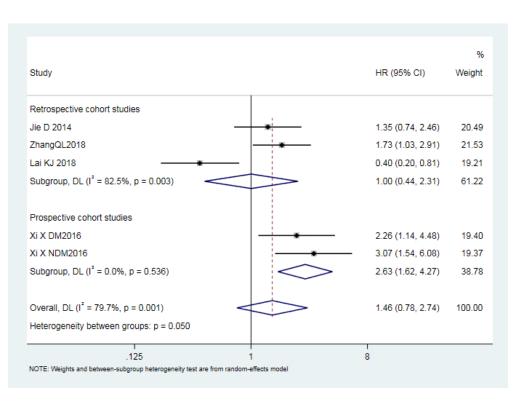
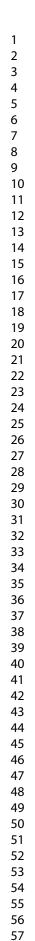
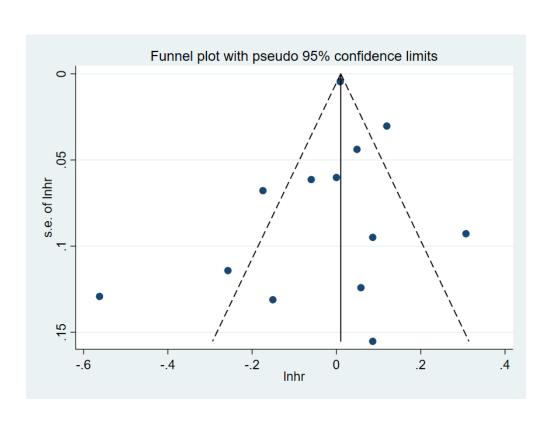


Fig.4 Forest plot and pooled HR for relationship between SUA by categories (the highest SUA category versus the lowest) and cardiovascular mortality in PD patients.

Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; PD: Peritoneal dialysis.


371x270mm (47 x 47 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

5			
6			
7 8			%
9	Study	HR (95% CI)	Weight
10	Retrospective cohort studies		
11	Jie D 2014	1.04 (0.89, 1.20)	16.28
12	Lai KJ MEN2018	0.79 (0.61, 1.01)	
13	Lai KJ FM2018	0.60 (0.41, 0.87)	8.94
14	Naoki S2020	1.00 (0.94, 1.13)	17.99
15 16	Subgroup, DL (1 ² = 70.2%, p = 0.018)	0.90 (0.76, 1.06)	55.89
17	Prospective cohort studies		
18	Xi X DM MEN2016	1.42 (1.13, 1.79)	13.45
19	Xi X DM FM2016	1.12 (0.78, 1.61)	9.30
20	XI X NDM MEN2016	1.41 (1.09, 1.82)	12.53
21	Xi X NDM FM2016	1.24 (0.85, 1.82)	8.83
22 23	Subgroup, DL (l ² = 0.0%, p = 0.683)	1.34 (1.16, 1.55)	44.11
23	Overall, DL (I ² = 74.0%, p = 0.000)	1.05 (0.90, 1.23)	100.00
25	Heterogeneity between groups: p = 0.00	✓	100.00
26			
27	.5 NOTE: Weights and between-subgroup heterogeneity	1 2 test are from random-effects model	
28			
29 30 Fia 5 Fi			
30 Fig.5 Fig		nship between SUA per 1mg/dl incre	ease and cardiovascular
	nior ations: HR: Hazard ratio: CI: Confid	rtality in PD patients. Ience interval; SUA: Serum uric acio	I. DM. Diabetes mellitus:
33		litus; FM: Famale; PD: Peritoneal dia	
34			
35	371x	270mm (47 x 47 DPI)	
36			
37			
38			
39 40			
40			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56 57			
57			
58 59			
60	For peer review only - http://ł	bmjopen.bmj.com/site/about/guideli	nes.xhtml

BMJ Open: first published as 10.1136/bmjopen-2021-052274 on 18 October 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

58 59

301x219mm (72 x 72 DPI)

BMJ Open 500 202	
strategies for electronic databases	
Searching strategies $\overline{\bigcirc}$	Results (r
 #2. Mortanty [Mesh] OR Mortanty [Inte/Abstract] #3. Peritoneal Dialysis [Mesh] OR Peritoneal Dialysis [Title/Abstract] OR PD [Title/Abstract] OR continuous ambulatory PD [Title/Abstract] OR CAPD [Title/Abstract] OR intermittent PD [Title/Abstract] OR IPD [Title/Abstract] OR automated PDD [Title/Abstract] OR APD [Title/Abstract] OR continuous cyclic PD [Title/Abstract] OR CCPD [Title/Abstract] OR tidal PD [Title/Abstract] OR TPD [Title/Abstract] #4 #1 AND #2 AND #3 	33
#3. Peritoneal Dialysis [Title/Abstract/Keywords] OR PD [Title/Abstract/Keywords] OR continuous ambulatory PD [Title/Abstract/Keywords] OR CAPD [Title/Abstract/Keywords] OR intermittent PD [Title/Abstract/Keywords] OR IPD [Title/Abstract/Keywords] OR automated PD [Title/Abstract/Keywords] OR APD [Title/Abstract/Keywords] OR continuous cyclic PD [Title/Abstract/Keywords] OR CCPD [Title/Abstract/Keywords] OR tidal PD [Title/Abstract/Keywords] OR TPD [Title/Abstract/Keywo	10
#3. (Peritoneal Dialysis OR PD OR continuous ambulatory PD OR CAPD OR intermittent PD OR IPD OR automated PD OR APD OR	105
	55
#1. niaosuan (uric acid,尿酸) OR xueniaosuan (serum uric acid,血尿酸) OP yopyright	CNKI:18
	g strategies for electronic databases Searching strategies #1. Uric Acid [Mesh] OR Uric Acid [Title/Abstract] OR serum uric acid [Title/Abstract] #2. Mortality [Mesh] OR Mortality [Title/Abstract] #2. Mortality [Mesh] OR Mortality [Title/Abstract] OR Serum uric acid [Title/Abstract] OR continuous and platory PD [Title/Abstract] OR continuous and platory PD [Title/Abstract] OR CAPD [Title/Abstract] OR intermittent PD [Title/Abstract] OR IDD [Title/Abstract] OR utomated PD [Title/Abstract] OR APD [Title/Abstract] #1. Uric Acid [Title/Abstract/Keywords] OR serum uric acid [Title/Abstract/Keywords] #3. #1. Uric Acid [Title/Abstract/Keywords] OR serum uric acid [Title/Abstract/Keywords] OR continuous ambulatory PB [Title/Abstract/Keywords] Wastract/Keywords] Wastract/Keywords] OR serum uric acid [Title/Abstract/Keywords] OR continuous ambulatory PB [Title/Abstract/Keywords] OR automated PD [Title/Abstract/Keywords] OR automated PD [Title/Abstract/Keywords] OR automated PD [Title/Abstract/Keywords] OR total PD [Title/Abstract/Keywords] OR continuous cyclic PD [Title/Abstract/Keywords] OR CCPD [Title/Abstract/Keywords] OR total PD [Title/Abstract/Keywords] Wastract/Keywords] OR automated PD OR CCPD [Title/Abstract/Keywords] #1. Uric Acid OR serum uric acid [Topic] #4. #1 AND #2 AND # 3 #1. Uric Acid OR serum uric acid [Topic] Wastract/Keywords] Wastract/Keywords] Wastract/Keywords] Wastract/Keywords] Wastract/Keywords] Wastract/Keywords] Wastract/Keywords] Wastract/Keywords] <t< td=""></t<>

3 4

24

	BMJ Open BMJ Open	I
CNKI, SinoMed, VIP, Wan Fang	#2. siwanglv (mortality,死亡率) #3. fumotouxi (peritoneal dialysis,腹膜透析) OR lianxuxingfeiwochuangfumotouxi (continuous ambulatory peritoneal dialysis,连续性非卧床 VIP:2 腹膜透析) OR zidonghuafumotouxi (automated peritoneal dialysis,自动化腹膜透析) OR zidonghuafumotouxi (automated peritoneal dialysis,自动化腹膜	
	#4. #1 AND #2 AND #3	
	http://bmjopen.bmj.com/	
	n/ on April 19, 2024 by guest.	
	y guest. Protected by copyright	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

46

bmjopen-202

Study ID		Selectio	on		Comparability		C Outcome		Total sco
	Representativeness of exposed group	Representativeness of non-exposed group	Ascertainment of exposure	Demonstration that outcome was not present at start of study	Comparability of groups on the basis of design or analysis	Assessment of outcome	CFollow up long erenough 20 21. D	Adequacy of follow-up of groups	
Sheng F 2013[25]	☆	*	☆	☆	☆	☆		-	7
Jie D 2014[14]	☆	*	*	☆	☆	☆	مبر جر جر wwnloaded from	☆	8
Xi X 2016[21]	☆	☆	*	\$	☆	☆	ded☆	☆	8
Eunjin B2016[26]	☆	☆	*	*	-	☆	fron☆	☆	7
ChangWX2018[27]	\$	☆	☆	*	☆	☆		☆	8
ZhangQL2018[28]	\$	☆	☆	*	☆	☆	p: ₩	-	7
Lai KJ 2018[29]	☆	*	☆	*	**	☆	bmjopen.	☆	9
Yang FY 2018 [30]	\$	☆	☆	☆	\$	☆	pen☆	-	7
ChangWX2019[31]	\$	☆	☆	\$	*	☆	b j☆	-	7
Xiang SL 2019[32]	☆	\$	☆	\$	☆	☆	.co☆	☆	8
Qiu SF 2020[33]	☆	☆	☆	\$	☆	☆	P op☆	-	7
Coelho I 2020[34]	☆	☆	☆	\$	*	☆		-	7
Naoki S 2020[35]	☆	☆	☆	☆	*	☆	April 19,	☆	8
Xiao X 2020[22]	\$	☆	☆	☆	\$	☆	9, <u>2</u> 2	☆	8
							124 by guest. Protected by copyright.		

 BMJ Open
 Page 42 of

 MOOSE Checklist—A Proposed Reporting Checklist for Authors, Editors, and Reporting Checklist for Authors, Editors, and Reporting Meta-analyses

 of Observational Studies

5		27
	ecklist Item	Answer g
7 Re	porting of background should include	18
8	Problem definition	Page 5, Line 7-98
10	Hypothesis statement	Page 5, Line 98-100
11	Description of study outcome(s)	Page 5, Line 99-100; Page 6, Line 119-125
12	Type of exposure or intervention used	Page 5, Line 99-100; Page 6, Line 113-117
14	Type of study designs used	Page 5, Line 108
15	Study population	Page 5, Line 98-100; Page5-6, Line 109-112
	porting of search strategy should include	adec
17 18	Qualifications of searchers (eg, librarians and investigators)	Page 7, Line 136
19	Search strategy, including time period included in the synthesis and keywords	Page 7, Line 137-139, Page 7-8, Line 146-155
20	Effort to include all available studies, including contact with authors	Page 7, Line 144-146
21	Databases and registries searched	Page 7, Line 140-143
22 23	Search software used, name and version, including special features used (eg, explosion)	Page 7-8, Line 146-155
24	Use of hand searching (eg, reference lists of obtained articles)	Page 7, Line 142-143
25	List of citations located and those excluded, including justification	Page 6-7, Line 127-134; Page 10, Line 209-216
26	Method of addressing articles published in languages other than English	Page 7, Line 143-144
27 28	Method of handling abstracts and unpublished studies	Page 7, Line 143-144
29	Description of any contact with authors	Page 7, Line
	porting of methods should include	
31 32	Description of relevance or appropriateness of studies assembled for assessing the hypothesis	Page 8, Line 157-165
33	to be tested	24
34	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	Page 8, Line 162-165
35	Documentation of how data were classified and coded (eg, multiple raters, blinding, and	Page 8, Lineឆ្ល្ម167-172
36 37	interrater reliability)	
38	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	Page 8, Line 223-231
39	Assessment of study quality, including blinding of quality assessors; stratification or regression	Page 8-10, Lặne 174-203
40	on possible predictors of study results	by
41 42	Assessment of heterogeneity	Page 9-10, မ္ဘီne 197-199
43	Description of statistical methods (eg, complete description of fixed or random effects models,	Page 8-10, ဋୁୁ e 174-203
44	justification of whether the chosen models account for predictors of study results,	≓ [
45	dose-response models, or cumulative ନନ୍ମେଥକଥାନଥାରୀନ୍ତ୍ର) intsufficient ପାର୍ବସାହରୀ ପୋର୍ଡ୍ଟାନ୍ତ୍ର ମୁହରୁ ସେଥିବା delines.	xntmi
46		

BMJ Open

Page 43 of 42	BMJ Open	136/bmjop
MOOSE Checklist——A Prope	osed Reporting Checklist for Authors, Editor	rs, and Reviewers of Meta-analyses
² of Observational Studies		021-05
4 5		5227
6 Provision of appropriate tables and gra	aphics	Page 7-8, Lige 154-155
Reporting of results should include		18
<pre>8 9 Graphic summarizing individual study e</pre>	estimates and overall estimate	Page 10, Ling 215-216 Fig.1
Table giving descriptive information fo		Page 10, Ling 219-220 Table 1,2
11 Results of sensitivity testing (eg, subgro	oup analysis)	Page 13-14, gine 285-304
12 Indication of statistical uncertainty of f		Page 15, Line 309-312
Reporting of discussion should include		
15 Quantitative assessment of bias (eg, pu	ublication bias)	Page 15, Ling 327-328
16 Justification for exclusion (eg, exclusion		Page 10, Line 209-216
Assessment of quality of included stud	ies	Page 16-17, ≵ine 339-372
19 Reporting of conclusions should include		3
²⁰ Consideration of alternative explanatio	ons for observed results 🦳 🍌	Page 20, Line 429-433
² Generalization of the conclusions (ie, a	ppropriate for the data presented and within the	Page 20, Ling 429
domain of the literature review		
24 Guidelines for future research		Page 20, Line 433-437
²⁵ Disclosure of funding source		Page 21, Line 448-452
	D, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of obs	ervational studies in epidemiology: a proposal for reporting.
27 Meta-analysis Of Observational Studies in Epidemiolo 28	gy (MOOSE) group. JAMA. 2000 Apr 19;283(15):2008-12.	on
29		Apr
30		
31		, 20
32 33		2024 by
34		
35		lues
36		7 7
37 38		rote
39		cteo
40		d by
41		8
42		guest. Protected by copyright
43 44		yht.
45	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.	xhtml
46		

Relationship between serum uric acid, all-cause mortality and cardiovascular mortality in peritoneal dialysis patients: systematic review and meta-analysis of cohort studies

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052274.R2
Article Type:	Original research
Date Submitted by the Author:	23-Sep-2021
Complete List of Authors:	Xue, Xue; Beijing University of Chinese Medicine, Centre for Evidence- Based Chinese Medicine Lu, Chun-li; Beijing University of Chinese Medicine Jin, Xin-yan; Beijing University of Chinese Medicine Liu, Xue-han; Beijing University of Chinese Medicine Yang, Min; Hubei Provincial Hospital of Traditional Chinese Medicine Wang, Xiao-qin ; Hubei Provincial Hospital of Traditional Chinese Medicine Cheng, Hong; Hubei Provincial Hospital of Traditional Chinese Medicine Yuan, Jun; Hubei Provincial Hospital of Traditional Chinese Medicine Liu, Qiang ; Hubei Provincial Hospital of Traditional Chinese Medicine Liu, Qiang ; Hubei Provincial Hospital of Traditional Chinese Medicine Zheng, Ruo-xiang; Beijing University of Chinese Medicine Robinson, Nicola; London South Bank University, Liu, Jian-Ping; Beijing University of Chinese Medicine, Centre for Evidence-Based Chinese Medicine
Primary Subject Heading :	Renal medicine
Secondary Subject Heading:	Renal medicine, Evidence based practice
Keywords:	Nephrology < INTERNAL MEDICINE, End stage renal failure < NEPHROLOGY, Dialysis < NEPHROLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

	Title Page
2	Title: Relationship between serum uric acid, all-cause mortality and cardiovascular
3	mortality in peritoneal dialysis patients: systematic review and meta-analysis of cohort
4	studies
5	Authors: Xue Xue1,2, Chun-li Lu2, Xin-yan Jin2, Xue-han Liu2, MinYang3, Xiao-
6	qin Wang4, Hong Cheng4, Jun Yuan4, Qiang Liu4, Ruo-xiang Zheng2, Nicola
7	Robinson2,5, and Jian-ping Liu2*
8	1 The First Clinical College and Affiliated Hospital, Hubei University of Traditional
9	Chinese Medicine, Wuhan, Hubei, 430061, China
10	2 Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese
11	Medicine, Beijing, 100029, China
12	3 Basic Medical School and Affiliated Hospital, Hubei University of Traditional
13	Chinese Medicine, Wuhan, Hubei, 430061, China
14	4 Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese
15	Medicine, Wuhan, Hubei, 430061, China
16	5 Institute of Health and Social Care, London South Bank University, 103 Borough
17	Road, London SE1 0AA, UK
18	Key words: serum uric acid, all-cause mortality, cardiovascular mortality, peritoneal
19	dialysis, systematic review.
20	Email addresses: Xue Xue (xue025004138@163.com); Chun-li Lu (annyzhenni@
21	163.com); Xin-yan Jin (20170941260@bucm.edu.cn); Xue-han Liu (xuehan_liu@
22	foxmail.com); MinYang (1750096103@qq.com); Xiao-qin Wang (wangxiao773@

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
16 17
18
19
~ ~
20
21
22
22 23 24
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45 46
40 47
48
49
50
51
52
53
54
55
56
57
58
59
60

23	hotmail.com); Hong Cheng (chenghong@hbhtcm.com); Jun Yuan (yjun_92@			
24	hbtcm.edu.cn); Qiang Liu (leonjordan23@sina.com); Ruo-xiang Zheng (zhengruox@			
25	foxmail.com); Nicola Robinson (nicky.robinson@lsbu.ac.uk); Jian-ping Liu			
26	(Liujp@bucm.edu.cn).			
27	*Corresponding			
28	Jian-ping Liu*			
29	Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine,			
30	Beijing, 100029, China. E-mail: Liujp@bucm.edu.cn			
31	Telephone number: 13718004410.			
32	Word count of full text: 4105.			
33				
55				
34	Abstract			
	Abstract Objectives To analyze the relationship between serum uric acid (SUA), all-cause and			
34				
34 35	Objectives To analyze the relationship between serum uric acid (SUA), all-cause and			
34 35 36	Objectives To analyze the relationship between serum uric acid (SUA), all-cause and cardiovascular (CV) mortality in peritoneal dialysis (PD) patients to inform clinical			
34 35 36 37	Objectives To analyze the relationship between serum uric acid (SUA), all-cause and cardiovascular (CV) mortality in peritoneal dialysis (PD) patients to inform clinical practice and future research.			
34 35 36 37 38	Objectives To analyze the relationship between serum uric acid (SUA), all-cause and cardiovascular (CV) mortality in peritoneal dialysis (PD) patients to inform clinical practice and future research.Design A systematic review of observational studies.			
34 35 36 37 38 39	 Objectives To analyze the relationship between serum uric acid (SUA), all-cause and cardiovascular (CV) mortality in peritoneal dialysis (PD) patients to inform clinical practice and future research. Design A systematic review of observational studies. Data sources PubMed, Embase, Web of Science, the Cochrane Library, CNKI, 			
 34 35 36 37 38 39 40 	 Objectives To analyze the relationship between serum uric acid (SUA), all-cause and cardiovascular (CV) mortality in peritoneal dialysis (PD) patients to inform clinical practice and future research. Design A systematic review of observational studies. Data sources PubMed, Embase, Web of Science, the Cochrane Library, CNKI, SinoMed, VIP and Wan Fang databases were searched from their inception to January 			
 34 35 36 37 38 39 40 41 	 Objectives To analyze the relationship between serum uric acid (SUA), all-cause and cardiovascular (CV) mortality in peritoneal dialysis (PD) patients to inform clinical practice and future research. Design A systematic review of observational studies. Data sources PubMed, Embase, Web of Science, the Cochrane Library, CNKI, SinoMed, VIP and Wan Fang databases were searched from their inception to January 2021 for cohort and case-control studies reporting SUA and mortality in PD patients. 			

44 hazard ratios (HR) with 95% confidence intervals (CI) in a meta-analysis using STATA

45	16.0. Data not suitable for pooling were synthesized qualitatively.
46	Results Fourteen cohort studies with 24031 patients were included. No case-control
47	studies were identified. For prospective cohort studies, pooled results for the highest
48	SUA category was significantly greater than the lowest for all-cause (1 study; 1287
49	participants; HR 1.79; 95%CI 1.17-2.75) and CV mortality (1 study; 1287 participants;
50	HR 2.63; 1.62-4.27). An increase of 1mg/dl in SUA level was associated with a 16%
51	increased risk of all-cause mortality (1 study; 1287 participants; HR 1.16; 1.03-1.32)
52	and 34% increased CV mortality risk (1 study; 1287 participants; HR 1.34; 1.16-1.55).
53	For retrospective cohort studies, the highest SUA category did not demonstrate an
54	elevated all-cause (5 studies; 4570 participants; HR 1.09; 0.70-1.70) or CV mortality
55	(3 studies; 3748 participants; HR 1.00; 0.44-2.31) compared with the lowest SUA
56	category. Additionally, there was no increase in all-cause (8 studies; 11541 participants;
57	HR 0.94; 0.88-1.02) or CV mortality (3 studies; 7427 participants; HR 0.90; 0.76-1.06)
58	for every 1mg/dl increase in SUA level.
59	Conclusions Results of prospective and retrospective cohort studies were inconsistent.
60	Consequently, prospective, multi-center, long-term follow-up studies are required to
61	confirm the relationship between SUA and mortality in PD patients.

Strengths and limitations of this study

• This is the first systematic review of observational studies which has explored the relationship between SUA level and mortality in PD patients.

- We used critical appraisal of included studies and subgroup analysis to present the
- results, and proposed future research directions based on the results.

Page 5 of 42

1

BMJ Open

2
3
4
4
5
6
7
8
0
9
10
11
12
12 13
13
14 15
15
16
17
10
18
16 17 18 19
20
21
22
24
24 25
26
26 27 28
27
28
29
30
31
32
33
34
34 35
22
36 37
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
22
54
55
56
57
58
59
60

67 • Of the included studies, eleven were conducted in China, two in other Asian countries
68 and one in Europe, this limits the generalizability of our results.

69 • Dose-response relationship could not be determined from these data.

70 Introduction

End-stage renal disease (ESRD) is one of the major diseases affecting human health, 71 and causes enormous pressure and burden on medical care and society. One of the 72 effective treatments for ESRD is peritoneal dialysis (PD) which is characterized by 73 enabling stable hemodynamics, protecting residual renal function (RRF), and 74 75 demonstrates good removal of middle molecular toxins, and is associated with a low risk of infection, and can be delivered at home [1]. Currently, PD is widely used 76 globally. The total number of people receiving PD worldwide in 2013 reached 77 78 approximately 220,000 [2]. Of concern is that patients with ESRD treated with dialysis still have high mortality [3]. The identification of potential risk factors has great 79 significance if patients' prognosis and quality of life is to be improved. 80

Uric acid (UA) is the final product of purine nucleotide metabolism in humans. 81 Previous studies have demonstrated that elevated serum uric acid (SUA) is closely 82 related to the increased risk of hypertension, peripheral arterial disease, cardiovascular 83 (CV) event and chronic kidney disease (CKD) in the general population [4-7]. Higher 84 SUA levels also appear to be an independent risk factor for all-cause and CV mortality 85 in CKD subjects [8,9]. However, there have been conflicting results about the 86 87 relationship between SUA level and risk of death among dialysis patients. In the hemodialysis population, hypouricemia significantly increased mortality [10-12]. 88

1 2 3 4	
4 5 6 7 8	
9 10 11 12 13	
14 15 16 17	
19 20 21 22	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	
30 31	
32 33 34 35 36 37	
37 38 39 40 41	
42 43 44 45	
46 47 48 49 50	
51 52 53 54	
55 56 57 58 59	
60	

89	Nevertheless, the role of SUA in all-cause and CV mortality in PD patients has been
90	controversial. An elevated SUA level has been shown to be an independent risk factor
91	for all-cause and CV mortality in men treated with PD [13]. Another study showed that
92	the prognostic value of SUA in all-cause and CV mortality was weak in PD patients
93	[14]. Hyperuricemia has also been found to predict lower risk of all-cause mortality in
94	PD patients with lower relative appendicular skeletal muscle [15]. In short, the effect
95	of SUA on the prognosis of PD patients appears to be inconsistent.
96	Currently, systematic reviews on the relationship between SUA, all-cause and CV
97	mortality in the PD population are lacking. We hypothesized that there may be an
98	independent correlation between elevated SUA level and mortality in participants with
99	PD. Thus, we systematically analyzed available studies to determine whether this
100	hypothesis could be confirmed.
100 101	hypothesis could be confirmed. Methods
101	Methods
101 102	Methods The methods in this review were specified in advance. The review was reported according to the "Meta-analysis of Observational Studies in Epidemiology guidelines"
101 102 103	Methods The methods in this review were specified in advance. The review was reported according to the "Meta-analysis of Observational Studies in Epidemiology guidelines"
101 102 103 104	Methods The methods in this review were specified in advance. The review was reported according to the "Meta-analysis of Observational Studies in Epidemiology guidelines" (MOOSE) [16].
101 102 103 104 105	Methods The methods in this review were specified in advance. The review was reported according to the "Meta-analysis of Observational Studies in Epidemiology guidelines" (MOOSE) [16]. Eligibility criteria
101 102 103 104 105 106	Methods The methods in this review were specified in advance. The review was reported according to the "Meta-analysis of Observational Studies in Epidemiology guidelines" (MOOSE) [16]. Eligibility criteria <i>Types of studies</i>
101 102 103 104 105 106 107	Methods The methods in this review were specified in advance. The review was reported according to the "Meta-analysis of Observational Studies in Epidemiology guidelines" (MOOSE) [16]. Eligibility criteria Types of studies Cohort and case-control studies were identified.

2		
3 4 5	111	continuous cyclic PD and tidal PD.
5 6 7 8	112	Exposure factor
9 10	113	Hyperuricemia in PD population was the exposure factor in this study. Either
11 12 13	114	categorization according to baseline SUA level or time-average SUA concentration
14 15	115	was acceptable. Definition of hyperuricemia and the categorization for the SUA level
16 17 18	116	was based on the definition reported in each included article.
19 20	117	Outcome
21 22 23	118	The primary outcome was all-cause mortality and death was determined by the hospital
24 25 26	119	medical record or death certificate.
27 28	120	The secondary outcome was CV mortality, defined as a "CV events": coronary
29 30 31	121	events (myocardial infarction, unstable angina), cardio myopathy, cardiac arrest,
32 33	122	cardiac dysrhythmia, congestive heart failure, ischemic brain injury, cerebrovascular
34 35 36	123	accident and peripheral vascular disease. The cause of death was determined through
37 38 39	124	medical history, hospital medical records or death certificates.
40 41	125	Exclusion criteria
42 43 44	126	(1) Unable to obtain the following information from the original article. Hazard ratio
45 46	127	(HR) and its corresponding 95% confidence interval (CI) (or other data required in
47 48 49	128	order perform the calculation) for all-cause or CV mortality for 1mg/dl change in SUA
50 51	129	level, or for the highest versus lowest SUA category or the lowest versus highest
52 53 54 55	130	category; (2) Cohort studies with a total sample size of less than 100 participants; (3)
55 56 57	131	Studies originating from the same cohort sample, or part of a cohort sample that had
58 59 50	132	been previously published. Only the literature which reported the largest sample size

and the longest follow-up could be included.

Search strategy

Two authors (X.X. and H.C.) searched the following Chinese and English databases from their inception to 15th January 2021. Chinese databases included China National Knowledge Infrastructure (CNKI), SinoMed, Chinese Science and Technology Journal Database (VIP), and Wan Fang Database. English databases included PubMed, EMBASE, the Cochrane Library, and Web of Science. Trial registers including Clinical Trials. gov and the World Health Organization International Clinical Trials Registry Platform were also searched. Additionally, related reviews, conference papers, references lists and gray literatures were also searched manually. No language or publication type was imposed, published abstracts were also considered. If the retrieved literature had missing information, it was necessary to contact the author via email to obtain the data to ensure that literature could be included. Taking "PubMed" as an example, the searching strategy was as follows: ("Uric Acid" [Mesh] OR "Uric Acid" [Title/Abstract] OR "serum uric acid"[Title/Abstract]) AND ("Mortality"[Mesh] OR "Mortality"[Title/Abstract]) AND ("Peritoneal Dialysis"[Mesh] OR "Peritoneal Dialysis"[Title/Abstract] OR "PD"[Title/Abstract] OR "continuous ambulatory PD" [Title/Abstract] OR "CAPD" [Title/Abstract] OR "intermittent PD" [Title/Abstract] OR "IPD" [Title/Abstract] OR "automated PD" [Title/Abstract] OR "APD" [Title/Abstract] OR "continuous cyclic PD"[Title/Abstract] OR "CCPD"[Title/Abstract] OR "tidal PD"[Title/Abstract] OR "TPD"[Title/Abstract]). The searching strategies for other databases are presented in eTable1 in the Supplement.

Page 9 of 42

Studies selection and data extraction

BMJ Open

156	The titles and the abstracts were initially screened, then the full-text versions were
157	checked according to the inclusion and exclusion criteria. Two authors (X.X. and Q.L.)
158	examined the full text to identify the eligible studies independently. Two authors (X.X.
159	and H.C.) extracted data independently and entered information into a data extraction
160	sheet. Disagreements on study selection and data extraction were resolved by
161	consulting corresponding author JP Liu. The following information was extracted from
162	each included study: first author, publication year, age, gender, study design, dialysis
163	duration, sample size, study location, center, length of follow up, categories according
164	to SUA, comparison, adjustments, and adjusted HR (95%CI).

165 Methodological quality assessment

The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to appraise the quality of observational studies [17]. NOS allocates a maximum of 9 points for quality of selection, comparability, and outcome of study population. Two authors (X.X. and X.Y.J.) appraised the quality of included studies independently. Any disagreements were resolved by discussion with corresponding author JP Liu. Overall study quality scores were defined as poor (0–3), fair (4–6), or good (7–9).

172 Statistical analysis

SUA was analyzed not only as a categorical variable, but also as a continuous variable
in the included studies. The statistical analysis for the overall relationship between SUA
level and death risk (all-cause and CV mortality) were based on the random effects
model and on comparisons of the highest versus the lowest category of SUA level, or

by increase of 1mg/dl. HR and 95% CI were used as effect indicators. HR and
corresponding 95% CI of each study were transformed to their natural logarithm (lnHR,
lnlCI and lnUCI), and overall HR and its 95% CI was calculated by exponentiation of
the pooled lnHR, lnlCI and lnUCI.

If data on cases, person-years, and HR and 95% CI for each category were available in the included studies, then a dose-response analysis would be performed to further explore the relationship between SUA and mortality. The potential non-linearity association was examined by modeling SUA levels using restricted cubic splines with three knots at 25, 50, and 75% of the distribution. We assigned the median or middle point of the upper and lower boundaries in each category as the corresponding dose to the related HR for each study. In general, if there is a dose-response relationship between SUA and mortality, and P value for non-linear < 0.05, non-linear regression model should be considered. When the P value was close to the critical value of 0.05, both linear and non-linear models needed to be fitted.

The square (1^2) was applied to test the statistical heterogeneity among studies (Higgins and Thompson, 2003) [18]. When $I^2 > 85\%$, we believed that the results could not be pooled. Data not suitable for statistical pooling were synthesized qualitatively. To explore the source of heterogeneity among studies, subgroup analyses were conducted according to study design, study location, publication years, adjustment for sex, adjustment for DM and adjustment for albumin. Additionally, the meta-regression analysis was also performed to detect potential heterogeneity based on the above variables when about 10 studies were included. Sensitivity analysis was performed

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

removing one study at a time to explore the robustness of results if data were available. 199 The possibility of publication bias was detected by funnel plots and Egger's test if there 200 were about 10 studies. STATA16.0 software (StataCorp, College Station, Texas, 77845 201 USA) was used for data analysis. 202 **Patient and Public Involvement statement** 203 Patients or the public WERE NOT involved in the design, or conduct, or reporting, or 204 dissemination plans of our study. 205 Results 206 207 **Search results** Two hundred and forty-two relevant citations were retrieved. After scanning the full 208 texts, five articles were excluded. Cohort samples from the same study were excluded 209 210 [13,15,19], and only the studies with the largest sample size and the longest follow-up time were included [20,21]. In addition, a published abstract was excluded, because the 211 total sample size of the entire cohort was only 60 participants [22]. Another study was 212 213 excluded due to its pooled effect estimation which was reported as an odds ratio (OR) with 95% CI [23]. Finally, fourteen studies were eligible for this review. Details of the 214 search and selection process are illustrated in Fig.1. 215 **Characteristic of included trials** 216

- A total of fourteen studies consisting of 24031 participants were included [14,20,21,24-
- 218 34]. All were cohort studies, including prospective and retrospective studies. The main
- characteristics of included studies are given in Table 1 and Table2.
- 220 Methodological quality of included studies

The overall quality of included studies was good with a mean NOS score of 7.57 (range 7–9). All studies scored greater than or equal to 7 (eTable2 in the Supplement). In terms of "comparability", the most important confounding factors that required adjustment were: estimated glomerular filtration rate (eGFR) or serum creatinine (Scr) or urinary volume (UV) or residual renal function (RRF). The above indicators can reflect the patient's current residual renal function status. In addition, according to the literature and clinical observations, other confounding factors needing adjustment should include gender, age, diabetes history, cardiovascular disease (CVD) history, Kt/v (urea clearance index, representing dialysis adequacy), use of UA-lowering drugs, and serum albumin (representing nutritional status).

Primary outcome

232 Relationship between serum uric acid by categories and all-cause mortality

In order to reduce the heterogeneity of methodology, we discussed the results according
to different study designs. For prospective cohort studies, the summary HR and 95%
CI of all-cause mortality for the highest SUA category compared with the lowest
category came from one study which included 1287 patients [20]. As presented in Fig.2,
the pooled result of the highest SUA category was significantly higher than the lowest
for all-cause mortality (HR 1.79; 95% CI 1.17-2.75).

In retrospective cohort studies, five studies with 4570 patients reported HR and 95% CI of all-cause mortality for the highest versus the lowest SUA category [14,27,28,32,33]. All cause mortality (HR 1.09; 95% CI 0.70-1.70; Fig.2) was not significantly elevated compared with the lowest category of PD patients. Page 13 of 42

1

BMJ Open

~			
3			
4			
5			
6			
7			
~			
8			
9			
1	~		
I	υ		
1	1		
1	- -		
I	2		
1	0 1 2 3 4 5 6		
1	7		
I	4		
1	5		
1	2		
I	o		
1	7		
1	0		
1	0		
1	9		
h	ሶ		
2	012345678901		
2	1		
n	r		
2	2		
2	3		
้า	л		
2	4		
2	5		
r	۲		
2	o		
2	7		
ว	Q		
2	0		
2	9		
2	n		
د	v		
3	1		
3	2		
د	2		
3	3		
3	л		
5	+		
3	5		
3	б		
د	U		
3	7		
z	8		
3	9		
4	ი		
4	1		
4	2		
-	_		
4	3		
4	4		
•			
4	5		
4	6		
-	_		
4	/		
4	8		
-	_		
4			
5	0		
-	1		
5	2		
	_		
-			
5	4		
5			
5	6		
5			
-			
5	8		
	9		
•	ч		

60

HR and corresponding 95% CI were reported in three retrospective cohort studies
for the lowest versus the highest SUA category [25,26,30]. Among them, the data from
one article [26] was supplemented by the corresponding author via e-mail. The pooled
HR was 1.52 (95%CI 0.79-2.89), with heterogeneity of I²=32.8%.

247 Relationship between serum uric acid per 1mg/dl increase and all-cause mortality

Only one prospective study with 1287 PD patients reported HR and 95% CI of allcause mortality for every 1mg/dl increase in SUA level [20]. The pooled result showed
that for every 1mg/dl increase in SUA level, risk of all-cause death increased by 16%
(HR 1.16; 95%CI 1.03-1.32; Fig.3).

For the retrospective cohort studies, eight studies with 11541 PD patients reported HR and 95% CI of all-cause mortality for every 1mg/dl increase in SUA level [14,21,26-29,32,34]. When the units of SUA concentration in the literature were different, 60μ mol/l was approximately equal to 1mg/dl. In short, each 1mg/dl increase in SUA level did not appear to significantly increase the risk of all-cause mortality in the PD population (HR 0.94; 95% CI 0.88-1.02; Fig.3).

258 Dose-response relationship between serum uric acid and all-cause mortality

Most of the included studies [14,20,21,25,27,29,30,32-34] only reported the number of outcomes for the entire cohort population. It was not possible to obtain the number of all-cause and CV deaths and person-years for each category. We tried our best to contact authors by email or phone in order to acquire the necessary data for the nonlinearity test, only one author responded and provided relevant data [26]. A doseresponse analysis was not possible.

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35 36	
30 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55 56	
56 57	
57 58	
50 59	
60	
00	

1 2

265 Secondary outcome

266 **Relationship between serum uric acid by categories and cardiovascular mortality**

One prospective cohort study with 1287 patients reported HR and 95% CI of CV mortality for the highest SUA category compared with the lowest [20]. The pooled result of HR comparing the highest versus the lowest category was 2.63 (95% CI 1.62-4.27). (Fig.4).

Three retrospective cohort studies with 3748 patients reported HR and 95% CI of CV mortality for the highest versus the lowest SUA category [14,27,28]. The highest SUA category was no more in terms of elevated CV mortality (HR 1.00; 95% CI 0.44-274 2.31) compared with the lowest category of PD patients. (Fig.4).

275 Relationship between serum uric acid per 1mg/dl increase and cardiovascular mortality

One prospective cohort study with 1287 patients reported HR and 95% CI of CV mortality for per 1mg/dl increase in SUA level [20]. An increase of each 1mg/dl in SUA level was associated with a 34% increased risk of CV mortality (HR 1.34; 95%CI 1.16-1.55). (Fig.5).

Three retrospective cohort studies with 7427 patients reported HR and 95% CI of CV mortality per1mg/dl increase in SUA level [14,28,34]. Meta-analysis showed that each 1 mg/dl increase in SUA level did not appear to significantly increase the risk of CV death in PD population (HR 0.90; 95% CI 0.76-1.06). (Fig.5).

- 284 Additional analysis
- 285 Subgroup analysis and meta-regression
 - 286 We explored the source of heterogeneity through subgroup analysis and meta-

Page 15 of 42

BMJ Open

regression. Subgroup analysis only included literature which compared the highest versus the lowest category of SUA level, or explored a change of 1mg/dl increase. The pooled HR (95% CI) and I² of subgroup analysis of the relationship between SUA and all-cause and CV mortality are presented in Table 3 and Table 4, respectively. As mentioned before, whether SUA was a categorical variable or a continuous variable, the results of the prospective cohort study differed from those of retrospective studies. Besides, combined with the results of subgroup analysis, when SUA was estimated as a categorical variable, the association of higher SUA level with increased all-cause and CV mortality was significant in studies from mainland China, but not in other countries. SUA as a continuous variable showed that the relationship of higher CV mortality for 1 mg/dl increase in SUA level was significant in studies from mainland China, but not elsewhere. Furthermore, we analyzed the relevant studies published in the past ten years, and results of studies completed during 2011-2016 were different from the results during 2017-2021 period. In addition, in studies of the relationship between SUA (as a continuous variable) and all-cause mortality, study design, study location, publication years, adjusted for sex and DM were heterogeneous by meta-regression (Table 3).

Funnel plots and Egger's test (t=1.07, p=0.309) indicated there was no obvious publication bias of studies for the relationship between all-cause mortality and SUA level per 1mg/dl increase. The funnel plot is presented in eFigure1 in the Supplement. **Sensitivity analysis**

Test of Publication bias

In retrospective cohort studies, results of primary outcome showed there was no
significant effect on the pooled HR values of other studies with one study removed at
a time. The above indicated the results were robust.

312 Discussion

313 Principal findings and comparison with prior reviews

For PD population, previous original studies indicated inconsistent relationship between SUA and mortality. After searching systematically, we found that there were some meta-analyses investigating the correlation between SUA and mortality in different populations [35-38], however, we have not yet found a review only of PD patients. A systematic review published in 2016 showed that elevated SUA level was significantly associated with the risk of death in patients with CKD, including dialysis and non-dialysis subjects [39]. Subgroup analysis in this review demonstrated that hyperuricemia was an independent predictor for mortality in PD population, while, this predictive value was not found in the hemodialysis (HD) population. As only 1 prospective cohort study and 2 retrospective cohort studies were included in the subgroup analysis, results should be interpreted with caution.

In our study, we included a total of 14 cohort studies, of which 2 were prospective studies and 12 were retrospective studies. There was no obvious publication bias of studies according to funnel plots and Egger's test. Researchers can not control the process of data accumulation in retrospective cohort studies, but researchers can directly acquire relevant data on exposure and outcome according to the study design in prospective studies, so the risk of bias is small. Thus, instead of pooling results of Page 17 of 42

BMJ Open

the two studies, we reported them individually. Only one prospective cohort study suggested that regardless of whether SUA was estimated as a continuous or a categorical variable, elevated SUA level was significantly associated with increased risk of all-cause and CV mortality in PD patients. Whereas, there was no significant associations between them in the retrospective studies. Below we have attempted to discuss the inconsistency of the results from the aspects of participants, exposure, comparability and outcomes.

First of all, the prospective cohort study clearly indicated that participants on PD were consecutively enrolled. It is well known that consecutive recruitment is very important to reduce selection bias. While, in some retrospective studies, the process of enrollment was not detailed. The follow-up of the participants was also a prominent issue, including the duration and adequacy of follow-up and the rate of loss to follow-up. In a prospective study, effective measures can be taken to reduce the loss to follow-up rate to avoid bias. The rate of loss to follow-up in a prospective study by Xia X et al. (2016) was only 3.5% [20], but in some retrospective cohorts, the adequacy and lost follow-up rates were not reported.

Second, hyperuricemia in the PD population was the exposure factor of this study. Both prospective and retrospective cohort studies, the definition of hyperuricemia and the categorization for the SUA level was based on the definition provided in each included article. It should be noted that in retrospective multi-center studies, the measurement methods of SUA may not be uniform across centers. This may lead to measurement bias and have a slight impact on results.

Third, control of the most important and other confounding factors is very important for the comparability between the groups. The most important confounding factors included indicators that can reflect the patient's current residual renal function status. Other confounding factors need to be adjusted and should include gender, age, diabetes history, CVD history, Kt/v, use of UA-lowering drugs, and serum albumin. Most of the studies did not adjust for all potential risk factors. For example, the prospective study of Xia X et al. (2016) lacked adjustment for the confounding factor Kt/v [20]. Therefore, we can not exclude the potential impact of these uncontrolled confounding factors. Regarding the outcomes, the definition of all-cause and cardiovascular death was clear. However, the handling of patients transferring to hemodialysis therapy, loss to follow-up, and renal transplantation was different for prospective and retrospective studies. The above information from patients was used as censoring data for survival analysis in the prospective study [20]. Whereas, in some retrospective studies, they were directly excluded from the study [32]. This may affect the results and lead to inconsistencies between the prospective and retrospective studies. Although the risk of bias in the design type of prospective study was relatively small, the interpretation of the results should still be cautious due to the limited quality and quantity of prospective study.

SUA, known for its detrimental effect, is an endothelial toxin and plays a role in
endothelial dysfunction [40]. However, as a powerful free radical scavenger in human
at the same time, SUA may be expected to offer a number of benefits within the CV

Page 19 of 42

BMJ Open

system in PD patients [41,42]. Besides, the problem of protein loss and malnutrition is prominent in PD population [43]. "Malnutrition-inflammation complex syndrome (MICS)" is believed to be the main cause of the high rate of CV atherosclerotic disease and increased mortality and hospitalization in HD patients [44,45]. The underlying mechanism of MICS may also be present in PD patients. As a nutritional marker, SUA might be involved in the MICS axis. Therefore, the relationship between SUA and mortality in PD patients is a complex proposition. Taking into account the feature of SUA itself, we hypothesize that both extremely low and high SUA level may increase the risk of death. In our study, we also would like to explore the dose-response relationship between SUA level and mortality in PD population, but in the end the analysis to explore a dose-response relationship was impossible due to insufficient data. Further investigations are warranted to clarify this relationship and explore the range of SUA concentration associated with the lowest mortality in the PD patients. Moreover, in addition to different study designs, different study location was also one of the main sources of heterogeneity among studies according to the metaregression test. Subgroup analysis results further suggested hyperuricemia was

associated with a high risk of CV death in PD population only in mainland China. As a result, the relationship between SUA level and the risk of death in different regions needs to be explored and verified by prospective studies in future.

Implications further research

Since the results of prospective and retrospective cohort studies were inconsistent, and the different regions seemed to lead to different results, prospective, multicenter, long

term follow-up studies are required in future. It is important to explore the relationship
between SUA level and the risk of death in different regions, as well as to determine
the range of SUA concentrations which can reduce mortality and improve prognosis in
the PD patients.

Additionally, since PD patients often suffer from underlying diseases and complex conditions, adjustment is required for confounding factors to explore the relationship between these factors and prognosis. For the PD population, the following confounding factors should be considered to make the evidence more compelling. Such as: traditional independent risk factors of CV events (age, gender, total lipoprotein cholesterol, low or high density lipoprotein cholesterol, hypertension, diabetes, smoking [46]), history of CV, emotion status, residual renal function, the related parameters of PD, the parameters of nutritional status, use of diuretic and lower UA agents etc.

Comprehensive information should be reported in detail in the study report so that
readers can become more familiar with the details of the study, and can conduct
secondary research to avoid wasting research resources.

413 Study limitations

There were several limitations in this review. Systematic reviews of observational studies can provide a higher level of evidence, but they also have methodological limitations. For example, the included original studies may differ in their design, data collection methods, and definitions of exposure, confounding factors and outcomes. These differences may have a slight influence on the true effect size. Second, in this

BMJ Open

review, the included studies were mainly from Asian populations (only one from Europe), and the generalizability of the results was limited. Third, in spite of many important confounding factors that to be adjusted in the studies, residual and unknown confounding factors can not be entirely excluded. Fourth, the duration of follow up in all studies was less than 5 years. It is difficult to determine long-term impact of elevated SUA level on mortality. Finally, some necessary data was not obtained, and the exploration of dose-response relationship could not be conducted, but will need to be determined in future studies.

Conclusions

The results from the prospective and retrospective cohort studies were inconsistent. Only one prospective cohort study showed that elevated SUA level was significantly associated with increased risk of all-cause and CV mortality in PD patients. Nevertheless, the pooled result of retrospective cohort studies did not appear to indicate a prominent association. So it is necessary to use SUA-lowering agents with caution for PD patients in clinics. International prospective, multicenter, long term follow-up studies are needed in the future to investigate the relationship between SUA level and the risk of death, and to explore the range of SUA concentrations associated with the

436 lowest mortality in the PD patients.

437 Acknowledgements Centre for Evidence-Based Chinese Medicine of Beijing
438 University of Chinese Medicine hosted the study and provided learning guidance to
439 domestic visiting scholars. Thanks to the National Administration of Traditional
440 Chinese Medicine for the base construction project. And we greatly thanked Fang-fang
441 Zhao from Xiyuan Hospital, China Academy of Chinese Medical Sciences, for the
442 suggestion during the revision process.

443 Author Contributions Research idea and study design: XX and JPL. Protocol and
444 Registration: XX, CLL, XYJ and XHL. Acquisition, analysis, or interpretation of data:

XX, HC, QL, JY, and JPL. Drafting of the manuscript: XX, XHL, CLL, XYJ and RXZ. Statistical analysis: MY, XX and XQW. Critical revision of the manuscript: XQW, NR and JPL. Supervision: JPL. **Funding** This work was supported by a grant from the key project of the National Natural Science Foundation of China (No.81830115), and a grant from the National Natural Science Foundation of China (No.81874439, 82074364). Prof. Nicola Robinson (visiting professor of Beijing University of Chinese Medicine) is funded by International development and capacity enhancement of evidence-based Chinese medicine Project, Ministry of Science and Technology of the People's Republic of China (G20200001187). Competing interests None. **Provenance and peer review** Not commissioned; externally peer reviewed. Data sharing statement The datasets used for meta-analyses are available from the corresponding author on reasonable request. REFERENCES 1. Li PKT, Chow KM, Van de Luijtgaarden MWM, et al. Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol 2017;13:90. 2. Yin FT, Yu YS. Current status and challenges of peritoneal dialysis treatment. Chinese J Nephrol Dialysis Transplantation 2015;24:186-9. 3. Bloembergen WE, Port FK, Mauger EA, et al. A comparison of mortality between patients treated with hemodialysis and peritoneal dialysis. J Am Soc Nephrol 1995;6:177-83. 4. Johnson RJ, Kang DH, Feig D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 2003;41: 1183-90. 5. Shankar A, Klein BEK, Nieto FJ, et al. Association between serum uric acid level and peripheral arterial disease. Atherosclerosis 2008:196:749-55. 6. Gagliardi AC, Miname MH, Santos RD. Uric acid: a marker of increased cardiovascular risk. Atherosclerosis 2009;202:11-7. 7. Ryoo JH, Choi JM, Oh CM, et al. The association between uric acid and chronic kidney disease in Korean men: a 4-year follow-up study. J Korean Med Sci 2013:28:855. 8. Madero M, Sarnak MJ, Wang X, et al. Uric acid and long-term outcomes in CKD. Am J Kidney Dis 2009;53:796-803. 9. Kanbay M, Yilmaz MI, Sonmez A, et al. Serum uric acid independently predicts cardiovascular events in advanced nephropathy. Am J Nephrol 2012;36:324-31. 10. Li M, Ye ZC, Li CM, et al. Low serum uric acid levels increase the risk of all-cause death and cardiovascular death in hemodialysis patients. Ren Fail 2020;42:315-22. 11. Kim CS, Jin DC, Yun YC, et al. Relationship between serum uric acid and mortality among hemodialysis patients: retrospective analysis of Korean end-stage renal disease registry data. Kidney Res Clin Pract 2017;36:368. 12. Latif W, Karaboyas A, Tong L, et al. Uric acid levels and all-cause and cardiovascular mortality in the hemodialysis population. Clin J Am Soc Nephrol 2011;6:2470-7. 13. Xia X, He F, Wu X, et al. Relationship between serum uric acid and all-cause and cardiovascular mortality in patients treated with peritoneal dialysis. Am J Kidney Dis 2014;64:257-64. 14. Dong J, Han QF, Zhu TY, et al. The associations of uric acid, cardiovascular and all-cause mortality

Page 23 of 42

BMJ Open

1		
2 3		
4	489	in peritoneal dialysis patients. <i>PloS one</i> 2014;9:e82342.
5	490	15. Xiao X, Yi C, Peng Y, et al. The association between serum uric acid and appendicular skeletal muscle
6	491	mass and the effect of their interaction on mortality in patients on peritoneal dialysis. Kidney Blood
7	492	Pressure Res 2020;45:969-81.
8 9	493	16. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: A
10	494	proposal for reporting. Meta-analysis of observational studies in epidemiology (moose) group. JAMA
11	495	2000;283:2008-12.
12	496	17. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality
13 14	497	of nonrandomised studies in meta-analyses. 2000.
14	498	18. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ
16	499	2003;327:557-60.
17	500	19. Li W, Xiong L, Fan L, et al. Association of baseline, longitudinal serum high-sensitive C-reactive
18		
19 20	501	protein and its change with mortality in peritoneal dialysis patients. <i>BMC nephrology</i> 2017;18:1-10.
21	502	20. Xia X, Zhao C, Peng FF, et al. Serum uric acid predicts cardiovascular mortality in male peritoneal
22	503	dialysis patients with diabetes. Nutr Metab Carbiovasc Dis 2016;26:20-6.
23	504	21. Xiao X, Ye JH, Peng Y, et al. Effect of the interaction between estimated glomerular filtration rate and
24 25	505	serum uric acid on all-cause and cardiovascular mortality in patients on peritoneal dialysis. Chinese J
25 26	506	Nephrol 2020;36:703-10.
27	507	22. Stepanova N, Burdeyna O, Snisar L. Hyperuricemia is associated with cardiovascular events and all-
28	508	cause mortality in peritoneal dialysis patients. Nephrol Dial Transplant 2019;34 (Supplement_1): gfz106.
29	509	FP587.
30 31	510	23. Lu AJ. The effect of serum uric acid level on the prognosis of maintenance peritoneal dialysis patients.
32	511	J Clin Res 2020;37:1589-91.
33	512	24. Feng S, Jiang L, Shi Y, et al. Uric acid levels and all-cause mortality in peritoneal dialysis patients.
34	513	Kidney Blood Pressure Res 2013;37:181-9.
35 36	514	25. Bae E, Cho HJ, Shin N, Kim SM, Yang SH, et al. Lower serum uric acid level predicts mortality in
37	515	dialysis patients. <i>Medicine</i> 2016;95(24).
38	516	26. Chang W, Zhang W, Wang X, et al. The association of longitudinal serum uric acid and all-cause
39		
40	517	mortality in incident peritoneal dialysis patients. <i>Blood Purif</i> 2019;47:185-92.
41 42	518	27. Zhang QL, Wang JN, Wang YM, et al. Effects of serum uric acid level on all-cause death and
43	519	cardiovascular death in patients of maintaining peritoneal dialysis. <i>Chinese J Nephrol</i> 2018;34:809-15.
44	520	28. Lai KJ, Kor CT, Hsieh YP. An inverse relationship between hyperuricemia and mortality in patients
45	521	undergoing continuous ambulatory peritoneal dialysis. J Clin Med 2018;7:416.
46 47	522	29. Yang FY. The Associations of Time-averaged Serum Uric Acid with Cardiovascular Mortality and All-
47 48	523	Cause Mortality in Peritoneal Dialysis Patients. Ningxia Medical University.2018.
49	524	30. Chang W, Uchida S, Qi PP, et al. Decline in serum uric acid predicts higher risk for mortality in
50	525	peritoneal dialysis patients—a propensity score analysis. J Nephrol 2019;1-9.
51 52	526	31. Xiang S, Zhang X, Xie X, et al. High serum uric acid level is a mortality risk factor in peritoneal dialysis
52 53	527	patients: a retrospective cohort study. Nutr. Metab 2019;16:1-10.
54	528	32. Qiu SF, Teng J, Shen B, et al. Correlation of serum uric acid before dialysis and all-cause mortality in
55	529	peritoneal dialysis patients. <i>Chinese J Clin Med</i> 2020;27:815-21.
56	530	33. Coelho ID, Rodriguez C, Rodriguez-Carmona A, et al. Serum Uric Acid, Mortality, and Decline of
57 58	531	Residual Kidney Function in Patients Undergoing Chronic Peritoneal Dialysis. J Am Soc Nephrol
58 59	532	2020;31:420.
60	222	

Page 24 of 42

BMJ Open

34. Sugano N, Maruyama Y, Ohno I, et al. Effect of uric acid levels on mortality in Japanese peritoneal

4	555	
5	534	dialysis patients. Perit Dial Int 2020;0896860820929476.
6	535	35. Zhao G, Huang L, Song M, et al. Baseline serum uric acid level as a predictor of cardiovascular
7		
8	536	disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis
9	537	2013;231:61-8.
10	538	36. Wang R, Song Y, Yan Y, et al. Elevated serum uric acid and risk of cardiovascular or all-cause
11	539	mortality in people with suspected or definite coronary artery disease: a meta-analysis. Atherosclerosis
12		
13	540	2016;254:193-9.
14	541	37. Tamariz L, Harzand A, Palacio A, et al. Uric acid as a predictor of all-cause mortality in heart failure:
15	542	a meta-analysis. Congest Heart Fail 2011;17:25-30.
16	543	38. Li L, Yang C, Zhao Y, et al. Is hyperuricemia an independent risk factor for new-onset chronic kidney
17		
18	544	disease?: a systematic review and meta-analysis based on observational cohort studies. BMC Nephrol
19	545	2014;15:1-12.
20	546	39. Xia X, Luo Q, Li B, et al. Serum uric acid and mortality in chronic kidney disease: A systematic review
21	547	and meta-analysis. Metab-Clin Exp 2016;65:1326-41.
22		
23	548	40. Yu MA, Sánchez-Lozada LG, Johnson RJ, et al. Oxidative stress with an activation of the renin-
24	549	angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced
25	550	endothelial dysfunction. J Hypertens 2010;28:1234-42.
26 27	551	41. Nieto FJ, Iribarren C, Gross MD, et al. Uric acid and serum antioxidant capacity: a reaction to
27 28	552	
20		atherosclerosis?. Atherosclerosis 2000;148:131-9.
30	553	42. Suzuki T. Nitrosation of uric acid induced by nitric oxide under aerobic conditions. Nitric oxide
31	554	2007;16:266-73.
32	555	43. Sánchez-Villanueva R, Bajo A, Del Peso G, et al. Higher daily peritoneal protein clearance when
33	556	initiating peritoneal dialysis is independently associated with peripheral arterial disease (PAD): a possible
34	557	new marker of systemic endothelial dysfunction?. Nephrol Dial Transplant 2009;24:1009-14.
35		
36	558	44. Hur I, Choi SJ, Kalantar-Zadeh K. Serum uric acid and mortality risk among maintenance hemodialysis
37	559	patients. Kidney Res Clin Pract 2017;36:302.
38	560	45. Kalantar-Zadeh K, Ikizler TA, Block G, et al. Malnutrition-inflammation complex syndrome in dialysis
39	561	patients: causes and consequences. Am J Kidney Dis 2003;42: 864-81.
40 41		
41	562	46. Dessein PH, Joffe BI, Veller MG, et al. Traditional and nontraditional cardiovascular risk factors are
43	563	associated with atherosclerosis in rheumatoid arthritis. J rheumatology 2005;32:435-42.
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58 59		
59 60		
00		
		23

2		
3		
4	564	Ethics approval statement
5	FCF	
6	565	
7	566	Dear editors,
8 9	567	
9 10		
10	568	Our study was to systematically evaluate the relationship between serum uric acid,
12		
13	560	all-cause and cardiovascular mortality in peritoneal dialysis patients based on the
14	569	an-cause and cardiovascular monanty in peritonear diarysis patients based on the
15		
16	570	observational studies that have been published. As the nature of the study, ethics
17		
18	571	approval is not applicable for this study.
19	571	approval is not applicable for this study.
20		
21	572	
22		
23	573	With best regards,
24	575	White best regulats,
25		
26	574	Yours sincerely,
27 28		
28 29	575	(Corresponding author)
30	0.0	(conversionaling wallor)
31		
32	576	Jian-ping Liu,
33		
34	577	Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese
35		
36		
37	578	Medicine, Beijing, 100029, China
38	579	E-mail: LiuJP@bucm.edu.cn
39	575	
40		
41		
42		
43		
44 45		
45 46		
40		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		

								BMJ Open	bmjopen-2021-052274		Page 26 of 42
1									-202		
2									1-0;		
3									522		
4	T 11 1	C1	• .•	1 1 1 .	1. (0.0.1)	0.010	``		74 (
5 580	Table I	Characte	ristics of i	ncluded sti	udies (201)	3-2018 yea	ars)		on 1		
Study ID	Study	Study	Age	Male/	Dialysis	Follow-up	Deaths	Definition of hyperuricemia	Comparison & O CC CC CC CC CC CC CC	Adjustments	Adjusted HR
8	location	design/	(years)	Total	duration	(months)	AC/CV	or categories according to	octo		(95%CI)
_9	(Region)	Center		Sample(n)	(months)		(n)	serum uric acid	<u> </u>		
Sheng F 2013	China:	RCS/	54.1±17.4	98/156	31.3±17.5	31.3±17.5	41/23	Group 1:≤7.0mg/dl;	Group 1 vs. Group 🗞	Age, Alb, DM, HN, RRF ,	ACM: 1.15(0.20-2.57)
[24]	Mainland	Single						Group 2: 7.0-10.0 mg/dl;	Group 3 vs. Group 🏝	phosphate , Log CRP	ACM: 2.96(1.29-6.80)
12								Group 3: ≥10.0 mg/dl.	Do		
Ĵ i ∂D 2014	China:	RCS/	58.1±15.5	1078/2193	At least > 3	Median	586/231	Men: Tertile 1: 2.09-5.79mg/dl;	Tertile 3 vs. Tertile 🛓	Age, RRF, Hb, Alb,	ACM: 1.21(0.85-1.73)
[14] 15	Mainland	7 centers				26.5		Tertile 2: 5.80-7.38 mg/dl;	(Gender-specific)	phosphate, LDLC, CRP,	CVM: 1.35(0.74-2.46)
15 16								Tertile 3: 7.39-16.7 mg/dl.	Tertile 2 vs. Tertile 🖁	histroy of CVD and DM,	ACM: 1.23(0.90-1.70)
17								FM: Tertile 1: 1.74-5.37mg/dl;	(Gender-specific)	BMI, MAP, center size,	CVM: 1.29(0.75-2.23)
18								Tertile 2: 5.38-6.65 mg/dl;	Per 1 mg/dl increas	gender adjusted only SUA	ACM: 1.05(0.96-1.14)
19								Tertile 3: 6.66-8.08 mg/dl.	tp://	as continuous variable.	CVM: 1.04(0.89-1.20)
½0X 2016	China:	PCS/	47.6 ± 15.0	757/1287	At least > 3	Median	231/126	Men: Tertile 1: < 6.46mg/dl;	Tertile 3 vs. Tertile	Age, gender, BMI, history of	ACM: 1.46(0.92-2.32)
[20]	Mainland	Single				30.7		(DM)Tertile 2: 6.46-7.38 mg/dl;	(DM: Gender specite)	CVD and hypertension, Hb,	CVM: 2.26(1.14-4.48)
22								Tertile 3: ≥7.38 mg/dl.	Tertile 3 vs. Tertile	Alb, Scr, P, HDL-C; RRF,	ACM: 2.26(1.36-3.75)
23								Men: Tertile 1: <7.00mg/dl;	(NDM: Gender speefic)	log-transformed Hs-CRP,	CVM: 3.07(1.54-6.08)
24								(NDM)Tertile2: 7.70-7.89mg/dl;	Per 1 mg/dl increase	glycated Hb, use of	ACM (DM, MEN):1.09(0.91-1.32);
25 26								Tertile 3: ≥7.89 mg/dl.	7	allopurinol and ACEI or	ACM (DM, FM):1.06(0.83-1.35);
27								FM: Tertile 1: < 5.89mg/dl;	on A	ARB.	ACM(NDM, MEN):1.36(1.14-1.64);
28								(DM)Tertile 2: 5.89-7.09 mg/dl;	April 19,		ACM (NDM, FM):1.09(0.80-1.47);
29								Tertile 3: ≥7.09 mg/dl.	1 19		CVM (DM, MEN):1.42(1.13-1.79);
30								FM: Tertile 1: < 6.46mg/dl;			CVM (DM, FM):1.12(0.78-1.61);
31								(NDM)Tertile2: 6.46-7.48mg/dl;	2024 by		CVM(NDM, MEN):1.41(1.09-1.82);
32								Tertile 3: ≥7.48 mg/dl.			CVM (NDM, FM):1.24(0.85-1.82).
Bunjin B2016	South	PCS/mult	NR	NR/651	At least > 3	Median	AC 106	Group 1: TA-UA<5.5 mg/dl;	Group 1 vs. Group 🛱	Age, sex, BMI, SBP, Ca, P,	ACM: 1.478(0.602-3.627)
34 [25] 35 ChangWX2018	Korea	-icenter				43.9		Group 2: TA-UA≥5.5 mg/dl.	st.	Alb, TC, DM, SGA.	
GhangWX2018	China:	RCS/	55.2±14.9	171/300	At least > 3	22.6±15.9	AC 44	Group1: TA-UA < 6mg/dL;	Group 3 vs. Group 🕏	Sex, age, DM, CVD history,	ACM: 4.69(1.24-17.72)
[36]	Mainland	Single						Group2: TA-UA 6–8mg/dL;	Group 1 vs. Group 🕏	RRF, BMI, SBP, Hb, Alb,	ACM: 3.24(1.25-8.39)
38								Group3: TA-UA ≥8mg/dL.	Group 1 vs. Group	BUN, SCr, Na, K, CO2, Ca,	ACM: 0.603 (0.158-2.309)
39									Ьу		
40									cop		
41								25	by copyright.		
42								25	ght.		
43					For peer re	eview only -	http://bm	njopen.bmj.com/site/about/gu	idelines.xhtml		
44						2	-				
45 46											

Page 27 of 42	2							BMJ Open	bmjope		
1									bmjopen-2021-052274		
2 3									.052		
4											
5									Per 1 mg/dl increas	P, LDL-C, CRP, RASi,	ACM: 0.86(0.67-1.12)
6									(Baseline-UA) $\overrightarrow{\infty}$	diuretic.	
ZhangQL2018	China:	RCS/	Median 51	557/1063	At least > 6	Median	167/64	Group 1: < 420µmol/l;	Group 2 vs. Group O	Age, Scr, P, Alb, BG, iPTH,	ACM: 1.572(1.155-2.141)
[<mark>2</mark> 7] 9	Mainland	Single				33		Group 2: ≥420µmol/l;	ober	history of DM, DBP,	CVM: 1.734(1.033-2.912)
								Hyperuricemia≥420µmol/l	Per 1 µmol/l increase	Charlson score.	ACM: 1.002(1.001-1.004)
10 Laj KJ 2018	China:	RCS/	53.5±15.3	237/492	At least > 3	Median	127/74	Men: Tertile 1: ≤6.8mg/dl;	Tertile 3 vs. Tertile	Age, sex, BMI, pre-dialysis	ACM: 0.4(0.24-0.68)
^[28]	Taiwan	Single				36.4		Tertile 2: 6.9-8mg/dl;	(Gender-specific)	status, smoking, present	CVM: 0.4(0.2-0.81)
13								Tertile 3: ≥8.1mg/dl.	Tertile 2 vs. Tertile	medications, comorbidities	ACM: 1.06(0.7-1.58)
14								FM: Tertile 1: ≤6.5mg/dl;	(Gender-specific)	of CVD, hyper-tension, DM,	CVM: 1.04(0.62-1.77)
15								Tertile 2: 6.6-7.6mg/dl;	Men: Per 1mg/dl in œ ease	Charlson score, PD related	ACM: 0.84(0.69-0.9)
16 17								Tertile 3: ≥7.7mg/dl.	fron	parameters, Kt/v, BUN, Scr,	CVM: 0.79(0.61-1.01)
18								Men: Hyperuricemia≥7mg/dl	FM: Per 1 mg/dl increase	GPT, WBC, ALP, Alb, Hb,	ACM: 0.57(0.44-0.73)
19								FM: Hyperuricemia≥6mg/dl	Per 1 mg/dl increase	ferritin, TC, TG, Ca, P,	CVM: 0.6(0.41-0.87)
20										iPTH, transferrin saturation.	
Yang FY 2018 21	China:	RCS/	51.8±14.4	232/487	Median	Median	197/109 <	Men: Hyperuricemia≥7mg/dl;	Per 1 mg/dl increase	Sex,, BMI, hypertension ,	ACM: 0.773(0.62-0.97)
									U		
[2]9]	Mainland	Single			29.5	29.5		FM: Hyperuricemia≥6mg/dl.	pen.t	dialysis duration, eGFR,	
23		_							.bn	Kt/v, LDL-C, iPTH.	
23 24 581	Abbreviatior	ns: AC: All-cau			: Cardiovascular;	CVM: Cardiovas		r; CVD: Cardiovascular disease; HR: Haz	zard ratio; CI: Confidence interval; RC	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study	
23 24 581 25 582	Abbreviation cohort study	ns: AC: All-cau ; vs.: versus; A	Alb: Serum albumi	in; DM: Diabete	: Cardiovascular; s mellitus; NDM:	CVM: Cardiovas Non diabetes m	ellitus; HN: Hy	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reacterve prote	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body	mass index; SUA:
23 24 581	Abbreviatio r cohort study Serum uric a	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur	Alb: Serum albumi m creatinine; MA	in; DM: Diabete: P: Mean arteria	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser	CVM: Cardiovas Non diabetes m um phosphorus	ellitus; HN: Hy 5; HDL-C: High	r; CVD: Cardiovascular disease; HR: Haz	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactivoprotein;	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting	mass index; SUA: enzyme inhibitor;
23 24 581 25 582 26 583 27 584 28 585	Abbreviation cohort study Serum uric a ARB: Angiote	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor	Alb: Serum albumi m creatinine; MA · blocker; FM: Fen	in; DM: Diabete P: Mean arteria nale; NR:Not rep	: Cardiovascular; s mellitus; NDM: I pressure; P: Ser ported; TA-UA: Tir	CVM: Cardiovas Non diabetes m um phosphorus me average-uric	ellitus; HN: Hy s; HDL-C: High c acid; SBP: Syst	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive ; TC: Total cholesterol; SGA subjectiv	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo	mass index; SUA: enzyme inhibitor; od urea nitrogen;
23 24 581 25 582 26 583 27 584 28 585 29 586	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum so	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP solic blood pressure; Ca: Serum calcium,	zard ratio; CI: Confidence interval; RG renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA subjective n-angiotensinsystem inhibiter; BG: Bl	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum so	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP rolic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGAssubjectiv n-angiotensinsystem inhibitar; BG: Bl pyruvic transaminase; WBC White b	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 25	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum sc DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP rolic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGAssubjectiv n-angiotensinsystem inhibitar; BG: Bl pyruvic transaminase; WBC White b	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum sc DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP rolic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGAssubjectiv n-angiotensinsystem inhibitar; BG: Bl pyruvic transaminase; WBC White b	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32 33	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum sc DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP rolic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA subjective n-angiotensinsystem inhibiter; BG: Bl pyruvic transaminase; WB White b 2024 2024 2024 2024 2024 2024	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum sc DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP rolic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA: Subjectiv n-angiotensinsystem inhibitar; BG: BI pyruvic transaminase; WB@White b 2024 by guest	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32 33 34	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum sc DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP rolic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA: Subjectiv n-angiotensinsystem inhibitar; BG: BI pyruvic transaminase; WB@White b 2024 by guest	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32 33 34 35 36 37 37	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum so DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP rolic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA: Subjectiv n-angiotensinsystem inhibitar; BG: BI pyruvic transaminase; WB@White b 2024 by guest	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32 33 34 35 36 37 38	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum so DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP rolic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA: Subjectiv n-angiotensinsystem inhibitar; BG: BI pyruvic transaminase; WB@White b 2024 by guest	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32 33 34 35 36 37 38 39 9	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum so DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP rolic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA: Subjectiv n-angiotensinsystem inhibitar; BG: BI pyruvic transaminase; WB@White b 2024 by guest	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32 33 34 35 36 37 38 39 40	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum so DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP rolic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA: Subjectiv n-angiotensinsystem inhibitar; BG: BI pyruvic transaminase; WB@White b 2024 by guest	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32 33 34 35 36 37 38 39 40 41	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum so DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca	CVM: Cardiovas Non diabetes m um phosphorus me average-uric arbon dioxide; L	ellitus; HN: Hy 5; HDL-C: High cacid; SBP: Syst DL-C: Low den:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP rolic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA: Subjectiv n-angiotensinsystem inhibitar; BG: BI pyruvic transaminase; WB@White b 2024 by guest	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32 33 34 35 36 37 38 39 40	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum so DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca FR: estimated glo	CVM: Cardiovas Non diabetes m rum phosphorus me average-uric arbon dioxide; L omerular filtrati	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Syst DL-C: Low den: on rate; Kt/v:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP colic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir Urea clearance index; GPT: Glutamic-p	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA ₂ Subjective n-angiotensinsystem inhibitier; BG: Bl pyruvic transaminase; WBC 2024 by guest. Protected by copyright.	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32 33 34 35 36 37 38 39 40 41 42	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum so DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca FR: estimated glo	CVM: Cardiovas Non diabetes m rum phosphorus me average-uric arbon dioxide; L omerular filtrati	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Syst DL-C: Low den: on rate; Kt/v:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP colic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir Urea clearance index; GPT: Glutamic-p	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA ₂ Subjective n-angiotensinsystem inhibitier; BG: Bl pyruvic transaminase; WBC 2024 by guest. Protected by copyright.	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;
23 24 581 25 582 26 583 27 584 28 585 29 586 30 587 31 32 33 34 35 36 37 38 39 40 41 42 43 43	Abbreviation cohort study Serum uric a ARB: Angiote Na: Serum so DBP: Diastol	ns: AC: All-cau ; vs.: versus; A cid; Scr: Serur ensin receptor odium; K: Seru	Alb: Serum albumi m creatinine; MA blocker; FM: Fen um potassium; Cl:	in; DM: Diabete P: Mean arteria nale; NR:Not rep Serum chlorine	: Cardiovascular; s mellitus; NDM: I Il pressure; P: Ser ported; TA-UA: Tir e; CO2: Venous ca FR: estimated glo	CVM: Cardiovas Non diabetes m rum phosphorus me average-uric arbon dioxide; L omerular filtrati	ellitus; HN: Hy ;; HDL-C: High : acid; SBP: Syst DL-C: Low den: on rate; Kt/v:	r; CVD: Cardiovascular disease; HR: Haz pertensive nephropathy; RRF: Residual density lipoprotein cholesterol; Hs-CRP colic blood pressure; Ca: Serum calcium, sity lipoprotein cholesterol; RASi: Renir Urea clearance index; GPT: Glutamic-p	zard ratio; CI: Confidence interval; RC renal function; CRP: C-reactive prote P: High-sensitivity C-reactive protein; ; TC: Total cholesterol; SGA ₂ Subjective n-angiotensinsystem inhibitier; BG: Bl pyruvic transaminase; WBC 2024 by guest. Protected by copyright.	Kt/v, LDL-C, iPTH. CS: Retrospective cohort study in; Hb:Hemoglobin; BMI: Body ACEI: Angiotensin converting ve global assessment; BUN: Blo lood glucose; iPTH: intact para	mass index; SUA: enzyme inhibitor; iod urea nitrogen; thyroid hormone;

								BMJ Open	bmjopen-2021-052274		Page 28 of 42
1									-202		
2									1-05		
3									522		
4	T-bla (· 1 d - d .	4 - 1: () (10 2020)				
5 588					× ×	19-2020 ye	,		on 1		
Study ID 7	Study	Study	Age	Male/	Dialysis	Follow-up	Deaths	Definition of hyperuricemia	Comparison 0 Ctobe	Adjustments	Adjusted HR
8	location	design/	(years)	Total	duration	(months)	AC/CV	or categories according to	ctok		(95%CI)
_9	(Region)	Center		Sample(n)	(months)		(n)	serum uric acid			
ChingengWX2019	China:	RCS/	18—80	150/309	At least > 3	NR	AC 50	Group 1: SUA decliner;	Group 1 vs. Group 8	Gender, age, BMI, SBP, Hb,	ACM: 2.23(1.13-4.40)
[30]	Mainland	Single						Group 2: SUA non-decliner.	. <u>→</u>	Na, K, Cl, BUN, Scr, CO2, Ca,	
12 13								("SUA decliner" and "SUA non -	Dow	P, Alb, TG, FBG, CRP, RRF,	
14								decliner" according to run - in and	nloa	PET type, Kt/V, DM, use of	
15 16								longitudinal changes in the follow-up)	Downloaded f	CCB, RASi , diuretic , β- blocker.	
X ji ajing SL 2019	China:	RCS/	52.5±14.6	5163/9405	At least > 3	Median	1226/515	Quintile1: < 6.06mg/dl;	Quintile5 vs. Quintile3	Age, sex, BMI, DM, CVD, RRF,	ACM: 1.482(1.187-1.849)
[38]	Mainland	98centers				29.4		Quintile2: 6.06-6.67mg/dl;	htt	Hb, Alb, K, Na, P, Ca, iPTH,	CVM: 1.144(0.786-1.665)
19								Quintile3: 6.68–7.27mg/dl	Quintile4 vs. Quintile3	Scr, FPG.	ACM: 1.335(1.073-1.662)
20								Quintile4: 7.28-8.03mg/dl;	omj		CVM: 1.146(0.796-1.648)
21								Quintile5: ≥8.04 mg/dl.	Quintile2 vs. Quinti		ACM: 1.160(0.938-1.434)
22 23								Hyperuricemia≥7.28mg/dl.	ň.b		CVM: 1.311(0.932-1.843)
23									Quintile1 vs. Quintile3		ACM: 1.162(0.945-1.427)
25									Š Š		CVM: 1.166(0.820-1.657)
ର୍ଶ୍ୱରି SF 2020	China:	RCS/	44—65	63/140	Median	Median	AC 48	Tertile 1: < 387µmol/l;	Tertile 3 vs. Tertile	Gender, age, DM ,	ACM: 2.308(1.062-5.017)
27 [32] 28	Mainland	Single			31.9	31.9		Tertile 2: 387-519µmol/l;	Tertile 2 vs. Tertile-₽	hypertension, CVD, BMI, K,	ACM: 0.959(0.423-2.174)
								Tertile 3: ≥519µmol/l.	Per 20µmo/l increase	ESA, RRF, use of diuretic and	ACM: 1.003(1.00-1.005)
29 30									,e	LUA.	
Goqelho I 2020	Portugal	RCS/	60.2±14.6	407/682	At least > 3	31.4±25.6	NR	Group 1: below median;	Group 2 vs. Group 12	Age, comorbidities, DM and	ACM: 0.997(0.74-1.35)
[32]		Single						Group 2: above median.	4 by	baseline RRF.	
Naoki S 2020	Japan	RCS/mult-	63±14	2916/4742	Median	Deadline :	AC 379	Group 1: < 5.0mg dl;	Group 1 vs. Group	Age, gender, BMI ,UV ,dialysis	ACM: 1.80(1.13-2.86)
34 [34] 35		icenter			28	the end of		Group 2: 5.0- < 5.5mg dl;	Group 2 vs. Group 🖗	duration, under-lying disease,	ACM: 1.43(0.88-2.32)
						2012		Group 3: 5.5- < 6.0mg dl;	Group 3 vs. Group 🛱	comorbid disease, medication	ACM: 1.22(0.75-1.98)
36 37								Group 4: 6.0- < 6.5mg dl;	Group 4 vs. Group	and laboratory data.	ACM: 1.37(0.86-2.20)
38								Group 5: 6.5- < 7.0mg dl;	Group 5 vs. Group 🛱		ACM: 1.54(0.75-2.49)
39									by		
40									copyright.		
41								27	yrig		
42								27	yht.		
43					For peer	review only	- http://br	mjopen.bmj.com/site/about/guic	delines.xhtml		
44 45											
-+J											

Page	29 of 42	<u>.</u>							BMJ Open		bmjope	
1											bmjopen-2021-05227	
2 3 4											.052274	
5									Group 6: 7.0- < 7.5mg dl;	Group 7 vs. Grou	o 😫	ACM: 1.58(0.94-2.63)
6									Group 7: 7.5- < 8.0mg dl;	Group 8 vs. Grou		ACM: 1.88(1.06-3.35)
7									Group 8: 8.0- < 8.5mg dl;	Group 9 vs. Grou	o et	ACM: 1.93(1.15-3.24)
8 9									Group 9: ≥8.5mg dl;	Per 10µmo/l incre	age age	ACM: 1.00(0.99-1.02)
10											r 20	CVM: 1.00(0.98-1.03)
Xiao X	2020	China:	RCS/	47.0±15.2	1269/2124	At least > 3	Median	554/275	Tertile 1: < 384µmol/l;	Tertile 3 vs. Tertil	$e \overset{\frown}{\Sigma}$ Age, sex, DM , CVD , BMI ,	ACM: 0.924(0.547-1.727)
[22]		Mainland	Single				42		Tertile 2: 384-460µmol/l;	Tertile 1 vs. Tertil	e 🞖 eGFR, DBP, use of diuretic	ACM: 0.993(0.598-1.651)
13									Tertile 3: >460µmol/l.	Per 1µmol/l incre	ase and LUA, Hb, Alb, TC.	ACM: 0.999(0.997-1.001)
14	589										interval; RCS: Retrospective cohort study;	
15 16	590					-				•	a gum; Cl: Serum chlorine; BUN: Blood un	
17	591 592										ctre protein; RRF: Residual renal function; PG Fasting plasma glucose; ESA: Erythropc	
18	593	-						ation rate: DBF	P: Diastolic blood pressure; TC: Tota	il cholesterol	A	
19	555	ugentts, 20			ormary volume, c		Biomerului me	ution rute, bbr			·p://	
20											р Щ	
21											ope	
22 23											й. _b	
25 24									P: Diastolic blood pressure; TC: Tota		<u></u>	
25											on	
26											 ✓ Or 	
27											A L	
28											oril	
29											19,	
30 31											202	
32											4 5	
33											א פו א	
34											Jest	
35											ר פ	
36											rote	
37											cte	
38											d b	
39 40											<pre></pre>	
40 41											руг	
42									28		tp://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.	
43						For poor	roviow on	v - http://h	mjopen.bmj.com/site/abo	ut/auidelines.vhtml	<i></i>	
44						For peer	ieview on	y - mup://b	mjopen.bmj.com/site/abo	au guidennes.xntim		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

			BMJ Oʻt	ben		bmjopen-20		Page 30 of 4
						21-052274 (
		-		d all-cause mo	ortality		id (continuous var	iable)
		-		No. of study	Sampla ciza	0		· · · · · · · · · · · · · · · · · · ·
No. of study	sample size	HK (95%CI)	neterogeneity(1-)	NO. OF SLUDY	Sample size	ber	neterogeneity (1-)	Meta-regression (P value)
								P=0.007
1	1287	1.79(1.17-2.75)	35.8%	1	1287	1.16(1.03 4 .32)	25.5%	
5	4570	1.09(0.70-1.70)	83.1%	8	11541	0.94(0.88 <u>余</u> .02)	83.7%	
						ideo		
4	4683	1.57(1.26-1.96)	21.1%	7	7594	1.04(0.97 汞 .11)	73.0%	P<0.001
1	492		-	1	492	0.70(0.48-1.03)	85.9%	
1 (Portugal)	682	1.00(0.74-1.35)	-	1 (Japan)	4742	1.00(0.89	-	P=0.002
						//br		
2	3480	1.53(1.08-2.18)	48.9%	2	3480	1.12(1.01 4.24)	37.9%	P=0.017
4	2377	1.07(0.59-1.93)	87.3%	7	9348	0.92(0.84 .01)	85.5%	
						bm		P=0.539
5	3664	1.27(0.82-1.98)	83.7%	7	5893	0.97(0.89 <mark>3</mark> .06)	83.3%	
1	2193		-	2	6935	1.03(0.96-1.11)	0%	
						n /		P<0.001
4	4112	1.27(0.72-2.26)	84.9%	8	11765	0.97(0.9004)	76.7%	
2	1745	1.25(0.80-1.95)	76.7%	1	1063		_	
						-		P=0.019
6	5857	1.26(0.88-1.81)	80.5%	8	12341	N	80.0%	
0	0	-	-	1	487	0	-	
						lue		P=0.108
4	5035	1.22(0.76-1.96)	84.7%	7	12201	<u>여</u> 0.99(0.90 -1 .09)	81.0%	
2	822	1.40(0.62-3.14)	74.4%	2	627		81.6%	
ratio; Cl: Confidenc						cted by copyright.		
	S No. of study 1 5 4 1 1 (Portugal) 2 4 5 1 4 2 4 5 1 4 2 4 2 4 5 1 4 2 4 2 4 2 4 2 1 1 1 1 1 1 1 1 1 1 1	Serum uric ac No. of study Sample size 1 1287 5 4570 4 4683 1 492 1 (Portugal) 682 2 3480 4 2377 5 3664 1 2193 4 4112 2 1745 6 5857 0 0 4 5035 2 822 ratio; CI: Confidence interval; 12: 1-squered	Serum uric acid (categorical va No. of study 1 1287 1 1287 1 1287 1 1287 1 1287 1 1287 1 1287 1 1287 1 1287 1 1287 1 195%CI) 4 4683 1 190(0.70-1.70) 4 4683 1 192 0.40(0.24-0.68) 1 100(0.74-1.35) 2 3480 1.53(1.08-2.18) 4 2377 1.07(0.59-1.93) 5 3664 1.27(0.82-1.98) 1 2193 1.21(0.85-1.73) 4 4112 1.27(0.72-2.26) 2 1745 1.26(0.88-1.81) 0 0 - 4 4 5035 1.22(0.76-1.96) 2	p analyses of the relationship between serum uric acid an Serum uric acid (categorical variable) No. of study Sample size HR (95%Cl) Heterogeneity(l ²) 1 1287 1.79(1.17-2.75) 35.8% 5 4570 1.09(0.70-1.70) 83.1% 4 4683 1.57(1.26-1.96) 21.1% 1 492 0.40(0.24-0.68) - 1 (Portugal) 682 1.00(0.74-1.35) - 2 3480 1.53(1.08-2.18) 48.9% 4 2377 1.07(0.59-1.93) 87.3% 5 3664 1.27(0.82-1.98) 83.7% 1 2193 1.21(0.85-1.73) - 4 4112 1.27(0.72-2.26) 84.9% 2 1745 1.26(0.88-1.81) 80.5% 0 0 - - 4 5035 1.22(0.76-1.96) 84.7% 2 823 1.40(0.62-3.14) 74.4% ratio; Cl: Confldence interval; l2: I-square; No.: Number. Year Year	Serum uric acid (categorical variable) No. of study Sample size HR (95%CI) Heterogeneity(I²) No. of study 1 1287 1.79(1.17-2.75) 35.8% 1 5 4570 1.09(0.70-1.70) 83.1% 8 4 4683 1.57(1.26-1.96) 21.1% 7 1 492 0.40(0.24-0.68) - 1 1 (Portugal) 682 1.00(0.74-1.35) - 1 (Japan) 2 3480 1.53(1.08-2.18) 48.9% 2 4 2377 1.07(0.59-1.93) 87.3% 7 5 3664 1.27(0.82-1.98) 83.7% 7 1 2193 1.21(0.85-1.73) - 2 4 4112 1.27(0.72-2.26) 84.9% 8 2 1745 1.25(0.80-1.95) 76.7% 1 6 5857 1.26(0.88-1.81) 80.5% 8 0 0 0 - - 1 1	p analyses of the relationship between serum uric acid and all-cause mortality Serum uric acid (categorical variable) No. of study Sample size HR (95%CI) Heterogeneity(I ²) No. of study Sample size 1 1287 1.79(1.17-2.75) 35.8% 1 1287 5 4570 1.09(0.70-1.70) 83.1% 8 11541 4 4683 1.57(1.26-1.96) 21.1% 7 7594 1 492 0.40(0.24-0.68) 1 1 (Japan) 4742 2 3480 1.53(1.08-2.18) 48.9% 2 3480 4 2377 1.07(0.59-1.93) 87.3% 7 5893 1 2193 1.21(0.85-1.73) . 2 6935 4 4112 1.27(0.72-2.26) 84.9% 8 11663 6 5857 1.26(0.88-11.81) 80.5% 8 12341 0 0 1 487 2 627 4 5035 1.26(0.78-1.96) 84.7	p analyses of the relationship between serum uric acid and all-cause mortality Serum uric acid (categorical variable) Serum @ric acid No. of study Sample size HR (95%Cl) Heterogeneity(l ²) No. of study Sample size HR (95%Cl) 1 1287 1.79(1.17-2.75) 35.8% 1 1287 1.16(1.03 32) 32) 5 4570 1.09(0.70-1.70) 83.1% 8 11541 0.94(0.88 0.2) 4 4683 1.57(1.26-1.96) 21.1% 7 7594 1.04(0.97 ±1.1) 1 192 0.40(0.24-0.68) - 1 492 0.70(0.48 0.03) 1 (Portugal) 682 1.00(0.74-1.35) - 1 (Japan) 4742 1.00(0.89 ±1.3) 2 3480 1.53(1.08-2.18) 48.9% 2 3480 1.21(0.10 ±2.4) 4 2377 1.07(0.59-1.93) 87.3% 7 5893 0.97(0.99 ±0.6) 5 3664 1.27(0.72-2.26) 84.9% 2 6935 1.03(0.96 ±1.1)	analyses of the relationship between serum uric acid and all-cause mortality Serum uric acid (categorical variable) Serum gric acid (continuous var No. of study Sample size HR (95%C) Heterogeneity(i ¹) No. of study Sample size HR (95%C) Heterogeneity(i ²) 1 1287 1.79(1.17-2.75) 35.8% 1 1287 1.16(1.039, 32) 25.5% 4 4683 1.57(1.26-1.96) 22.1.1% 7 7594 1.04(0.97, 111) 73.0% 1 192 0.40(0.240.68) 1 1 492 0.70(0.488, 0.2) 88.5% 1 (Portugal) 682 1.00(0.74-1.35) 1 1(apan) 4742 1.00(0.89, 1.3) - 2 3480 1.53(1.08-2.18) 48.9% 2 3480 1.12(1.03, 2.4) 37.9% 4 2377 1.07(0.59-1.93) 87.3% 7 9348 0.92(0.89, 1.01) 85.5% 5 3664 1.27(0.72-2.6) 84.9% 2 3480 1.12(1.03, 2.9) -

6 Table 4 Subgroup analy	uses of the rela	tionshin hetw	een serum uric a	cid and cardiovaso	ular mortality	bmjopen-2021-052274 o		
		_	d (categorical varia				(continuous varia	ble)
	No. of study	Sample size	HR (95%CI)	Heterogeneity(I ²)	No. of study	Sample size er 2002	HR (95%CI)	Heterogeneity (I ²
Study design								
Prospective cohort study	1	1287	2.63(1.62-4.27)	0.0%	1		1.34(1.16-1.55)	0.0%
Retrospective cohort study	3	3748	1.00(0.44-2.31)	82.5%	3	7423	0.90(0.76-1.06)	70.2%
Study location						aded	, ,	
China—mainland	3	4543	1.93(1.39-2.68)	13.9%	2	3480	1.22(1.05-1.43)	44.6%
China—Taiwan	1	492	0.40(0.20-0.80)	-	1	3480 49 <mark>2</mark>	0.71(0.55-0.93)	29.5%
Other			. ,		1 (Japan)	4742	1.00(0.91-1.10)	-
Publication years						://br		
2011—2016	2	3480	2.06(1.27-3.34)	38.7%	2	34 80	1.22(1.05-1.43)	44.6%
2017—2021	2	1555	0.85(0.20-3.57)	90.8%	2	5234	0.82(0.62-1.08)	77.7%
No. of center						17 <mark>29</mark> 6935		
Single center	3	2842	1.49(0.66-3.38)	84.7%	2	1789	1.06(0.80-1.39)	80.3%
Multicenter	1	2193	1.35(0.74-2.46)	-	2	6935	1.01(0.93-1.09)	0.0%
Adjusted for sex			,			on /	, , , , , , , , , , , , , , , , , , ,	
Yes	3	3972	1.39(0.60-3.24)	84.4%	4	A 87望	1.05(0.90-1.23)	74.0%
No	1	1063	1.73(1.03-2.91)	-	0	0 0 0	, , , , , , , , , , , , , , , , , , ,	_
Adjusted for diabetes mellitus			. ,			, 20	_	_
Yes	4	5035	1.46(0.78-2.74)	79.7%	4	, 202耷bygu	1.05(0.90-1.23)	74.0%
No	0	0	-	-	0	ЪУд	, , , , , , , , , , , , , , , , , , ,	-
Adjusted for serum albumin		-			-	guest	_	
Yes	4	5035	1.46(0.78-2.74)	79.7%	4	87 <u>14</u>	1.05(0.90-1.23)	74.0%
No	0	0	-	-	0			-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		BMJ Open 2021-052274
1		
2		
3		62277
4 5		
6	598	Figure legends
7	599	Q
8	600	Fig.1 Flow diagram of study search and selection.
9 10	601	Fig.1 Flow diagram of study search and selection.
11	602	Fig.2 Forest plot and pooled HR for relationship between SUA by categories (the highest SUA category versus the lowest) and all-cause mortality in PD patients
12	603	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; PD: Peritoneal dialysis.
13 14	604	
14	605	Fig.3 Forest plot and pooled HR for relationship between SUA per 1mg/dl increase and all-cause mortality in PD patients.
16	606	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; DM: Diabetes mellitus; NDM: Non-diabetes mellitus; FM: Fagnale; PD: Peritoneal dialysis.
17	607	Abbreviations. The mazard ratio, Cf. Confidence interval, SOA: Seruin une acid, DM. Diabetes mentus, NDM. Non-diabetes mentus, FM. Pagiate, FD. Fertionear diarysis.
18 19	608	Fig.4 Forest plot and pooled HR for relationship between SUA by categories (the highest SUA category versus the lowest) and cardiovascular mortality in PD patients.
20	608 609	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; PD: Peritoneal dialysis.
21	610	Abbreviations: HK. Hazard ratio, CI. Confidence interval, SOA. Serum une acid, PD. Peritonear diarysis.
22 23		E's 5 France also and an also differentiation which between SULA and 100 / dline and a differentiate and an atality in DD activity
23 24	611 612	Fig.5 Forest plot and pooled HR for relationship between SUA per 1mg/dl increase and cardiovascular mortality in PD patients.
25	612	Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; DM: Diabetes mellitus; NDM: Non-diabetes mellitus; FM: Fanale; PD: Peritoneal dialysis.
26	613	Second seco
27 28	614	Supplement legends
29	615	eFigure 1. Funnel plot for relationship between serum uric acid level per 1mg/dl increase and all-cause mortality in peritone additional dialysis patients.
30	616	20
31 32	617	eTable 1. Searching strategies for electronic databases
33	640	
34	618	
35	619	eTable 2. Methodological quality assessment of the cohort studies utilizing the Newcastle-Ottawa Scale (NOS)
36 37		
38		
39		by c
40 41		opy
41		eTable 1. Searching strategies for electronic databases eTable 2. Methodological quality assessment of the cohort studies utilizing the Newcastle-Ottawa Scale (NOS) 31
43		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
44 45		
45		

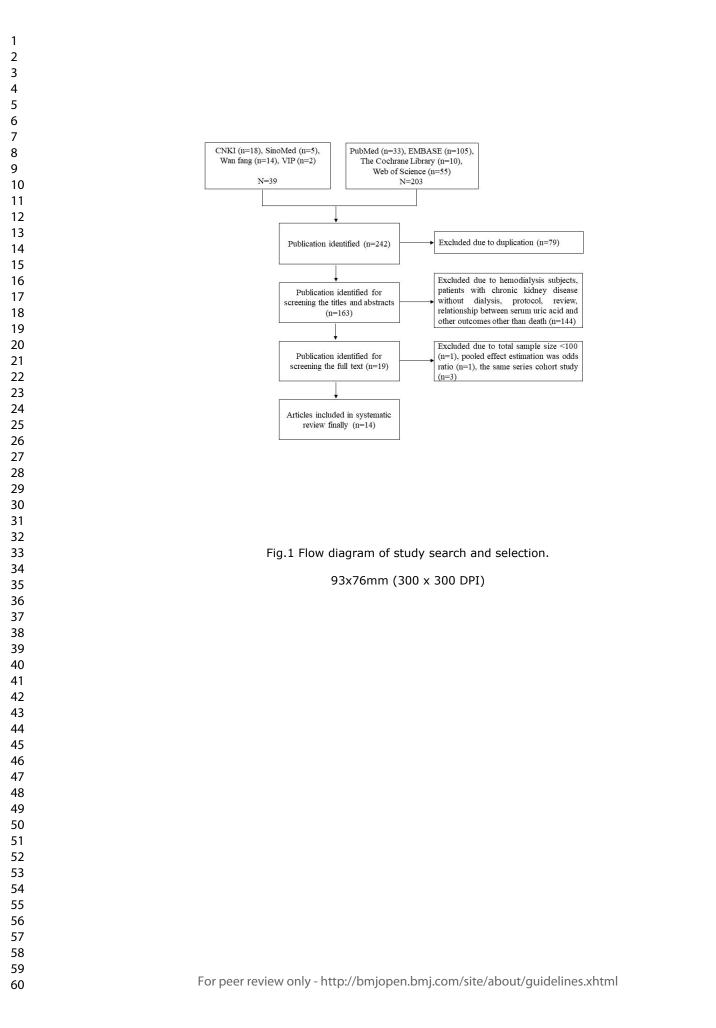


Fig.2 Forest plot and pooled HR for relationship between SUA by categories (the highest SUA category versus the lowest) and all-cause mortality in PD patients

Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; PD: Peritoneal dialysis.

211x154mm (120 x 120 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4			
5 6			
7			%
8 9	Study	HR (95% CI) Wei	
10	Retrospective cohort studies	4.05/0.00.4.4.0	
11	Jie D 2014		.96 .49
12	ZhangQL2018		.10
13	Lai KJ MEN2018		.75
14	Lai KJ FM2018		.58 .35
15	Qiu SF 2020		.35
16	Naoki S 2020		.44
17	Xiao X 2020	0.94 (0.83, 1.06) 9	.33
18	Subgroup, DL (1 ² = 83.7%, p = 0.000)	0.94 (0.88, 1.02) 78	.35
19	Prospective cohort studies		
20	Xi X DM MEN2016	1.09 (0.91, 1.32) 6	.57
20 21	Xi X DM FM2016		.82
	Xi X NDM MEN2016	- 1.36 (1.14, 1.64) 6	.72
22	Xi X NDM FM2016		.54
23	Subgroup, DL (1 ² = 25.5%, p = 0.258)	1.16 (1.03, 1.32) 21	.65
24	Overall, DL (1 ² = 80.2%, p = 0.000)	0.99 (0.92, 1.05) 100	.00
25	Heterogeneity between groups: p = 0.005		
26		1	
27	.5 1	2	
28	NOTE: Weights and between-subgroup heterogeneity test are from random-effect	ts model	
29			
30 Fig. 3 Fores	plot and pooled HR for relationship between SUA	per 1mg/dl increase an	d all-cause mortality in
31	PD patients.	per ing/armereuse an	a an eause mortancy n
	ions: HR: Hazard ratio; CI: Confidence interval; S	UA: Serum uric acid; DI	 M: Diabetes mellitus;
33			
22	NDM: Non-diabetes mellitus; FM: Famal	e; PD: Peritoneal dialysi	S.
		-	S.
34	NDM: Non-diabetes mellitus; FM: Famal 371x270mm (47 x 4	-	S.
34 35		-	S.
34 35 36		-	s.
34 35 36 37		-	s.
34 35 36 37 38		-	s.
34 35 36 37 38 39		-	s.
34 35 36 37 38 39 40		-	s.
34 35 36 37 38 39 40 41		-	s.
34 35 36 37 38 39 40 41 42		-	s.
34 35 36 37 38 39 40 41 42 43		-	s.
34 35 36 37 38 39 40 41 42 43 44		-	s.
34 35 36 37 38 39 40 41 42 43 44		-	s.
34 35 36 37 38 39 40 41 41 42 43 44 45 46		-	s.
34 35 36 37 38 39 40 41 42 43 44		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 51 52 53 54		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58		-	s.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57		7 DPI)	

BMJ Open: first published as 10.1136/bmjopen-2021-052274 on 18 October 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

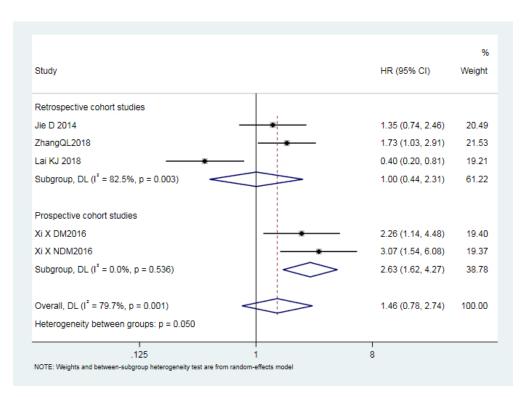
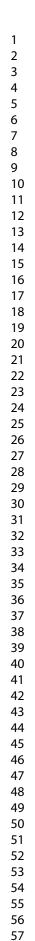
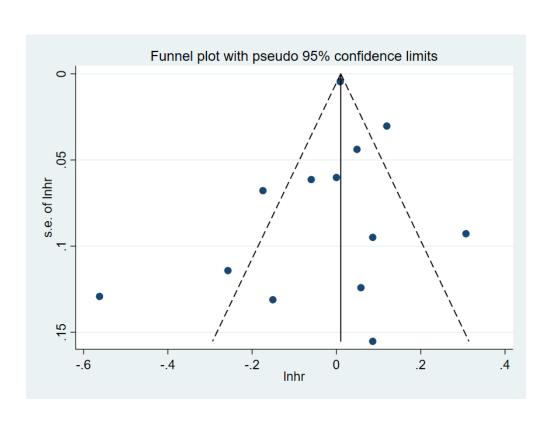


Fig.4 Forest plot and pooled HR for relationship between SUA by categories (the highest SUA category versus the lowest) and cardiovascular mortality in PD patients.

Abbreviations: HR: Hazard ratio; CI: Confidence interval; SUA: Serum uric acid; PD: Peritoneal dialysis.


371x270mm (47 x 47 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

5		
6		
7		
8	Churche	%
9	Study	HR (95% CI) Weight
10	Retrospective cohort studies	
11	Jie D 2014	1.04 (0.89, 1.20) 16.28
12	Lai KJ MEN2018	0.79 (0.61, 1.01) 12.68
13 14	Lai KJ FM2018	0.60 (0.41, 0.87) 8.94
14	Naoki S2020	1.00 (0.94, 1.13) 17.99
16	Subgroup, DL (1 ² = 70.2%, p = 0.018)	0.90 (0.76, 1.06) 55.89
17		
18	Prospective cohort studies	
19	Xi X DM MEN2016	
20	Xi X DM FM2016	- 1.12 (0.78, 1.61) 9.30
21	Xi X NDM FM2016	
22	Subgroup, DL (1 ² = 0.0%, p = 0.683)	1.34 (1.16, 1.55) 44.11
23		
24	Overall, DL (1 ² = 74.0%, p = 0.000)	1.05 (0.90, 1.23) 100.00
25	Heterogeneity between groups: p = 0.000	
26		
27	.5 1 NOTE: Weights and between-subgroup heterogeneity test are from random-effects mode	2
28	NOTE. Weignis and between-subgroup neterogeneity test are non random-eneots mous	51
29		
30 Fig.5 F	orest plot and pooled HR for relationship between S	
31	mortality in PD pat ations: HR: Hazard ratio; CI: Confidence interval; S	
33	NDM: Non-diabetes mellitus; FM: Famal	
33 34		le; PD: Peritoneal dialysis.
33 34 35	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 42	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 42 43	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 42 43 44	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
 33 34 35 36 37 38 39 40 41 42 43 44 45 	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 51 52	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 51 51 52 53	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 51 52	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis.
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	NDM: Non-diabetes mellitus; FM: Famal 371x270mm (47 x 4	le; PD: Peritoneal dialysis. 7 DPI)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	NDM: Non-diabetes mellitus; FM: Fama	le; PD: Peritoneal dialysis. 7 DPI)

BMJ Open: first published as 10.1136/bmjopen-2021-052274 on 18 October 2021. Downloaded from http://bmjopen.bmj.com/ on April 19, 2024 by guest. Protected by copyright.

58 59

301x219mm (72 x 72 DPI)

	BMJ Open	
Databases	Searching strategies a	Results (I
PubMed	 #1. Uric Acid [Mesh] OR Uric Acid [Title/Abstract] OR serum uric acid [Title/Abstract] #2. Mortality [Mesh] OR Mortality [Title/Abstract] #3. Peritoneal Dialysis [Mesh] OR Peritoneal Dialysis [Title/Abstract] OR PD [Title/Abstract] OR continuous ambulatory PD [Title/Abstract] OR CAPD [Title/Abstract] OR intermittent PD [Title/Abstract] OR IPD [Title/Abstract] OR automated PDD [Title/Abstract] OR APD [Title/Abstract] OR continuous cyclic PD [Title/Abstract] OR CCPD [Title/Abstract] OR tidal PD [Title/Abstract] OR TPD [Title/Abstract] 	33
The Cochrane library	 #4. #1 AND #2 AND # 3 #1. Uric Acid [Title/Abstract/Keywords] OR serum uric acid [Title/Abstract/Keywords] #2. Mortality [Title/Abstract/Keywords] #3. Peritoneal Dialysis [Title/Abstract/Keywords] OR PD [Title/Abstract/Keywords] OR continuous ambulatory PB [Title/Abstract/Keywords] OR CAPD [Title/Abstract/Keywords] OR intermittent PD [Title/Abstract/Keywords] OR IPD [Title/Abstract/Keywords] OR automated PD [Title/Abstract/Keywords] OR APD [Title/Abstract/Keywords] OR continuous cyclic PD [Title/Abstract/Keywords] OR CCPD [Title/Abstract/Keywords] OR tidal PD [Title/Abstract/Keywords] OR TPD [Title/Abstract/Keywords] #4. #1 AND #2 AND # 3 	10
EMBASE	#4. #1 AND #2 AND # 39#1. (Uric Acid OR serum uric acid).ab,ti9#2. (Mortality).ab,ti9#3. (Peritoneal Dialysis OR PD OR continuous ambulatory PD OR CAPD OR intermittent PD OR IPD OR continuous cyclic PD OR CCPD OR tidal PD OR TPD).ab,ti9#4. #1 AND #2 AND # 39	105
Web of Science	 continuous cyclic PD OR CCPD OR tidal PD OR TPD).ab,ti #4. #1 AND #2 AND # 3 #1. Uric Acid OR serum uric acid [Topic] #2. Mortality [Topic] #3. Peritoneal Dialysis OR PD OR continuous ambulatory PD OR CAPD OR intermittent PD OR IPD OR autometer continuous cyclic PD OR CCPD OR tidal PD OR TPD [Topic] #4. #1 AND #2 AND # 3 #1. niaosuan (uric acid,尿酸) OR xueniaosuan (serum uric acid,血尿酸) 	55
Chinese databases:	#1. niaosuan (uric acid,尿酸) OR xueniaosuan (serum uric acid,血尿酸)	CNKI:18

3 4

24

	BMJ Open BMJ Open -202	
CNKI, SinoMed, VIP, Wan Fang	#2. siwanglv (mortality,死亡率) #3. fumotouxi (peritoneal dialysis,腹膜透析) OR lianxuxingfeiwochuangfumotouxi (continuous ambulatory perito ne al dialysis,连续性腹膜透析) OR zidonghuafumotouxi (automated peritoneal dialysis,自动化腹膜透析) #4. #1. AND #2. AND # 3.	SinoMed:5 生非卧床 VIP:2 WanFang:14
	In the line of April 19, 200	
	from http://bmjopen.bmj.com/ on April 19, 2024 by gu	
	nj.com/ on April 19,	
	24 by guest.	
	Protected by copyright.	
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

46

bmjopen-202

Study ID		Selectio	on		Comparability		0 Outcome		Total sc
	Representativeness of	Representativeness of	Ascertainment of	Demonstration that	- Comparability of groups	Assessment	GFollow up long	Adequacy of	
	exposed group	non-exposed group	exposure	outcome was not	on the basis of design or	of outcome	enough	follow-up of	
				present at start of	analysis		2021.	groups	
				study					
Sheng F 2013[25]	☆	*	\$	*	☆	☆	Downloaded f	-	7
Jie D 2014[14]	☆	*	*	☆	☆	☆	load	☆	8
Xi X 2016[21]	☆	☆	*	\$	☆	☆	ed ☆	☆	8
Eunjin B2016[26]	☆	☆	*	*	-	${\Rightarrow}$	from ☆	☆	7
ChangWX2018[27]	☆	☆	*	*	☆	☆		☆	8
ZhangQL2018[28]	☆	☆	☆	*	☆	${\Rightarrow}$		-	7
Lai KJ 2018[29]	☆	☆	☆	*	\Leftrightarrow	☆	☆ ☆ ☆ ☆ http://bmjopen.h	☆	9
Yang FY 2018 [30]	☆	☆	\$	*	\$	☆		-	7
ChangWX2019[31]	☆	☆	\$	*	*	☆	bmi☆	-	7
Xiang SL 2019[32]	☆	☆	\$	\$	☆	☆	.com	☆	8
Qiu SF 2020[33]	☆	☆	*	\$	*	☆	v on☆	-	7
Coelho I 2020[34]	☆	☆	\$	\$	*	☆	Ap☆	-	7
Naoki S 2020[35]	☆	☆	\$	\$	☆	☆	April 1	☆	8
Xiao X 2020[22]	☆	☆	☆	☆	☆	☆	19, ¹ 2	☆	8
							124 by guest. Protected by copyright.		

 BMJ Open
 Page 42 of

 MOOSE Checklist—A Proposed Reporting Checklist for Authors, Editors, and Reporting Checklist for Authors, Editors, and Reporting Meta-analyses

 of Observational Studies

5	27,
6 Checklist Item	Answer g
7 Reporting of background should include	18
Problem definition	Page 5, Line 7-98
10 Hypothesis statement	Page 5, Line 98-100
1 Description of study outcome(s)	Page 5, Line 99-100; Page 6, Line 119-125
Type of exposure or intervention used	Page 5, Line ²⁹⁹⁻¹⁰⁰ ; Page 6, Line 113-117
Type of study designs used	Page 5, Line 108
15 Study population	Page 5, Line 38-100; Page5-6, Line 109-112
¹⁶ Reporting of search strategy should include	ade
17 18 Qualifications of searchers (eg, librarians and investigators)	Page 7, Line 136
Search strategy, including time period included in the synthesis and keywords	Page 7, Line 137-139, Page 7-8, Line 146-155
20 Effort to include all available studies, including contact with authors	Page 7, Line 144-146
Databases and registries searched	Page 7, Line 40-143
22 Search software used, name and version, including special features used (eg, explosion)	Page 7-8, Line 146-155
Use of hand searching (eg, reference lists of obtained articles)	Page 7, Line 142-143
List of citations located and those excluded, including justification	Page 6-7, Line 127-134; Page 10, Line 209-216
Method of addressing articles published in languages other than English	Page 7, Line 143-144
27 28 Method of handling abstracts and unpublished studies	Page 7, Line 943-144
Description of any contact with authors	Page 7, Line
³⁰ Reporting of methods should include	
³ Description of relevance or appropriateness of studies assembled for assessing the hypothesis	Page 8, Line 157-165
to be tested	024
Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	Page 8, Line 162-165
³⁵ Documentation of how data were classified and coded (eg, multiple raters, blinding, and	Page 8, Lineត្ថ167-172
³⁶ interrater reliability)	יל ד
Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	Page 8, Line 168-169; Page 11, Line 223-231
Assessment of study quality, including blinding of quality assessors; stratification or regression	Page 8-10, Lane 174-203
40 on possible predictors of study results	ьу
Assessment of heterogeneity	Page 9-10, Ligne 197-199
43 Description of statistical methods (eg, complete description of fixed or random effects models,	Page 8-10, 🛓 e 174-203
justification of whether the chosen models account for predictors of study results,	
45 dose-response models, or cumulative meta-analysis)-intsufficient detail conservated idelines	s.*html
46	

BMJ Open

Page 43 of 42	BMJ Open	136/bmjop
1 MOOSE Checklist——A Propo	osed Reporting Checklist for Authors, Edito	ors, and Reziewers of Meta-analyses
² of Observational Studies		021-05
4 5		6227
6 Provision of appropriate tables and gra	phics	Page 7-8, Linge 154-155
7 Reporting of results should include		18
8 9 Graphic summarizing individual study e	estimates and overall estimate	Page 10, Ling 215-216 Fig.1
10 Table giving descriptive information for		Page 10, Ling 219-220 Table 1,2
11 Results of sensitivity testing (eg, subgro	pup analysis)	Page 13-14, gine 285-304
¹² Indication of statistical uncertainty of f		Page 15, Line 309-312
Reporting of discussion should include		
15 Quantitative assessment of bias (eg, pu	Iblication bias)	Page 15, Ling 327-328
¹⁶ Justification for exclusion (eg, exclusion		Page 10, Line 209-216
Assessment of quality of included studi	ies in the second se	Page 16-17, ine 339-372
19 Reporting of conclusions should include		
20 Consideration of alternative explanatio	ns for observed results	Page 20, Line 429-433
²¹ Generalization of the conclusions (ie, a	ppropriate for the data presented and within the	Page 20, Ling 429
domain of the literature review		<u> </u>
24 Guidelines for future research		Page 20, Ling 433-437
²⁵ Disclosure of funding source		Page 21, Ling 448-452
	D, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of ol	bservational studies in epidemiology: a proposal for reporting.
 27 Meta-analysis Of Observational Studies in Epidemiolo 28 	gy (MOOSE) group. JAMA. 2000 Apr 19;283(15):2008-12.	on on
29		Apri
30		= 19
31		, 20
32 33		2024 by
34		
35		lues
36		ריי. ש
37 38		rote
39		Ċte
40		b b
41		7 CO
42		guest. Protected by copyright
43		ght
44 45	For peer review only - http://bmjopen.bmj.com/site/about/guideline	-
46		