

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Study protocol for the ABERRANT study: Antibiotic-induced disruption of the maternal and infant microbiome and adverse health outcomes

Journal:	BMJ Open
Manuscript ID	
Article Type:	
Date Submitted by the Author:	08-Dec-2019
Complete List of Authors:	Volery, Maryse; University of Fribourg, Faculty of Science and Medicine Scherz, Valentin; University of Lausanne Jakob, William; HFR Fribourg Cantonal Hospital Bandeira, Diane; Hopital cantonal de Fribourg Deggim-Messmer, Vanessa; Hopital cantonal de Fribourg Lauber-Biason, Anna; University of Fribourg, Faculty of Science and Medicine Wildhaber, Johannes; University of Fribourg Falquet, Laurent; University of Fribourg, Department of Biology Curtis, Nigel; The University of Fribourne Zimmermann, Petra; University of Fribourg; The University of Melbourne Faculty of Medicine Dentistry and Health Sciences, Department of Paediatrics
Keywords:	Immunology < BASIC SCIENCES, Molecular diagnostics < INFECTIOUS DISEASES, MICROBIOLOGY, NEONATOLOGY, Paediatric infectious disease & immunisation < PAEDIATRICS
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

1		
2 3 4	1	Study pro
5 6	2	maternal
7 8	3	
9 10	4	Maryse V
11 12 13	5	Messmer ⁴
15 14 15	6	Falquet ⁵ , I
16 17	7	
18 19	8	Affiliation
20 21 22	9	¹ Faculty of
22 23 24	10	² Departm
25 26	11	³ Institute
27 28	12	Lausanne
29 30 31	13	⁴ Microbio
32 33	14	⁵ Departm
34 35	15	Fribourg
36 37 38	16	⁶ Departme
39 40	17	⁷ Infectiou
41 42	18	Australia
43 44	19	⁸ Infectiou
45 46 47	20	
48 49	21	Address c
50 51	22	Science ar
52 53 54	23	Switzerlar
55 56		
57 58		
59 60		

1	Study protocol for the ABERRANT study: Antibiotic-induced disruption of the
2	maternal and infant microbiome and adverse health outcomes
3	
4	Maryse Volery ^{1,2} , Valentin Scherz ³ , William Jakob ⁴ , Diane Bandeira ⁴ , Vanessa Deggim-
5	Messmer ⁴ , Anna Lauber-Biason ¹ , MD, PhD, Johannes Wildhaber ^{1,2} , MD, PhD, Laurent
6	Falquet ⁵ , PhD, Nigel Curtis ^{6,7,8} , FRCPCH, PhD, Petra Zimmermann ^{1,2,6,8} , MD
7	
8	Affiliations:
9	¹ Faculty of Science and Medicine, University of Fribourg, Switzerland
10	² Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
11	³ Institute of Microbiology, Lausanne University Hospital and University of Lausanne,
12	Lausanne, Switzerland
13	⁴ Microbiology Laboratory, Fribourg Hospital HFR, Fribourg, Switzerland
14	⁵ Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics,
15	Fribourg, Switzerland
16	⁶ Department of Paediatrics, The University of Melbourne, Parkville, Australia
17	⁷ Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville,
18	Australia
19	⁸ Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
20	
21	Address correspondence to: Dr Petra Zimmermann, Fribourg Hospital HFR and Faculty of
22	Science and Medicine, University of Fribourg, Route des Arsenaux 41, 1700 Fribourg,
23	Switzerland, Tel: +41 26306 0000, petra.zimmermann@unifr.ch

ABSTRACT

BMJ Open

25	Introduction: There is compositional overlap between the maternal intestinal microbiome,
26	the breast milk microbiome and the infant oral and intestinal microbiome. Antibiotics cause
27	profound changes in the microbiome. However, the effect of intrapartum and early-life
28	antibiotics on the maternal intestinal and breast milk microbiome, and the infant oral and
29	intestinal microbiome, and whether effects are only short-term or persist long-term remain
30	uncertain.

Methods and analyses: In this prospective cohort study, we will use metagenomic sequencing to determine: (i) the effect of *intrapartum antibiotics* on the composition of the breast milk, and the infant oral and intestinal microbiome, including the development and persistence of antibiotic resistance; (ii) the effect of antibiotic exposure in the first year of life on the composition of the infant oral and intestinal microbiome, including the development and persistence of antibiotic resistance; (iii) the effect of disruption of the infant oral and intestinal microbiome on health outcomes; and (iv) the compositional overlap between the maternal intestinal microbiome, the breast milk microbiome and the infant oral and intestinal microbiome.

40 Ethics and dissemination: The ABERRANT study has been approved by the Commission
41 cantonale d'éthique de la recherche sur l'être humain (CER-VD) du Canton de Vaud (#201942 01567). Outcomes will be disseminated through publication and will be presented at scientific
43 conferences.

Trial registration number: The U.S. National Institutes of Health NCT04091282.

Page 4 of 24

1 2	
3 4	
5 6 7	
7 8 9	
10	
14 15	
12 13 14 15 16 17	
18 19 20	
21	
22 23	
24 25	
26 27 28	
20 29 30	
31 32	
33	
34 35 36	
37 38	
39 40	
41 42 43	
43 44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59 60	
00	

45 STRENGTHS AND LIMITATIONS OF THIS STUDY

- This study will use metagenomic sequencing to comprehensively determine the effect
 of intrapartum and early-life antibiotics on the composition of the maternal breast milk
 and the infant oral and intestinal microbiome.
- High quality clinical data combined with cutting-edge microbiome analyses will
 enable the identification of bacterial species, together with resistance genes and other
 important components of the microbiome such as archaea, eukaryotes (fungi) and
 viruses.
- The study includes investigation of the association between the early-life intestinal
 microbiome and clinical health outcomes.
- The knowledge gained by this study will form the basis for the development of
 evidence-based interventions to prevent adverse outcomes in situations where
 antibiotics cannot be avoided, including modifying the intestinal microbiome with
 directed pre- and probiotics, or bacteriophages.
- Meticulous precautions will be used to avoid contamination of potentially low
 microbial biomass breast milk samples, such as working in a laminar flow cabinet and
 including negative controls to identify microbial DNA signals from the environment
 or extraction and sequencing kits.

BMJ Open

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50 59
60

63 INTRODUCTION

64 Antibiotics are amongst the most commonly used drugs, especially in infants and children. Even before birth, more than 40% of infants are exposed to antibiotics.¹ Additionally, more 65 than two-thirds of children receive antibiotics before reaching the age of two years.²³ The 66 67 human intestine is the habitat for a large community of microbes, the intestinal microbiome. 68 Colonisation of the intestinal tract increases rapidly after birth and the microbiome of the 69 maternal intestine and breast milk are an important source for the infant intestinal 70 microbiome.⁴ Conversely, as retrograde flow of breast milk into mammary ducts has been documented,⁵ the infant oral microbiome might be responsible for colonising the mammary 71 72 ducts and therefore could contribute to the breast milk microbiome. Consequently, there is 73 compositional overlap between the maternal intestinal microbiome, the breast milk 74 microbiome and the infant oral and intestinal microbiome.⁶⁷ 75 Growing evidence shows that the composition of the intestinal microbiome in infants plays an important role in the development and regulation of the immune system, especially in the 76 77 early-life 'critical window' during which the microbiome and the immune response develop 78 concurrently. Antibiotics cause profound changes in the microbiome.⁸⁹ However, the magnitude of the 79 80 effect of intrapartum and early-life antibiotics on the breast milk, and the infant oral and 81 intestinal microbiome, and whether effects are only short-term or persist long-term remain 82 uncertain. Preliminary studies suggest that disruption of intestinal microbiome in the early-life 83 period is associated with the development of a number of immune- and non-immunemediated diseases, including allergies,¹⁰ eczema,¹⁰ asthma,¹⁰ chronic inflammatory bowel 84 disease,¹¹ obesity¹² and diabetes mellitus.¹³ Antibiotic exposure *in utero* and during infancy 85 86 has been associated with an increased risk for the same diseases¹⁴⁻¹⁶ and it is likely that the association between antibiotic exposure and the subsequent development of these diseases is 87 88 mediated through changes in the infant microbiome. However, the features and composition

characteristics of the intestinal microbiome associated with the development of theseconditions are unclear.

92 Importantly, antibiotic exposure can also lead to the development of antibiotic resistance,⁸ 93 resulting in infections that are more difficult and costly to treat, often requiring longer 94 duration of hospital stay, and the use of antibiotics with more adverse effects. Currently, in 95 children, there is sparse data available on the effect of antibiotic exposure on the development 96 and persistence of antibiotic resistance in their intestinal microbiome.

97 In this prospective cohort study, we will use metagenomic sequencing to determine (i) the

98 effect of *intrapartum antibiotics* on the composition of the breast milk, and the infant oral and

99 intestinal microbiome (including the development and persistence of antibiotic resistance); (ii)

100 the effect of *antibiotic exposure in the first year of life* on the composition of the infant oral

101 and intestinal microbiome (including the development and persistence of antibiotic

102 resistance); (iii) the effect of disruption of the infant oral and intestinal microbiome on health

103 outcomes; and (iv) determine the compositional overlap between the maternal intestinal

104 microbiome, the breast milk microbiome and the infant oral and intestinal microbiome.

Determining the relationship between antibiotic exposure and changes in the breast milk, and
the infant oral and intestinal microbiome, and their potential association with adverse health

107 outcomes, will provide stronger evidence for strict antibiotic stewardship. Additionally, it will

108 form the basis for designing studies to investigate interventions to prevent adverse outcomes

109 in situations where antibiotics cannot be avoided, including modifying the intestinal

110 microbiome with directed pre- and probiotics, or bacteriophages.

113 METHODS AND ANALYSIS

OBJECTIVES

114 Study design

1 2		
2 3 4	115	A prospective single-centre cohort study of 400 mother-infant pairs.
5 6	116	
7 8 9	117	Aims
10 11	118	Aim 1: To determine the extent to which, and for how long, intrapartum antibiotics affect the
12 13	119	composition of the breast milk microbiome and the infant oral and intestinal microbiome, as
14 15 16	120	well as the prevalence of antibiotic resistance genes.
17 18	121	Aim 2: To determine the extent to which, and for how long, antibiotics in the first year of life
19 20	122	affect the composition of the oral and intestinal microbiome in infants, as well as the
21 22 23	123	prevalence of antibiotic resistance genes.
24 25	124	<i>Aim 3</i> : To determine health outcomes (Table 1) in children up to the age of 2 years who have
26 27	125	or have not been exposed to intrapartum antibiotics or antibiotics in the first year of life and
28 29 30	126	determine whether there is an association with the composition of the oral and intestinal
31 32	127	microbiome.
33 34	128	<i>Aim 4</i> : To determine the degree to which the maternal intestinal and the breast milk
35 36 37	129	microbiome affect the composition of the infant oral intestinal microbiome and the prevalence
37 38 39	130	of antibiotic resistance genes.
40 41	131	<i>Aim 5</i> : To determine the degree to which the infant oral microbiome affects the composition
42 43	132	of the breast milk microbiome.
44 45 46	133	
47 48	134	Outcomes
49 50	135	Primary endpoints:
51 52 53	136	- Composition of the maternal intestinal and breast milk microbiome, and the infant oral
54 55	137	and intestinal microbiome and the prevalence of antibiotic resistance genes within the
56 57	138	infant microbiome at birth and when infants are 7 days, 1, 2, 4, 6, 12 and 24 months of
58 59 60	139	age.

1

2		
3 4	140	- Number of episodes of lower respiratory tract illnesses and acute otitis media in the
5 6	141	first two years of life.
7 8	142	- Prevalence of allergic sensitisation and eczema at 1 and 2 years of age.
9 10	143	- Weight at 1 and 2 years of age.
11 12 13	144	
14 15	145	Setting and participants
16 17	146	Sampling frame and study sample: Women who give birth at the Hôpital fribourgeois (HFR)
18 19 20	147	in Fribourg, Switzerland and their infants will be followed over a two-year period. If
20 21 22	148	recruitment is slow a second study site will be added.
23 24	149	<i>Recruitment:</i> Pregnant women attending the antenatal clinic will be given information about
25 26 27	150	the study by a research study nurse or doctor and asked to consider enrolling themselves and
27 28 29	151	their infant in the study.
30 31	152	Blinding of outcome assessment: Doctors and study nurses will be blinded to the group of
32 33 34	153	infants (control or antibiotic-exposed) when outcomes are measured.
35 36	154	
37 38	155	Eligibility criteria
39 40 41	156	Inclusion criteria: Healthy babies born at 37 weeks or more gestation who are breastfed.
42 43	157	Exclusion criteria: Women with the following criteria: HIV, hepatitis B or C infection or
44 45	158	unscreened for these infections, antibiotics or probiotics in pregnancy or postpartum period
46 47 48	159	other than during delivery. Infants with the following criteria: low birth weight (<2500 g) or
49 50	160	severe congenital abnormality.
51 52	161	
53 54 55	162	Study outcome measures
56 57	163	We will use internationally accepted validated measures for clinical outcomes. The study
58 59	164	protocol is depicted in Table 2.
60	165	<i>Diary</i> : Parents will be given a structured diary where they can record information about their

Page 9 of 24

BMJ Open

infant's diet (introduction of formula and new foods), illnesses, medical visits, hospital admissions, use of antibiotics and other medications. This will help them when filling in the questionnaires at the required time points.

Questionnaire: We will do computer-assisted interviews at birth, and when infants are 1, 6, 12 and 24 months of age using best practice international protocols. The following data will be recorded: demographic variables including parental ancestry and education, family history of atopy, eczema, asthma and other immune disorders, antenatal variables such as maternal age, weight, smoking habits, underlying diseases, medication and supplementation use (e.g. probiotics and vitamins). In addition, we will collect data on delivery history, perinatal course (e.g. hospitalisation, infections, antibiotics or oxygen administration), breast-feeding (including episodes of mastitis and maternal antibiotic and probiotic use), age of introduction of formula and new foods, administration of probiotics and vitamins, use of antibiotics, antacids and other medications, GP and other medical visits, illnesses including infections and hospital admissions, number of siblings, child care attendance, parental smoking habits, pet ownership, suspected food allergy and eczema (presence, medications). Data will be stored using the Research Electronic Data Capture (REDCap Consortium) database.¹⁷ *Clinical examination:* Participants will be reviewed at 12 and 24 months of age in a specially designated clinic at the HFR by a study nurse or doctor using a structured interview and clinical eczema assessment. Weight: Weight will be assessed during the clinical examination at 12 and 24 months of age. The WHO Child Growth Standards will be used as a reference for percentiles.¹⁸ Lower respiratory tract illness (LRTI) and acute otitis media (AOM): Symptoms of acute lower respiratory illness (such cough and wheeze) and the number of episodes of LRTI and AOM will be recorded by parents, and specific questions will be asked in the questionnaires. We will use the definitions for LRTI developed by Oddy et al and Kusel et al.¹⁹²⁰

Eczema: Prevalence of eczema at 12 and 24 months of life will be assessed by the Williams'
UK diagnostic criteria of the International Study of Asthma and Allergy in Childhood
(ISAAC).²¹ This will be assessed by using parent-reported eczema from diary information and
from the clinical examinations at 12 and 24 months of age. We will assess the severity of
eczema using the SCORAD.²² We will also collect data on age of onset of eczema,
distribution of eczema, use of eczema medications, and medical consultations and hospital
admissions.

Skin prick tests: Sensitisation to the following panel of allergens will be assessed at 24
months of age: cow's milk, egg, peanut, sesame, house dust mite (*Dermatophagoides pteronyssinus 1*), cat, dog and grass pollen. Skin prick allergy testing will be performed
according to standard guidelines.²³ A positive skin prick test will be defined as an average
wheal diameter at least 3 mm greater than that produced by a negative control solution at 15
minutes.²⁴

Blood sampling: We will collect maternal blood at time of delivery. We also will obtain cord
blood at birth. During the clinical examination at 12 and 24 months of age, blood will be
collected by personnel trained in infant venipuncture, whose parents consent to this
component of the study. The 5-10 ml volume required is safe and within limits for weight
recommended by the US-based Office of Human Research Protections guidelines for blood
collection from healthy infants.

Breast milk samples: Study nurses will collect one colostrum sample as soon as possible after
birth. Mothers will be asked to collect breast milk (with date and time recorded) from their
first feed of the day (a minimum of 2 hours required to the previous feed) when infants are 7
days, 1, 2, 4, and 6 months old. If breastfeeding is ceased earlier than 6 months, breast milk
will be collected before breastfeeding is discontinued. Mothers will be instructed to wash their
hands and breasts meticulously and to then extract breast milk manually without touching the

Page 11 of 24

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25 26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53 54	
55	
56	
57	
58	
59	

areola. The first few drops will be discarded. Reminders will be sent by SMS. Sterilecontainers will be provided.

Oral swabs: Oral swabs will be taken from infants as soon as possible after birth by a study
nurse. Additionally, parents will then be asked to collect buccal swabs (with date and time
recorded) before the first feed of the day when infants are 7 days, 1, 2, 4, and 6 months old.
Sterile containers will be provided. Reminders will be sent by SMS.

Stool samples: Mothers will be asked to collect stool from their first bowel movement of the
day at 38 weeks of pregnancy and on the day after delivery (with date and time recorded). A
meconium sample will be collected from infants as soon as possible after birth by a study
nurse. Parents will then be asked to collect stool samples from their infants when they are 7
days, 1, 2, 4, 6, 12 and 24 months old. Reminders will be sent by SMS. To minimise
variation, parents are asked to collect stool from the first bowel movement of the day (with
date and time recorded). Sterile containers will be provided.

Storage of samples: Parents will be instructed to freeze breast milk, oral swabs and stool
 samples in sealed bags in their domestic freezer at -20°C until collection by the research team.
 Samples will be kept frozen during transportation to the laboratory where they will be
 aliquoted and stored at -80°C.

233 **DNA extraction and sequencing:** DNA from breast milk, oral swabs and stool samples 234 (approximately 200 mg) will be extracted using the FastDNA Spin Kit for soil (MP 235 Biomedicals, Santa Ana, California, USA). DNA concentrations will be quantified using a 236 Qubit 4.0 fluorometer (ThermoFisher Scientific, Waltham, Massachusetts, USA) and high 237 sensitivity DNA reagents. Bacterial DNA will be quantified by broad-range bacterial qPCR. 238 The library preparation will be done using Nextera DNA Flex Library Preparations Kits. 239 Extracted DNA will be indexed with IDT Illumina Nextera DNA Unique Dual Indexes to 240 allow analysis of pooled samples. 150-bp pair-end sequencing will be done using the Illumina 60 241 NextSeq. The required sequencing depth to provide adequate coverage of microbial

communities for taxonomic profiling will be determined by rarefaction curves. We will aim for a minimum yield of 2×10^6 read-pairs per sample. Appropriate negative controls (including controls from sterile containers, extraction kits etc.) and positive controls of mock communities will be included. These controls will be sequenced together with the samples to identify potential environmental and laboratory contaminants. Researchers carrying out the microbial analyses will be blinded to the group identity of infants (control or antibiotic exposed group). Storage of blood samples: Peripheral blood mononuclear cells will be separated from whole blood and stored in liquid nitrogen. Plasma will be stored frozen at -80°C. These will be retained for future analysis in projects to evaluate the effect of microbiome on the immune system, including immunophenotyping and analysis of markers of immune function. **Bioinformatics and statics plan Bioinformatics:** Sequences will be trimmed according to quality scores and sequencing adaptors will be removed using Trimmomatic.²⁵ Host sequences will be removed by mapping against the Human genome with Bowtie2.²⁶ High-quality sequences will be used to create taxonomic and functional profiles using MetaphlAn2²⁷ and HUMAnN2²⁸, respectively. Antibiotic resistance genes will be identified using ResFinder.²⁹ The outputs will be tables with taxonomically classified sequence counts and gene abundances. Statistical and association analysis: Metrics describing and summarising the different

dimensions of microbiome composition will be considered for statistical analyses. Relative abundances of bacterial and non-bacterial (archaea, eukaryotes and viruses) taxa, as well as metabolic functional and antibiotic resistance genes profiles, will be directly integrated for some analyses. Microbial abundances will also be summarised in alpha-diversity indexes to describe the number of different taxa (Chao richness) and their distribution (Simpson diversity) within each sample. Inter-samples distances will be described in standard beta-

Page 13 of 24

1 2

BMJ Open

3	2
4	
5	~
6	4
7	
8	4
9	
10 11 12 13 14 15 16	2
11	
12	
13	4
14	
15	2
16	
17	~
10	4
18 10	
19 20	2
20	
20 21	~
))	4
73	
14	2
25	
26	~
)/	4
28	
-0 29	2
29 30	
31	-
32	4
32	
33	2
34	
35	~
36	4
37	
38	4
39	
40	2
41	-
42	
43	4
44	
44 45	2
46	
47	4
48	
49	2
50	
51	
52	4
53	
54	2
55	_
55 56	
	4
57	
58	2
59	
60	

diversity indexes matrices (Jaccard, Bray-Curtis, UniFrac and weighted UniFrac). All these
different metrics will be studied in appropriate statistical analyses to investigate the
relationships between sample groups of interest and correlation between clinical metadata and
microbiome composition.
Statistical analyses will compare these metrics in different sample-groups of interest.
Antibiotics exposed samples will be compared to non-exposed samples for significant

⁷ 274 changes in relative abundance of bacterial taxa, antibiotic resistance genes content and alpha-⁹ 275 diversity by Pearson x^2 test and logistic regression.

276 Infant age, demographics, delivery mode and feeding method will be modelized in 277 permutational multivariate analysis of variance (PERMANOVA, adonis2 in VEGAN 278 package, R Foundation) using beta-diversity distance matrices to identify significant 279 contributors to the infant stool microbiome composition. To compare paired maternal stool, 280 breast milk, and infant stool samples, we will do clustering analysis and perform a Wilcoxon 281 rank sum test on beta-diversity distances between true mother-infant pairs and randomly 282 paired mothers and infants matched by infant age. The same will be done for comparison of 283 the breast milk and the infant oral microbiome. These different analyses should allow to 284 describe the relationships between samples of different origins and identify determinants of 285 microbiome composition.

286

To further characterise the mother-to-infant microbiome transmission, the StrainPhlAn software will be used.³⁰ This software enables same-species sequence comparisons at the single nucleotide polymorphism (SNPs) level to define sample-specific strains. Combined results for shared species allow precise description of the phylogenetic distance between samples. Added to the beta-diversity analyses, this will allow to better disentangle the hypothesised seeding from maternal stool and breast milk to the infant oral and stool microbiome.

294	For integrated analysis of the microbiome data and clinical outcomes, allergic sensitisation,
295	eczema, and overweight cases will be defined using the prospectively collected outcome
296	measures. The relationship between bacterial taxa and these clinical outcomes will be
297	determined by hierarchical clustering of communities using heatmaps and principal
298	component analysis (PCA). Significance of grouping of clinical categories using
299	permutational multivariate analysis of variance (PERMANOVA). Microbes that have
300	significantly different abundance between the clinical outcome groups will be identified using
301	the multiple testing ("mt") function in phyloseq. ³¹ The potential influence of antenatal and
302	postnatal factors on the microbiome or clinical outcomes will be accounted for in all analyses
303	by PERMANOVA and unsupervised hierarchical clustering.
304	
305	ETHICS AND DISSEMINATION
306	Ethics approval
307	The ABERRANT study has been approved by the Commission cantonale d'éthique de la
308	recherche sur l'être humain (CER-VD) du Canton de Vaud (#2019-01567).
309	
310	Recruitment and consent
311	Written informed consent will be obtained from all participants included in the trial.
312	Participants will be informed that they are not obliged to take part in the study and are free to
312313	Participants will be informed that they are not obliged to take part in the study and are free to withdraw at any time without any impact on their future care.
313	
313 314	withdraw at any time without any impact on their future care.
313314315	withdraw at any time without any impact on their future care. Data collection and storage
313314315316	 withdraw at any time without any impact on their future care. Data collection and storage Data will be sourced from medical maternal and infant records, as well as by questionnaire

2 3 4	320	Safety
5 6	321	No serious adverse reactions are anticipated but these will be checked for by the Data Safety
7 8 9	322	and Monitoring Committee.
9 10 11	323	
12 13	324	Dissemination of results
14 15	325	Outcomes will be disseminated through publication according to the SPIRIT statement and
16 17 18	326	will be presented at scientific conferences.
19 20	327	
21 22	328	Study duration
23 24 25	329	We aim to recruit participants over a two-year period.
26 27	330	
28 29	331	DISCUSSION
30 31 32	332	The intestinal microbiome is crucial in the development of the immune system and regulation
32 33 34	333	of immune responses, especially during infancy, when the intestinal microbiome and the
35 36	334	immune response develop concurrently. ³² The development of intestinal microbiome is easily
37 38	335	disrupted by external factors and perturbation during this vulnerable period may have a large
39 40 41	336	influence on immune development. A number of factors influence the development of the
42 43	337	infant intestinal microbiome, including gestational age, delivery mode, feeding, and maternal
44 45	338	and infant antibiotic exposure (Figure 1). ³³ While the effect of delivery mode and feeding
46 47 48	339	methods on the establishment of microbial communities has been well studied, much less is
49 50	340	known about the effects of intrapartum and early-life antibiotic exposure on the establishment
51 52	341	of microbial communities in the intestinal microbiome. ⁹
53 54 55	342	A number of commonly used antibiotics have profound effects on specific bacteria within the
56 57	343	intestinal microbiome, as detailed in a recent systematic review.8 This 'collateral damage'
58 59	344	includes changes in abundance of microbial taxa, a decrease in 'colonisation resistance'
60	345	(protection against colonisation with potentially pathogenic organisms) and the development 14

of antibiotic resistance. To date, most studies on the effect of antibiotic exposure on the intestinal microbiome have been done in adults.⁸ The main findings of these studies are that antibiotics often lead to a decreased bacterial diversity, a decrease in the abundance of anaerobic bacteria, an increase in abundance of Enterobacteriaceae other than E. coli and an increase in the abundance of yeast.⁸ These studies show that changes in the intestinal microbiome after just one course of antibiotics can persist up to four years.⁸ However, the clinical consequences of changes in the composition of the intestinal microbiome with antibiotic treatment are unknown. An increase in Enterobacteriaceae, which are often resistant to beta-lactam and other antibiotics, might render the host more susceptible to infections with antibiotic-resistant bacteria. This phenomenon has been observed in infants in neonatal intensive care units, who become more often colonised with Klebsiella spp., Enterobacter spp. and *Citrobacter* spp., when treated with antibiotics.³⁴ Intrapartum antibiotic prophylaxis (IAP) has become common practice in obstetric medicine and is used in up to 40% of deliveries, which makes it the most common source of antibiotic exposure in neonates.¹ IAP is routinely used in both elective and emergency Caesarean section (CS). It is also routinely used in women who are colonised with group B streptococcus (GBS). Despite the benefits, the risks associated with exposing a large number of infants to antibiotics, especially the long-term effects on health through changes in the microbiome, remain unclear. Infants who were exposed to IAP have been reported to have a lower alpha-diversity, a lower relative abundance of Actinobacteria, especially *Bifidobacteriaceae*, and a larger relative abundance of Proteobacteria in their intestinal microbiome compared to nonexposed infants.9 Breastfeeding has been shown to be beneficial in preventing many communicable and non-communicable diseases.³⁵ Despite intensive research into the positive health effects of breastfeeding, the underlying mechanisms are still not understood. However, a large part of

371 the beneficial effects of breast milk is likely mediated through the microbiome and its

BMJ Open

2 3 4	372
5	373
7 8	374
9 10	375
10 11 12	
12 13 14	376
14 15 16	377
17 18	378
19 20	379
21 22	380
23 24	381
25 26 27	382
28 29	383
30 31	384
32 33 34	385
35 36	386
37 38	387
39 40	388
41 42 43	389
43 44 45	390
46 47	391
48 49	392
50 51	
52 53	393
54 55	394
56 57	395
58 59	396

60

associated immunomodulatory, anti-inflammatory and antimicrobial components. The breast
 milk microbiome also plays a large part in shaping the infant's intestinal microbiome.⁴

375 There is relatively little data about the effects of IAP on the composition of the breast milk microbiome.^{36 37} Mothers who receive IAP have been reported to have a lower abundance or 376 even an absence of the beneficial bacteria *Bifidobacterium* spp. in their breast milk.^{36 37} There 377 378 is also some evidence suggesting that mothers who receive IAP have a higher bacterial 379 richness and diversity in their breast milk microbiome compared with mothers who do not receive antibiotics.³⁶ However, these findings have to be interpreted with caution: it could be 380 381 that antibiotics lead to lower bacterial numbers and therefore signals from contamination, e.g. 382 bacteria found in DNA extraction or sequencing kits might be amplified more leading to a the 383 detection of a higher diversity. Use of broad-range qPCR to quantity bacterial load in milk 384 samples will allow to assess this potential bias.

Interestingly, recent preliminary studies have also shown that delivery mode affects the composition of the breast milk microbiome.^{36 38 39} However, during suckling, a high degree of retrograde flow of milk into the mammary ducts can occur,⁵ transferring bacteria from the infant to the mother, as postulated for GBS.⁴⁰ It is therefore possible that the differences in the breast milk microbiome observed with different delivery modes are mediated through differences in the oral microbiome of infants.

This study will determine the effect of intrapartum and early-life antibiotics on the composition of the breast milk, and the infant oral and intestinal microbiome and antibiotic resistance. The knowledge gained by this study will make an important contribution to the growing field of research investigating the importance of the immunological role of the breast milk microbiome and the infant intestinal microbiome on infant health. It will form the basis for investigating the interplay between the microbiome and the regulation of the human

∠ 2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
∠∠ ??	
23 24	
24 25 26	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 35 36	
35	
36	
37	
38	
39	
40	
40 41	
41	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

1

397 immune system and possible adverse health outcomes, such as the development of immune

398 and non-immune mediated diseases, including allergic diseases.

399 The results of this study will also build a stronger evidence base for strict antibiotic

400 stewardship and form the basis for development of evidence-based interventions to prevent

401 adverse outcomes in situations where antibiotics cannot be avoided, including modifying the

402 intestinal microbiome with directed pre- and probiotics or bacteriophages.

.s

Page 19 of 24

1 2

BMJ Open

3	
4	
5	
6	
6 7	
/	
8	
9	
10	
11	
12	
13	
14	
12 13 14 15 16 17	
16	
17	
18	
10	
19 20	
20 21	
∠ I 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
33	
36 37	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	

60

403	Contributors VS, LF, NC and PZ were responsible for study conception and design. JW, AL
404	and PZ were responsible for funding acquisition and implementation. MV drafted the
405	manuscript and coordinated the manuscript preparation and revision. PZ has developed the
406	statistical analysis plan. MV and PZ have developed the online questionnaires and database
407	set-up in REDCap, based on the database setup by the Melbourne Infant Study: BCG for
408	Allergy and Infection Reduction (MIS BAIR). ⁴¹ All authors provided critical evaluation and
409	revision of manuscript and have given final approval of the manuscript accepting
410	responsibility for all aspects.
411	
412	Funding This trial is funded by the University of Fribourg and the Fribourg Hospital HFR,
413	Switzerland. VS is supported by a SNSF grant (n° 10531C-170280 - F. Falquet, G. Greub and
414	F. Taroni).
415	
416	Competing interests None.
417	
418	Provenance and peer review Not commissioned; externally peer reviewed.

¢

1		
2		
3	419	References
4 5	420	
6	421	1. Stokholm J, Schjorring S, Pedersen L, et al. Prevalence and predictors of antibiotic administration
7	422	during pregnancy and birth. <i>PloS one</i> 2013;8(12):e82932. doi: 10.1371/journal.pone.0082932
8	423	[published Online First: 2013/12/18]
9	424	2. Hellman J, Grape M, Ternhag A. Antibiotic consumption among a Swedish cohort of children born
10	425	in 2006. Acta paediatrica (Oslo, Norway : 1992) 2015;104(10):1035-8. doi:
11 12	426	10.1111/apa.13097 [published Online First: 2015/06/26]
12	427	3. Anderson H, Vuillermin P, Jachno K, et al. Prevalence and determinants of antibiotic exposure in
14	428	infants: A population-derived Australian birth cohort study. J Paediatr Child Health
15	429	2017;53(10):942-49. doi: 10.1111/jpc.13616 [published Online First: 2017/07/28]
16	430	4. Pannaraj PS, Li F, Cerini C, et al. Association Between Breast Milk Bacterial Communities and
17	431	Establishment and Development of the Infant Gut Microbiome. JAMA pediatrics
18	432	2017;171(7):647-54. doi: 10.1001/jamapediatrics.2017.0378 [published Online First:
19 20	433 434	2017/05/12]
20 21	434	5. Ramsay DT, Kent JC, Owens RA, et al. Ultrasound imaging of milk ejection in the breast of lactating
22	433 436	women. <i>Pediatrics</i> 2004;113(2):361-7. [published Online First: 2004/02/03]
23	430	6. Perez PF, Dore J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons
24	437	from maternal cells? <i>Pediatrics</i> 2007;119(3):e724-32. doi: 10.1542/peds.2006-1649
25	438	[published Online First: 2007/03/03] 7. Jost T, Lacroix C, Braegger CP, et al. Vertical mother-neonate transfer of maternal gut bacteria via
26	440	breastfeeding. Environmental microbiology 2014;16(9):2891-904. doi: 10.1111/1462-
27	441	2920.12238 [published Online First: 2013/09/17]
28 29	442	8. Zimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota.
30	443	Journal of Infection 2019; Published online [published Online First: 2019/10/21]
31	444	9. Zimmermann P, Curtis N. Effect of intrapartum antibiotics on the intestinal microbiota of infants: a
32	445	systematic review. Arch Dis Child Fetal Neonatal Edition 2019 doi: 10.1136/archdischild-
33	446	2018-316659 [published Online First: 2019/07/13]
34	447	10. Zimmermann P, Messina N, Mohn WW, et al. Association between the intestinal microbiota and
35 36	448	allergic sensitization, eczema, and asthma: A systematic review. The Journal of allergy and
36 37	449	clinical immunology 2018 doi: 10.1016/j.jaci.2018.09.025 [published Online First:
38	450	2019/01/03]
39	451	11. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn's
40	452	disease revealed by a metagenomic approach. <i>Gut</i> 2006;55(2):205-11. doi:
41	453	10.1136/gut.2005.073817 [published Online First: 2005/09/29]
42	454	12. Scott FI, Horton DB, Mamtani R, et al. Administration of Antibiotics to Children Before Age 2 Years
43	455	Increases Risk for Childhood Obesity. Gastroenterology 2016;151(1):120-29.e5. doi:
44 45	456	10.1053/j.gastro.2016.03.006 [published Online First: 2016/03/24]
46	457	13. Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nature
47	458	reviews Endocrinology 2016;12(3):154-67. doi: 10.1038/nrendo.2015.218 [published Online
48	459	First: 2016/01/06]
49	460	14. Mueller NT, Whyatt R, Hoepner L, et al. Prenatal exposure to antibiotics, cesarean section and
50	461	risk of childhood obesity. International journal of obesity (2005) 2015;39(4):665-70. doi:
51 52	462	10.1038/ijo.2014.180 [published Online First: 2014/10/10]
52 53	463	15. Ong MS, Umetsu DT, Mandl KD. Consequences of antibiotics and infections in infancy: bugs,
54	464	drugs, and wheezing. Annals of allergy, asthma & immunology : official publication of the
55	465	American College of Allergy, Asthma, & Immunology 2014;112(5):441-45.e1. doi:
56	466	10.1016/j.anai.2014.01.022 [published Online First: 2014/03/19]
57	467	16. Ungaro R, Bernstein CN, Gearry R, et al. Antibiotics associated with increased risk of new-onset
58	468	Crohn's disease but not ulcerative colitis: a meta-analysis. <i>The American journal of</i>
59 60	469	gastroenterology 2014;109(11):1728-38. doi: 10.1038/ajg.2014.246 [published Online First:
00	470	2014/09/17]

1		
2 3	471	17 Harris DA Taular D. Thialka D. at al. Desearch algotranic data conture (DEDCan), a motodata
4	471	17. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap) - a metadata- driven methodology and workflow process for providing translational research informatics
5	473	support. J Biomed Inform 2009;42(2):377-81. doi: 10.1016/j.jbi.2008.08.010 [published
6	474	Online First: 2008/10/22]
7	475	18. Organization WH. WHO Child Growth Standards 2006 [Available from:
8 9	476	https://www.who.int/childgrowth/standards/en/.
9 10	477	19. Oddy WH, de Klerk NH, Sly PD, et al. The effects of respiratory infections, atopy, and
11	478	breastfeeding on childhood asthma. <i>Eur Respir J</i> 2002;19(5):899-905. [published Online First:
12	479	2002/05/28]
13	480	20. Kusel MM, de Klerk NH, Holt PG, et al. Role of respiratory viruses in acute upper and lower
14	481	respiratory tract illness in the first year of life: a birth cohort study. <i>Pediatr Infect Dis J</i>
15	482	2006;25(8):680-6. doi: 10.1097/01.inf.0000226912.88900.a3 [published Online First:
16 17	483	2006/07/29]
17	484	21. Williams HC, Burney PG, Pembroke AC, et al. The U.K. Working Party's Diagnostic Criteria for
19	485	Atopic Dermatitis. Br J Dermatol 1994;131(3):406-16. [published Online First: 1994/09/01]
20	486	22. Schmitt J, Langan S, Williams HC. What are the best outcome measurements for atopic eczema?
21	487	A systematic review. The Journal of Allergy and Clinical Immunology 2007;120(6):1389-98.
22	488	doi: 10.1016/j.jaci.2007.08.011 [published Online First: 2007/10/04]
23	489	23. Bernstein IL, Storms WW. Practice parameters for allergy diagnostic testing. Ann Allerg Astham
24	490	Im 1995;75(6 Pt 2):543-625. [published Online First: 1995/12/01]
25 26	491	24. Bernstein IL, Storms WW. Practice parameters for allergy diagnostic testing. Joint Task Force on
20 27	492	Practice Parameters for the Diagnosis and Treatment of Asthma. The American Academy of
28	493	Allergy, Asthma and Immunology and the American College of Allergy, Asthma and
29	494	Immunology. Ann Allergy Asthma Immunol 1995;75(6 Pt 2):543-625. [published Online First:
30	495	1995/12/01]
31	496	25. Andrews S. FastQC: a quality control tool for high throughput sequence data. Available online at:
32	497	http://wwwbioinformaticsbabrahamacuk/projects/fastqc 2010
33 34	498	26. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9(4):357-
35	499	9. doi: 10.1038/nmeth.1923 [published Online First: 2012/03/06]
36	500	27. Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial community profiling using unique
37	501	clade-specific marker genes. <i>Nat Methods</i> 2012;9(8):811-4. doi: 10.1038/nmeth.2066
38	502	[published Online First: 2012/06/13]
39	503	28. Abubucker S, Segata N, Goll J, et al. Metabolic reconstruction for metagenomic data and its
40	504	application to the human microbiome. <i>PLoS Comput Biol</i> 2012;8(6):e1002358. doi:
41 42	505	10.1371/journal.pcbi.1002358 [published Online First: 2012/06/22]
42 43	506	29. Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes.
44	507	The Journal of antimicrobial chemotherapy 2012;67(11):2640-44. doi: 10.1093/jac/dks261
45	508	[published Online First: 2012/07/10]
46	509	30. Truong DT, Tett A, Pasolli E, et al. Microbial strain-level population structure and genetic diversity
47	510	from metagenomes. <i>Genome research</i> 2017;27(4):626-38. doi: 10.1101/gr.216242.116
48	511	[published Online First: 2017/02/06]
49 50	512	31. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics
50 51	513	of microbiome census data. <i>PloS one</i> 2013;8(4):e61217. doi: 10.1371/journal.pone.0061217
52	514	[published Online First: 2013/05/01]
53	515	32. Zeevi D, Korem T, Segal E. Talking about cross-talk: the immune system and the microbiome.
54	516	Genome biology 2016;17:50. doi: 10.1186/s13059-016-0921-4 [published Online First:
55	517	2016/03/19]
56	518	33. Zimmermann P, Curtis N. Factors Influencing the Intestinal Microbiome During the First Year of
57	519 520	Life. <i>Pediatr Infect Dis J</i> 2018 doi: 10.1097/inf.000000000002103 [published Online First:
58	520	2018/05/11]
59 60	521	34. Goldmann DA, Leclair J, Macone A. Bacterial colonization of neonates admitted to an intensive
50	522	care environment. J Pediatr 1978;93(2):288-93. [published Online First: 1978/08/01]

35. Kelishadi R, Farajian S. The protective effects of breastfeeding on chronic non-communicable diseases in adulthood. Advanced biomedical research 2014;3:3. doi: 10.4103/2277-9175.124629 [published Online First: 2014/03/07] 36. Hermansson H, Kumar H, Collado MC, et al. Breast Milk Microbiota Is Shaped by Mode of Delivery and Intrapartum Antibiotic Exposure. Frontiers in nutrition 2019;6:4. doi: 10.3389/fnut.2019.00004 [published Online First: 2019/02/20] 37. Soto A, Martin V, Jimenez E, et al. Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. Journal of pediatric gastroenterology and nutrition 2014;59(1):78-88. doi: 10.1097/mpg.00000000000347 [published Online First: 2014/03/05] 38. Khodayar-Pardo P, Mira-Pascual L, Collado MC, et al. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. Journal of perinatology : official journal of the California Perinatal Association 2014;34(8):599-605. doi: 10.1038/jp.2014.47 [published Online First: 2014/03/29] 39. Toscano M, De Grandi R, Peroni DG, et al. Impact of delivery mode on the colostrum microbiota composition. BMC microbiology 2017;17(1):205. doi: 10.1186/s12866-017-1109-0 [published Online First: 2017/09/28] 40. Zimmermann P, Gwee A, Curtis N. The controversial role of breast milk in GBS late-onset disease. J Infect 2017;74 Suppl 1:S34-s40. doi: 10.1016/s0163-4453(17)30189-5 [published Online First: 2017/06/26] 41. Messina N, Gardiner K, Donath S, et al. Study protocol for the Melbourne Infant Study: BCG for Allergy and Infection Reduction (MIS BAIR), a randomised controlled trial to determine the non-specific effects of neonatal BCG vaccination in a low-mortality setting. BMJ Open, in press 2019 elez on

Outcome	Main measure	Timing
Lower respiratory tract illness	Number of episodes & hospitalisations ^{19 20}	first 2 years of lif
Acute otitis media	Number of episodes ^{19 20}	first 2 years of lit
Allergic (atopic) sensitisation	Prevalence (positive skin prick test) ²³	at 2 years of age
Eczema	Prevalence (Williams criteria) ²¹	at 1 and 2 years of
Weight	Centile (WHO Child Growth Standards) ¹⁸	at 1 and 2 years of

48 Table 2 Study protocol

Time	Ant	Birth	7d	1m	2m	4m	6m	12m	24m
Diary			\checkmark						
Questionnaire			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Maternal blood sample		\checkmark							
Maternal stool sample	\checkmark	\checkmark							
Breast milk sample		√ ^{col}	\checkmark	\checkmark	\checkmark	\checkmark	✓*		
nfant oral swab		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
nfant stool sample		√ ^{mec}	\checkmark						
Clinical examination								\checkmark	\checkmark
Skin prick test									\checkmark
Blood sampling (optional)		√cb						\checkmark	\checkmark
		Im, ° cD = C than 6 m							

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Figure 1 Summary of factors that might influence the composition of the maternal intestinal and breast milk microbiome, and the infant oral and intestinal microbiome together with possible associated adverse health outcomes.

Antibiotics	Maternal intestinal microbiota and the breast milk microbiota Antibiotics			Infar intestin	nt oral a al micro		Allergy				
	đ	Diet	л [*]	Weight	Ċ	Ē	Diet	Л [*]	Weight	→ [Eczema
\rightarrow	۲	Location	*	Gestational age	$ \xrightarrow{\Psi} $	۲	Location	*	Gestational age	→[Asthma
Ę	ð	Genetics	€	Delivery mode	ļ Ē.	ð	Genetics	€	Delivery mode	→[Obesity
	ŧĦŧ	Children	Ĩ	Pets		ł ił ż	Siblings	TH	Pets	\rightarrow	Diabetes mellitus

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Study protocol for the ABERRANT study: Antibiotic-induced disruption of the maternal and infant microbiome and adverse health outcomes - A prospective cohort study among children born at term

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-036275.R1
Article Type:	Protocol
Date Submitted by the Author:	28-Feb-2020
Complete List of Authors:	Volery, Maryse; University of Fribourg, Faculty of Science and Medicine Scherz, Valentin; University of Lausanne Jakob, William; HFR Fribourg Cantonal Hospital Bandeira, Diane; Hopital cantonal de Fribourg Deggim-Messmer, Vanessa; Hopital cantonal de Fribourg Lauber-Biason, Anna; University of Fribourg, Faculty of Science and Medicine Wildhaber, Johannes; University of Fribourg Falquet, Laurent; University of Fribourg, Department of Biology Curtis, Nigel; The University of Fribourne Zimmermann, Petra; University of Fribourg; The University of Melbourne Faculty of Medicine Dentistry and Health Sciences, Department of Paediatrics
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Infectious diseases
Keywords:	Immunology < BASIC SCIENCES, Molecular diagnostics < INFECTIOUS DISEASES, MICROBIOLOGY, NEONATOLOGY, Paediatric infectious disease & immunisation < PAEDIATRICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

3 4	1	Study protocol for the ABERRANT study: Antibiotic-induced disruption of the
5 6 7	2	maternal and infant microbiome and adverse health outcomes - A prospective cohort
7 8 9	3	study among children born at term
10	4	
11 12 13	5	Maryse Volery ^{1,2} , Valentin Scherz ³ , William Jakob ⁴ , Diane Bandeira ⁴ , Vanessa Deggim-
14 15	6	Messmer ⁴ , Anna Lauber-Biason ¹ , MD, PhD, Johannes Wildhaber ^{1,2} , MD, PhD, Laurent
16 17 19	7	Falquet ⁵ , PhD, Nigel Curtis ^{6,7,8} , FRCPCH, PhD, Petra Zimmermann ^{1,2,6,7} , MD, PhD
18 19 20	8	
21 22	9	Affiliations:
23 24 25	10	¹ Faculty of Science and Medicine, University of Fribourg, Switzerland
25 26 27	11	² Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
28 29	12	³ Institute of Microbiology, Lausanne University Hospital and University of Lausanne,
30 31 32	13	Lausanne, Switzerland
32 33 34	14	⁴ Microbiology Laboratory, Fribourg Hospital HFR, Fribourg, Switzerland
35 36	15	⁵ Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics,
37 38 39	16	Fribourg, Switzerland
40 41	17	⁶ Department of Paediatrics, The University of Melbourne, Parkville, Australia
42 43	18	⁷ Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville,
44 45 46	19	Australia
40 47 48	20	⁸ Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
49 50	21	
51 52	22	Address correspondence to: Dr Petra Zimmermann, Fribourg Hospital HFR and Faculty of
53 54 55	23	Science and Medicine, University of Fribourg, Route des Arsenaux 41, 1700 Fribourg,
56 57 58 59 60	24	Switzerland, Tel: +41 26306 0000, petra.zimmermann@unifr.ch

ABSTRACT

BMJ Open

Introduction: There is compositional overlap between the maternal intestinal microbiome, the breast milk microbiome and the infant oral and intestinal microbiome. Antibiotics cause profound changes in the microbiome. However, the effect of intrapartum and early-life antibiotics on the maternal intestinal and breast milk microbiome, and the infant oral and intestinal microbiome, and whether effects are only short-term or persist long-term remain uncertain.

Methods and analyses: In this prospective cohort study, we will use metagenomic sequencing to determine: (i) the effect of *intrapartum antibiotics* on the composition of the breast milk, and the infant oral and intestinal microbiome, including the development and persistence of antibiotic resistance; (ii) the effect of antibiotic exposure in the first year of life on the composition of the infant oral and intestinal microbiome, including the development and persistence of antibiotic resistance; (iii) the effect of disruption of the infant oral and intestinal microbiome on health outcomes; and (iv) the compositional overlap between the maternal intestinal microbiome, the breast milk microbiome and the infant oral and intestinal microbiome.

Ethics and dissemination: The ABERRANT study has been approved by the Commission
cantonale d'éthique de la recherche sur l'être humain (CER-VD) du Canton de Vaud (#201901567). Outcomes will be disseminated through publication and will be presented at scientific
conferences.

Trial registration number: The U.S. National Institutes of Health NCT04091282.

Page 4 of 33

2	
3	
4	
4 5 6 7 8	
6	
7	
/	
8	
9	
9 10	
11	
10	
12	
13	
14	
15	
16	
17	
17	
11 12 13 14 15 16 17 18 19	
19	
20	
21	
י <u>-</u> רר	
22	
23	
24	
25 26 27	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
35 36 37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

56

57

1

49 STRENGTHS AND LIMITATIONS OF THIS STUDY

- The use of metagenomic sequencing to comprehensively determine the effect of
 intrapartum and early-life antibiotics on the composition of the maternal breast milk
 and the infant oral and intestinal microbiome.
- The possibility to identify bacterial species, together with resistance genes and other
 important components of the microbiome such as archaea, eukaryotes (fungi) and
 viruses.
 - The investigation of the association between the early-life intestinal microbiome and clinical health outcomes.
- The potential for contamination of low microbial biomass such as breast milk or
- 59 meconium samples from the environment or extraction and sequencing kits.

BMJ Open

INTRODUCTION

Antibiotics are amongst the most commonly used drugs, especially in infants and children. Even before birth, more than 40% of infants are exposed to antibiotics.¹ Additionally, more than two-thirds of children receive antibiotics before reaching the age of two years.²³ The human intestine is the habitat for a large community of microbes, the intestinal microbiome. Colonisation of the intestinal tract increases rapidly after birth and the microbiome of the maternal intestine and breast milk are likely important source for the infant intestinal microbiome.⁴ Conversely, as retrograde flow of breast milk into mammary ducts has been documented,⁵ the infant oral microbiome might be responsible for colonising the mammary ducts and therefore could contribute to the breast milk microbiome. Consequently, there is compositional overlap between the maternal intestinal microbiome, the breast milk microbiome and the infant oral and intestinal microbiome.⁶⁷

Growing evidence shows that the composition of the intestinal microbiome in infants plays an
important role in the development and regulation of the immune system, especially in the
early-life 'critical window' during which the microbiome and the immune response develop
concurrently.

Antibiotics cause profound changes in the microbiome.⁸⁹ However, the magnitude of the effect of intrapartum and early-life antibiotics on the breast milk, and the infant oral and intestinal microbiome, and whether effects are only short-term or persist long-term remain uncertain. Preliminary studies suggest that disruption of intestinal microbiome in the early-life period is associated with the development of a number of immune- and non-immunemediated diseases, including allergies,¹⁰ eczema,¹⁰ asthma,¹⁰ chronic inflammatory bowel disease,¹¹ obesity¹² and diabetes mellitus.¹³ Antibiotic exposure *in utero* and during infancy has been associated with an increased risk for the same diseases¹⁴⁻¹⁶ and it is likely that the

association between antibiotic exposure and the subsequent development of these diseases is mediated through changes in the infant microbiome. However, the features and composition characteristics of the intestinal microbiome associated with the development of these conditions are unclear.

Importantly, antibiotic exposure can also lead to the development of antibiotic resistance,⁸ resulting in infections that are more difficult and costly to treat, often requiring longer duration of hospital stay, and the use of antibiotics with more adverse effects. Currently, in children, there is sparse data available on the effect of antibiotic exposure on the development and persistence of antibiotic resistance in their intestinal microbiome.

In this prospective cohort study, we will use metagenomic sequencing to determine (i) the effect of *intrapartum antibiotics* on the composition of the breast milk, and the infant oral and intestinal microbiome (including the development and persistence of antibiotic resistance); (ii) the effect of antibiotic exposure in the first year of life on the composition of the infant oral and intestinal microbiome (including the development and persistence of antibiotic resistance); (iii) the effect of disruption of the infant oral and intestinal microbiome on health outcomes; and (iv) determine the compositional overlap between the maternal intestinal microbiome, the breast milk microbiome and the infant oral and intestinal microbiome.

Determining the relationship between antibiotic exposure and changes in the breast milk, and the infant oral and intestinal microbiome, and their potential association with adverse health outcomes will provide stronger evidence for strict antibiotic stewardship. Additionally, it will form the basis for designing studies to investigate interventions to prevent adverse outcomes in situations where antibiotics cannot be avoided, including modifying the intestinal microbiome with directed pre- and probiotics, or bacteriophages.

1 2		
3 4	112	
5 6 7 8 9	113	OBJECTIVES
	114	METHODS AND ANALYSIS
9 10 11	115	Study design
12 13	116	A prospective single-centre cohort study of 400 mother-infant pairs.
14 15	117	
16 17 18	118	Aims
19 20	119	Aim 1: To determine the extent to which, and for how long, intrapartum antibiotics affect the
21 22	120	composition of the breast milk microbiome and the infant oral and intestinal microbiome, as
23 24 25	121	well as the prevalence of antibiotic resistance genes.
25 26 27	122	
28 29 30 31	123	Aim 2: To determine the extent to which, and for how long, antibiotics in the first year of life
	124	affect the composition of the oral and intestinal microbiome in infants, as well as the
32 33 34	125	prevalence of antibiotic resistance genes.
35 36	126	
37 38	127	Aim 3: To determine health outcomes (Table 1) in children up to the age of 2 years who have
39 40 41	128	or have not been exposed to intrapartum antibiotics or antibiotics in the first year of life and
41 42 43	129	determine whether there is an association with the composition of the oral and intestinal
44 45	130	microbiome.
46 47	131	
48 49 50	132	Aim 4: To determine the degree to which the maternal intestinal and the breast milk
51 52	133	microbiome affect the composition of the infant oral intestinal microbiome and the prevalence
53 54	134	of antibiotic resistance genes.
55 56 57	135	
57 58 59	136	Aim 5: To determine the degree to which the infant oral microbiome affects the composition
60	137	of the breast milk microbiome.
		6

1 2		
- 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 20 21 22 23 24 25 26 27 28 29 30 31 20 21 22 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 20 31 20 21 22 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 31 23 24 25 26 27 28 29 30 4 35 36 4 37 38 9 40 41 17 18 19 19 10 10 10 10 10 10 10 10 10 10	138	
	139	Outcomes
	140	Primary endpoints:
	141	- Composition of the maternal intestinal and breast milk microbiome, and the infant oral
	142	and intestinal microbiome and the prevalence of antibiotic resistance genes within the
	143	infant microbiome at birth and when infants are 7 days, 1, 2, 4, 6, 12 and 24 months of
	144	age.
	145	- Number of episodes of lower respiratory tract illnesses and acute otitis media in the
	146	first two years of life.
	147	- Prevalence of allergic sensitisation and eczema at 1 and 2 years of age.
	148	- Weight at 1 and 2 years of age.
	149	
	150	Setting and participants
	151	Sampling frame and study sample: Women who give birth at the Hôpital fribourgeois (HFR)
	152	in Fribourg, Switzerland and their infants will be followed over a two-year period. If
	153	recruitment is slow a second study site will be added.
	154	
42 43	155	Recruitment: Pregnant women attending the antenatal clinic will be given information about
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	156	the study by a research study nurse or doctor and asked to consider enrolling themselves and
	157	their infant in the study. Either both parents or only mothers are present during the antenatal
	158	consent interview. We explicitly encourage caregivers to discuss participation with their
	159	partners, other family members, doctors and midwives (this is clearly stated in the consent
	160	form). We will re-evaluate the willingness to participate when mothers are admitted to the
	161	hospital for delivery. Paediatricians will be informed about the children's participation in the
	162	study.
60	163	

BMJ Open

2 3 4	164	Blinding of outcome assessment: Doctors and study nurses will be blinded to the group of
5 6	165	infants (control or antibiotic-exposed) when outcomes are measured.
7 8	166	
9 10 11	167	Patient and Public Involvement
12 13	168	Patients and public were not involved in the design of this study. The results of this study will
14 15	169	be disseminated to parents of the study participants via a participant newsletter distributed by
16 17 18	170	email.
19 20	171	
21 22	172	Eligibility criteria
23 24 25	173	Inclusion criteria: Healthy infants born at 37 weeks or more gestation who are breastfed.
26 27	174	Mothers will be asked at an antenatal consent interview if they intend to breastfeed. This will
28 29	175	be reassessed at delivery. Mothers will only be included if they breastfeed their infants.
30 31 32	176	However, if breastfeeding is stopped before the infant reaches six months of age, this will not
33 34	177	be a reason for exclusion. All the breast milk samples up to that point, as well as stool
35 36	178	samples and oral swabs collected afterwards will be analysed.
37 38 30	179	
39 40 41	180	Exclusion criteria: Women with the following criteria: HIV, hepatitis B or C infection or
42 43	181	unscreened for these infections, antibiotics or probiotics in pregnancy or postpartum period
44 45	182	other than during delivery. Infants with the following criteria: low birth weight (<2500 g) or
46 47 48	183	severe congenital abnormality.
49 50	184	
51 52	185	Study outcome measures
53 54 55	186	We will use internationally accepted validated measures for clinical outcomes. The study
56 57	187	protocol is depicted in Table 2.
58 59	188	
60	189	<i>Diary</i> : Parents will be given a structured diary where they can record information about their

infant's diet (introduction of formula and new foods), illnesses, medical visits, hospital admissions, use of antibiotics and other medications. This will help them when filling in the questionnaires at the required time points.

Questionnaire: We will do computer-assisted interviews at birth, and when infants are 1, 6, 12 and 24 months of age using best practice international protocols. The following data will be recorded: demographic variables including parental ancestry and education, family history of atopy, eczema, asthma and other immune disorders, antenatal variables such as maternal age, weight, smoking habits, underlying diseases, medication and supplementation use (e.g. probiotics and vitamins). In addition, we will collect data on delivery history, perinatal course (e.g. hospitalisation, infections, antibiotics or oxygen administration), breast-feeding (including episodes of mastitis and maternal antibiotic and probiotic use), age of introduction of formula and new foods, administration of probiotics and vitamins, use of antibiotics, antacids and other medications, GP and other medical visits, illnesses including infections and hospital admissions, number of siblings, child care attendance, parental smoking habits, pet ownership, suspected food allergy and eczema (presence, medications). Data will be stored using the Research Electronic Data Capture (REDCap Consortium) database.¹⁷ *Clinical examination:* Participants will be reviewed at 12 and 24 months of age in a specially

designated clinic at the HFR by a study nurse or doctor using a structured interview and clinical eczema assessment.

Weight: Weight will be assessed during the clinical examination at 12 and 24 months of age. The WHO Child Growth Standards will be used as a reference for percentiles.¹⁸

BMJ Open

Lower respiratory tract illness (LRTI) and acute otitis media (AOM): Symptoms of acute
lower respiratory illness (such cough and wheeze) and the number of episodes of LRTI and
AOM will be recorded by parents, and specific questions will be asked in the questionnaires.
We will use the definitions for LRTI developed by Oddy *et al* and Kusel *et al*.^{19 20} *Eczema:* Prevalence of eczema at 12 and 24 months of life will be assessed by the Williams'

UK diagnostic criteria of the International Study of Asthma and Allergy in Childhood
(ISAAC).²¹ This will be assessed by using parent-reported eczema from diary information and
from the clinical examinations at 12 and 24 months of age. We will assess the severity of
eczema using the SCORAD.²² We will also collect data on age of onset of eczema,
distribution of eczema, use of eczema medications, and medical consultations and hospital
admissions.

Skin prick tests: Sensitisation to the following panel of allergens will be assessed at 24
months of age: cow's milk, egg, peanut, sesame, house dust mite (*Dermatophagoides pteronyssinus 1*), cat, dog and grass pollen. Skin prick allergy testing will be performed
according to standard guidelines.²³ A positive skin prick test will be defined as an average
wheal diameter at least 3 mm greater than that produced by a negative control solution at 15
minutes.²⁴

7 234

Blood sampling: We will collect maternal blood at time of delivery. We also will obtain cord
blood at birth. During the clinical examination at 12 and 24 months of age, blood will be
collected by personnel trained in infant venipuncture, whose parents consent to this
component of the study. The 5-10 ml volume required is safe and within limits for weight
recommended by the US-based Office of Human Research Protections guidelines for blood
collection from healthy infants.

¢

1 2									
3 4	241								
5 6	242	Breast milk samples: Study nurses will collect one colostrum sample as soon as possible after							
7 8 9	243	birth. Mothers will be asked to collect breast milk (with date and time recorded) from their							
9 10 11	244	first feed of the day (a minimum of 2 hours required to the previous feed) when infants are 7							
12 13	245	days, 1, 2, 4, and 6 months old. If breastfeeding is ceased earlier than 6 months, breast milk							
14 15	246	will be collected before breastfeeding is discontinued. Mothers will be instructed to wash their							
16 17 18	247	hands and breasts meticulously and to then extract breast milk manually without touching the							
19 20	248	areola. The first few drops will be discarded. Reminders will be sent by SMS. Sterile							
21 22	249	containers will be provided.							
23 24 25	250	Oral swabs: Oral swabs will be taken from infants as soon as possible after birth by a study							
25 26 27	251	nurse. Additionally, parents will then be asked to collect buccal swabs (with date and time							
28 29	252	recorded) before the first feed of the day when infants are 7 days, 1, 2, 4, and 6 months old.							
30 31	253	Sterile containers will be provided. Reminders will be sent by SMS.							
32 33 34	254								
35 36	255	Stool samples: Mothers will be asked to collect stool on or after the day of the delivery (with							
37 38	256	date and time recorded). A meconium sample will be collected from infants as soon as							
39 40 41	257	possible after birth by a study nurse. Parents will then be asked to collect stool samples from							
42 43	258	their infants when they are 7 days, 1, 2, 4, 6, 12 and 24 months old. Reminders will be sent by							
44 45	259	SMS. To minimise variation, parents are asked to collect stool from the first bowel movement							
46 47 48	260	of the day (with date and time recorded). Sterile containers will be provided.							
48 49 50	261								
51 52	262	Storage of samples: Parents will be instructed to freeze breast milk, oral swabs and stool							
53 54	263	samples in sealed bags in their domestic freezer at -20°C until collection by the research team.							
55 56 57	264	Samples will be kept frozen during transportation to the laboratory where they will be							
58 59	265	aliquoted and stored at -80°C.							
60	266								
		11							

Page 13 of 33

BMJ Open

DNA extraction and sequencing: DNA from breast milk, oral swabs and stool samples (approximately 200 mg) will be extracted using the FastDNA Spin Kit for soil (MP Biomedicals, Santa Ana, California, USA). DNA concentrations will be quantified using a Qubit 4.0 fluorometer (ThermoFisher Scientific, Waltham, Massachusetts, USA) and high sensitivity DNA reagents. Bacterial DNA will be quantified by broad-range bacterial quantitative polymerase chain reaction (qPCR). The library preparation will be done using Nextera DNA Flex Library Preparations Kits. Extracted DNA will be indexed with IDT Illumina Nextera DNA Unique Dual Indexes to allow analysis of pooled samples. 150-bp pair-end sequencing will be done using the Illumina NextSeq. The required sequencing depth to provide adequate coverage of microbial communities for taxonomic profiling will be determined by rarefaction curves. We will aim for a minimum yield of $2x10^6$ read-pairs per sample. Appropriate negative controls (including controls from sterile containers, extraction kits etc.) and positive controls of mock communities will be included. These controls will be sequenced together with the samples to identify potential environmental and laboratory contaminants. Researchers carrying out the microbial analyses will be blinded to the group identity of infants (control or antibiotic exposed group). Storage of blood samples: Peripheral blood mononuclear cells will be separated from whole blood and stored in liquid nitrogen. Plasma will be stored frozen at -80°C. These will be retained for future analysis in projects to evaluate the effect of microbiome on the immune system, including immunophenotyping and analysis of markers of immune function. Statistical power calculation The analysis for the a priori computation of the required sample size was conducted using the

292 G*Power 3.1 software. For the power analysis, the repeated measurements MANOVAs were

considered. The calculation was based on F-tests for the interaction effect of the between-subject factor antibiotics vs no antibiotics and the within-subject factor time (8 time points). We chose a small to medium effect size of 0.22 for the calculation. With a significance level of 5% per test and a power of 80% the power analysis yields a sample size of 304. While we will attempt to retain and follow up all participants, we are powering our study on 'a worst-case scenario' assumption that complete 24-month data will be available for 76% of participants (this corresponds to a drop-out rate of 12% per year). We will therefore recruit approximately 400 infants in total (plus their mothers, therefore 800 participants). Approximately 40-50% of infants are exposed to prophylactic intrapartum antibiotics at our institution for colonisation with Group B streptococcus or premature rupture of membranes. Additional 50-60% of children are expected to be exposed to antibiotics during the first two vears of life. **Bioinformatics** Sequences will be trimmed according to quality scores and sequencing adaptors will be removed using Trimmomatic.²⁵ Host sequences will be removed by mapping against the Human genome with Bowtie2.²⁶ High-quality sequences will be used to create taxonomic and functional profiles using MetaphlAn2²⁷ and HUMAnN2²⁸, respectively. Antibiotic resistance genes will be identified using ResFinder.²⁹ We will share our metagenomic data through the European Nucleotide Archive (ENA). Statistical analysis **Considered metrics:** Alpha-diversity: Alpha-diversity indexes are descriptive of the intra-sample richness (number of taxonomic functional features), evenness (features distribution) or diversity (richness weighted by evenness).³⁰ We will use Chao richness (number of different taxa) and Simpson

319 diversity (distribution of taxa) to summarise the alpha-diversity for each sample.

> Beta-diversity: For beta-diversity, samples are compared for their composition in features of interest (taxonomic or functional units).³¹ All-versus-all distances between samples are computed in pairwise comparisons and summarised in distance-matrices. We will use indices, with distance equal to 1-index value, to capture different dimensions of microbial structures,³¹ restricting ourselves to non-Euclidean indices and excluding the "joint absences" as sharing of unseen features would have doubtful significance in this context. Feature presence/absence will be described by Jaccard indices and quantitative overlap by Bray-Curtis indices. In taxonomic comparisons, Unifrac (presence/absence) and Weighted Unifrac (quantitative) will be used to account for features phylogenetic distances.³² Statistics on distances matrices require adapted methods to assess for significant differences in average location (centroid) of the samples of groups of interest. For this, we will use the PERMANOVA approach implemented in the Adonis2 function of the vegan R package. PERMANOVA can be sensitive to variance heterogeneity in unbalances groups. Thus, variance homogeneity will be tested by ANOVA to centroids.

Differential abundance testing: Metagenomics data are compositional due to technical limitations.^{33 34} Relative abundances of bacterial and non-bacterial (archaeal, eukaryotic and virusal) taxa and antibiotic resistance genes, will be directly integrated for analyses. For bacteria, we will transform observed proportions into absolute quantities by multiplying proportions (%) by measured microbial loads, quantified by broad-range qPCR. Thus, we will explore correlation abundance testing of transformed counts for taxa and bacterial resistance genes. Statistical challenges of metagenomics data are the high number of features (and related multiple-testing false-discovery) and features sparsity (a given features – species or genes – will be observed only in a few samples, leading to a high proportion of zeros in count

tables). These limitations in metagenomics statistics were only recently recognised and the
developments of methods accounting for these is a field of active research and publication.
Thus, we will follow on future developments, recommendation and consensuses in the field
regarding these challenges. Currently identified solutions accounting for these limitations are
MetagenomSeq, Aldex2 and Maaslin2, which all integrate normalisation and correlation
testing to account for the pre-mentioned limitations while trying to identify differentially
abundant features (genes or speices) between tested groups.

Statistical plan for aim 1 and 2: Antibiotics exposed samples will be compared to non-exposed samples (grouped per received drug) for differences in alpha-diversity metrics and abundances of bacterial and non-bacterial taxa and antibiotic resistance genes with significant changes defined as a > 0.5% change in abundance between groups. Alpha-diversity metrics are continuous numeric values. Normality of the data will be checked by the Kolmogorov-Smirnov test and QQ-plots. For normal variables, a one-way ANOVA will be used. If normality cannot be reached by transformation, differences between groups will be analysed using a nonparametric Kruskal-Wallis test, or in case of pairwise comparisons, a Mann-Whitney U-test. For comparison of abundance Pearson x^2 tests will be used. Infant age, demographics, delivery mode, feeding method and antibiotic type and dose will be modelized in permutational multivariate analysis of variance (PERMANOVA, adonis2 in VEGAN package, R Foundation) using beta-diversity distance matrices to identify significant contributors to the microbiome composition.

Statistical plan for aim 3: For integrated analysis of the microbiome data and clinical
outcomes, allergic sensitisation, eczema, and overweight cases will be defined using the
prospectively collected outcome measures. The relationship between alpha-diversity and
clinical outcomes will be investigated using logistic regression. The relationship between taxa

BMJ Open

and these clinical outcomes will be determined by hierarchical clustering of communities
using heatmaps and principal component analysis (PCA). Significance of grouping of clinical
categories using permutational multivariate analysis of variance (PERMANOVA). Microbes
that have significantly different abundance between the clinical outcome groups will be
identified using Aldex2.³⁵ The potential influence of antenatal and postnatal factors on the
microbiome or clinical outcomes will be accounted for in all analyses by PERMANOVA and
unsupervised hierarchical clustering.

Statistical plan for aim 4: To compare paired maternal stool, breast milk, and infant stool
samples, we will do clustering analysis and perform a Wilcoxon rank sum test on betadiversity distances between true mother-infant pairs and randomly paired mothers and infants
matched by infant age. These different analyses should allow to describe the relationships
between samples of different origins and identify determinants of microbiome composition.

To further characterise the mother-to-infant microbiome transmission, the StrainPhlAn software will be used.³⁶ This software enables same-species sequence comparisons at the single nucleotide polymorphism (SNPs) level to define sample-specific strains. Combined results for shared species allow precise description of the phylogenetic distance between samples. Added to the beta-diversity analyses, this will allow to better disentangle the hypothesised seeding from maternal stool and breast milk to the infant oral and stool microbiome.

Statistical plan for aim 5: The same as for aim 4 will be done for comparison of the breast
milk and the infant oral microbiome.

396 Missing data

Page 18 of 33

BMJ Open

1

2 3 4	397	If the fraction of missing data is less than 5%, the primary analysis will be a complete case						
5 6	398	analysis. If not, the rate and patterns of missing data will be examined and, if						
7 8	399	appropriate, multiple imputation models will be applied for the outcome variables.						
9 10 11	400							
12 13 14 15	401	ETHICS AND DISSEMINATION						
	402	Ethics approval						
16 17 18	403	The ABERRANT study has been approved by the Commission cantonale d'éthique de la						
19 20	404	recherche sur l'être humain (CER-VD) du Canton de Vaud (#2019-01567), Switzerland.						
21 22	405							
23 24 25	406	Recruitment and consent						
26 27	407	Written informed consent will be obtained from all participants included in the trial.						
28 29	408	Participants will be informed that they are not obliged to take part in the study and are free to						
30 31 32	409	withdraw at any time without any impact on their future care.						
33 34	410							
35 36	411	Data collection and storage						
37 38 39	412	Data will be sourced from medical maternal and infant records, as well as by questionnaire						
40 41	413	from parents. Data will be de-identified and entered in to a secure, web-based electronic						
42 43	414	database.						
44 45 46	415							
40 47 48	416	Safety						
49 50	417	No serious adverse reactions are anticipated but these will be checked for by the Data Safety						
51 52	418	and Monitoring Committee.						
53 54 55	419							
56 57	420	Dissemination of results						
58 59	421	Outcomes will be disseminated through publication according to the SPIRIT statement and						
60	422	will be presented at scientific conferences.						

1		
2 3 4	423	
5 6 7 8 9	424	Study duration
	425	We aim to recruit participants over a two-year period.
10 11	426	
12 13	427	DISCUSSION
14 15 16	428	The intestinal microbiome is crucial in the development of the immune system and regulation
10 17 18	429	of immune responses, especially during infancy, when the intestinal microbiome and the
19 20	430	immune response develop concurrently. ³⁷ The development of intestinal microbiome is easily
21 22 22	431	disrupted by external factors and perturbation during this vulnerable period may have a large
23 24 25	432	influence on immune development. A number of factors influence the development of the
26 27	433	infant intestinal microbiome, including gestational age, delivery mode, feeding, and maternal
28 29	434	and infant antibiotic exposure (Figure 1). ³⁸ While the effect of delivery mode and feeding
30 31 32	435	methods on the establishment of microbial communities has been well studied, much less is
33 34	436	known about the effects of intrapartum and early-life antibiotic exposure on the establishment
35 36	437	of microbial communities in the intestinal microbiome.9
37 38 39	438	
40 41	439	A number of commonly used antibiotics have profound effects on specific bacteria within the
42 43	440	intestinal microbiome, as detailed in a recent systematic review.8 This 'collateral damage'
44 45 46	441	includes changes in abundance of microbial taxa, a decrease in 'colonisation resistance'
40 47 48	442	(protection against colonisation with potentially pathogenic organisms) and the development
49 50	443	of antibiotic resistance. To date, most studies on the effect of antibiotic exposure on the
51 52	444	intestinal microbiome have been done in adults.8 The main findings of these studies are that
53 54 55	445	antibiotics often lead to a decreased bacterial diversity, a decrease in the abundance of
55 56 57	446	anaerobic bacteria, an increase in abundance of <i>Enterobacteriaceae</i> other than <i>E. coli</i> and an
58 59	447	increase in the abundance of yeast. ⁸ These studies show that changes in the intestinal
60	448	microbiome after just one course of antibiotics can persist up to four years.8 However, the

18

clinical consequences of changes in the composition of the intestinal microbiome with
antibiotic treatment are unknown. An increase in Enterobacteriaceae, which are often resistant
to beta-lactam and other antibiotics, might render the host more susceptible to infections with
antibiotic-resistant bacteria. This phenomenon has been observed in infants in neonatal
intensive care units, who become more often colonised with *Klebsiella* spp., *Enterobacter*spp. and *Citrobacter* spp., when treated with antibiotics.³⁹

Intrapartum antibiotic prophylaxis (IAP) has become common practice in obstetric medicine and is used in up to 40% of deliveries, which makes it the most common source of antibiotic exposure in neonates.¹ IAP is routinely used in both elective and emergency Caesarean section (CS). It is also routinely used in women who are colonised with group B streptococcus (GBS). Despite the benefits, the risks associated with exposing a large number of infants to antibiotics, especially the long-term effects on health through changes in the microbiome, remain unclear. Infants who were exposed to IAP have been reported to have a lower alpha-diversity, a lower relative abundance of Actinobacteria, especially Bifidobacteriaceae, and a larger relative abundance of Proteobacteria in their intestinal microbiome compared to nonexposed infants.⁹ Furthermore, they have been reported to have a higher number of beta-lactamase encoding genes.40

467 Breastfeeding has been shown to be beneficial in preventing many communicable and non-468 communicable diseases.⁴¹ Despite intensive research into the positive health effects of 469 breastfeeding, the underlying mechanisms are still not understood. However, a large part of 470 the beneficial effects of breast milk is likely mediated through the microbiome and its 471 associated immunomodulatory, anti-inflammatory and antimicrobial components. The breast 472 milk microbiome also likely plays a part in shaping the infant's intestinal microbiome,⁴ to 473 which extent we will be investigated in this study.

Page 21 of 33

BMJ Open

There is relatively little data about the effects of IAP on the composition of the breast milk microbiome.⁴²⁻⁴⁴ Mothers who receive IAP have been reported to have a lower abundance or even an absence of the beneficial bacteria *Bifidobacterium* spp. in their breast milk.^{42 43} Furthermore, in a small study IAP has been shown to increase antibiotic resistance genes in the breast milk microbiota.⁴⁵ There is also some evidence suggesting that mothers who receive IAP have a higher bacterial richness and diversity in their breast milk microbiome compared with mothers who do not receive antibiotics.⁴² However, these findings have to be interpreted with caution: it could be that antibiotics lead to lower bacterial numbers and therefore signals from contamination, e.g. bacteria found in DNA extraction or sequencing kits might be amplified more leading to a the detection of a higher diversity. Use of broad-range qPCR to quantity bacterial load in milk samples will allow to assess this potential bias. Interestingly, recent preliminary studies have also shown that delivery mode affects the composition of the breast milk microbiome.^{42 44 46 47} However, during suckling, a high degree of retrograde flow of milk into the mammary ducts can occur,⁵ transferring bacteria from the infant to the mother, as postulated for GBS.⁴⁸ It is therefore possible that the differences in the breast milk microbiome observed with different delivery modes are mediated through differences in the oral microbiome of infants. This study will determine the effect of intrapartum and early-life antibiotics on the

493 composition of the breast milk, and the infant oral and intestinal microbiome and antibiotic 494 resistance. The knowledge gained by this study will make an important contribution to the 495 growing field of research investigating the importance of the immunological role of the breast 496 milk microbiome and the infant intestinal microbiome on infant health. It will form the basis 497 for investigating the interplay between the microbiome and the regulation of the human 498 immune system and possible adverse health outcomes, such as the development of immune 499 and non-immune mediated diseases, including allergic diseases.

The results of this study will also build a stronger evidence base for strict antibiotic stewardship and form the basis for development of evidence-based interventions to prevent adverse outcomes in situations where antibiotics cannot be avoided, including modifying the intestinal microbiome with directed pre- and probiotics or bacteriophages. **Contributors** PZ is the lead investigator. VS, LF, NC and PZ were responsible for study conception and design. JW, AL and PZ were responsible for funding acquisition and implementation. MV drafted the manuscript and coordinated the manuscript preparation and revision. PZ and VS has developed the statistical analysis plan. MV and PZ have developed the online questionnaires and database set-up in REDCap. WJ will be responsible for sample analysis. MV, VS, WJ, DB, VDM, ALB, JW, LF and NC provided critical evaluation and revision of manuscript and have given final approval of the manuscript accepting responsibility for all aspects. Funding This trial is funded by the University of Fribourg and the Fribourg Hospital HFR, Switzerland. VS is supported by a SNSF grant (n° 10531C-170280 - L. Falquet, G. Greub and F. Taroni). None of the funders had a role in designing the study or in the study conduct and they will not be involved in the publication of the results from the study. Competing interests None. Provenance and peer review Not commissioned; externally peer reviewed.

1		
2		
3	523	References
4	524	
5	525	1. Stokholm J, Schjorring S, Pedersen L, et al. Prevalence and predictors of antibiotic administration
6	526	during pregnancy and birth. <i>PloS one</i> 2013;8(12):e82932. doi: 10.1371/journal.pone.0082932
7	527	[published Online First: 2013/12/18]
8 9	528	2. Hellman J, Grape M, Ternhag A. Antibiotic consumption among a Swedish cohort of children born
10	529	in 2006. Acta paediatrica (Oslo, Norway : 1992) 2015;104(10):1035-8. doi:
11	530	10.1111/apa.13097 [published Online First: 2015/06/26]
12	531	3. Anderson H, Vuillermin P, Jachno K, et al. Prevalence and determinants of antibiotic exposure in
13	532	infants: A population-derived Australian birth cohort study. J Paediatr Child Health
14	533	2017;53(10):942-49. doi: 10.1111/jpc.13616 [published Online First: 2017/07/28]
15	534	4. Pannaraj PS, Li F, Cerini C, et al. Association Between Breast Milk Bacterial Communities and
16 17	535	Establishment and Development of the Infant Gut Microbiome. JAMA pediatrics
17	536	2017;171(7):647-54. doi: 10.1001/jamapediatrics.2017.0378 [published Online First:
19	537	2017/05/12]
20	538	5. Ramsay DT, Kent JC, Owens RA, et al. Ultrasound imaging of milk ejection in the breast of lactating
21	539	women. Pediatrics 2004;113(2):361-7. [published Online First: 2004/02/03]
22	540	6. Perez PF, Dore J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons
23	541	from maternal cells? Pediatrics 2007;119(3):e724-32. doi: 10.1542/peds.2006-1649
24 25	542	[published Online First: 2007/03/03]
25 26	543	7. Jost T, Lacroix C, Braegger CP, et al. Vertical mother-neonate transfer of maternal gut bacteria via
27	544	breastfeeding. Environmental microbiology 2014;16(9):2891-904. doi: 10.1111/1462-
28	545	2920.12238 [published Online First: 2013/09/17]
29	546	8. Zimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota.
30	547	Journal of Infection 2019;Published online [published Online First: 2019/10/21]
31	548	9. Zimmermann P, Curtis N. Effect of intrapartum antibiotics on the intestinal microbiota of infants: a
32	549	systematic review. Arch Dis Child Fetal Neonatal Edition 2019 doi: 10.1136/archdischild-
33 34	550	2018-316659 [published Online First: 2019/07/13]
35	551	10. Zimmermann P, Messina N, Mohn WW, et al. Association between the intestinal microbiota and
36	552	allergic sensitization, eczema, and asthma: A systematic review. The Journal of allergy and
37	553	clinical immunology 2018 doi: 10.1016/j.jaci.2018.09.025 [published Online First:
38	554	2019/01/03]
39	555	11. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn's
40	556	disease revealed by a metagenomic approach. <i>Gut</i> 2006;55(2):205-11. doi:
41 42	557	10.1136/gut.2005.073817 [published Online First: 2005/09/29]
43	558	12. Scott FI, Horton DB, Mamtani R, et al. Administration of Antibiotics to Children Before Age 2 Years
44	559	Increases Risk for Childhood Obesity. <i>Gastroenterology</i> 2016;151(1):120-29.e5. doi:
45	560	10.1053/j.gastro.2016.03.006 [published Online First: 2016/03/24]
46	561	13. Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. <i>Nature</i>
47	562	reviews Endocrinology 2016;12(3):154-67. doi: 10.1038/nrendo.2015.218 [published Online
48 49	563	First: 2016/01/06]
49 50	564	14. Mueller NT, Whyatt R, Hoepner L, et al. Prenatal exposure to antibiotics, cesarean section and
51	565	risk of childhood obesity. International journal of obesity (2005) 2015;39(4):665-70. doi:
52	566 567	10.1038/ijo.2014.180 [published Online First: 2014/10/10]
53	567 568	15. Ong MS, Umetsu DT, Mandl KD. Consequences of antibiotics and infections in infancy: bugs,
54		drugs, and wheezing. Annals of allergy, asthma & immunology : official publication of the
55	569 570	American College of Allergy, Asthma, & Immunology 2014;112(5):441-45.e1. doi:
56	570 571	10.1016/j.anai.2014.01.022 [published Online First: 2014/03/19]
57 58	572	16. Ungaro R, Bernstein CN, Gearry R, et al. Antibiotics associated with increased risk of new-onset Crohn's disease but not ulcerative colitis: a meta-analysis. <i>The American journal of</i>
58 59	572	gastroenterology 2014;109(11):1728-38. doi: 10.1038/ajg.2014.246 [published Online First:
60	575 574	2014/09/17]
	517	

2		
3	575	17. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap) - a metadata-
4	576	driven methodology and workflow process for providing translational research informatics
5	577	support. J Biomed Inform 2009;42(2):377-81. doi: 10.1016/j.jbi.2008.08.010 [published
6	578	Online First: 2008/10/22]
7	579	18. Organization WH. WHO Child Growth Standards 2006 [Available from:
8 9	580	https://www.who.int/childgrowth/standards/en/.
9 10	581	19. Oddy WH, de Klerk NH, Sly PD, et al. The effects of respiratory infections, atopy, and
11	582	breastfeeding on childhood asthma. <i>Eur Respir J</i> 2002;19(5):899-905. [published Online First:
12	583	2002/05/28]
13	584	2002/05/28j 20. Kusel MM, de Klerk NH, Holt PG, et al. Role of respiratory viruses in acute upper and lower
14	585	respiratory tract illness in the first year of life: a birth cohort study. <i>Pediatr Infect Dis J</i>
15	586	2006;25(8):680-6. doi: 10.1097/01.inf.0000226912.88900.a3 [published Online First:
16	580 587	2006/07/29]
17	588	
18	588 589	21. Williams HC, Burney PG, Pembroke AC, et al. The U.K. Working Party's Diagnostic Criteria for
19		Atopic Dermatitis. <i>Br J Dermatol</i> 1994;131(3):406-16. [published Online First: 1994/09/01]
20	590	22. Schmitt J, Langan S, Williams HC. What are the best outcome measurements for atopic eczema?
21 22	591	A systematic review. <i>The Journal of Allergy and Clinical Immunology</i> 2007;120(6):1389-98.
22	592	doi: 10.1016/j.jaci.2007.08.011 [published Online First: 2007/10/04]
24	593	23. Bernstein IL, Storms WW. Practice parameters for allergy diagnostic testing. Ann Allerg Astham
25	594	Im 1995;75(6 Pt 2):543-625. [published Online First: 1995/12/01]
26	595	24. Bernstein IL, Storms WW. Practice parameters for allergy diagnostic testing. Joint Task Force on
27	596	Practice Parameters for the Diagnosis and Treatment of Asthma. The American Academy of
28	597	Allergy, Asthma and Immunology and the American College of Allergy, Asthma and
29	598	Immunology. Ann Allergy Asthma Immunol 1995;75(6 Pt 2):543-625. [published Online First:
30	599	1995/12/01]
31 32	600	25. Andrews S. FastQC: a quality control tool for high throughput sequence data. Available online at:
32 33	601	http://wwwbioinformaticsbabrahamacuk/projects/fastqc 2010
34	602	26. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9(4):357-
35	603	9. doi: 10.1038/nmeth.1923 [published Online First: 2012/03/06]
36	604	27. Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial community profiling using unique
37	605	clade-specific marker genes. Nat Methods 2012;9(8):811-4. doi: 10.1038/nmeth.2066
38	606	[published Online First: 2012/06/13]
39	607	28. Abubucker S, Segata N, Goll J, et al. Metabolic reconstruction for metagenomic data and its
40	608	application to the human microbiome. <i>PLoS Comput Biol</i> 2012;8(6):e1002358. doi:
41	609	10.1371/journal.pcbi.1002358 [published Online First: 2012/06/22]
42 43	610	29. Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes.
44	611	The Journal of antimicrobial chemotherapy 2012;67(11):2640-44. doi: 10.1093/jac/dks261
45	612	[published Online First: 2012/07/10]
46	613	30. Kim BR, Shin J, Guevarra R, et al. Deciphering Diversity Indices for a Better Understanding of
47	614	Microbial Communities. J Microbiol Biotechnol 2017;27(12):2089-93. doi:
48	615	10.4014/jmb.1709.09027 [published Online First: 2017/10/17]
49	616	31. Anderson MJ, Crist TO, Chase JM, et al. Navigating the multiple meanings of beta diversity: a
50	617	roadmap for the practicing ecologist. <i>Ecol Lett</i> 2011;14(1):19-28. doi: 10.1111/j.1461-
51	618	0248.2010.01552.x [published Online First: 2010/11/13]
52	619	32. Lozupone CA, Hamady M, Kelley ST, et al. Quantitative and qualitative beta diversity measures
53 54	620	lead to different insights into factors that structure microbial communities. Applied and
54 55	621	environmental microbiology 2007;73(5):1576-85. doi: 10.1128/aem.01996-06 [published
56	622	Online First: 2007/01/16]
57	623	33. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, et al. Microbiome Datasets Are Compositional: And
58	624	This Is Not Optional. Front Microbiol 2017;8:2224. doi: 10.3389/fmicb.2017.02224 [published
59	625	Online First: 2017/12/01]
60		

1		
2		
3	626	34. Quinn TP, Erb I, Gloor G, et al. A field guide for the compositional analysis of any-omics data.
4	627	Gigascience 2019;8(9) doi: 10.1093/gigascience/giz107 [published Online First: 2019/09/24]
5	628	35. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics
6 7	629	of microbiome census data. PloS one 2013;8(4):e61217. doi: 10.1371/journal.pone.0061217
8	630	[published Online First: 2013/05/01]
9	631	36. Truong DT, Tett A, Pasolli E, et al. Microbial strain-level population structure and genetic diversity
10	632	from metagenomes. Genome research 2017;27(4):626-38. doi: 10.1101/gr.216242.116
11	633	[published Online First: 2017/02/06]
12	634	37. Zeevi D, Korem T, Segal E. Talking about cross-talk: the immune system and the microbiome.
13	635	Genome biology 2016;17:50. doi: 10.1186/s13059-016-0921-4 [published Online First:
14	636	2016/03/19]
15	637	38. Zimmermann P, Curtis N. Factors Influencing the Intestinal Microbiome During the First Year of
16	638	Life. Pediatr Infect Dis J 2018 doi: 10.1097/inf.000000000002103 [published Online First:
17 18	639	2018/05/11]
10 19	640	39. Goldmann DA, Leclair J, Macone A. Bacterial colonization of neonates admitted to an intensive
20	641	care environment. J Pediatr 1978;93(2):288-93. [published Online First: 1978/08/01]
21	642	40. Nogacka A, Salazar N, Suarez M, et al. Impact of intrapartum antimicrobial prophylaxis upon the
22	643	intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered
23	644	full-term neonates. <i>Microbiome</i> 2017;5(1):93. doi: 10.1186/s40168-017-0313-3 [published
24	645	Online First: 2017/08/10]
25	646	41. Kelishadi R, Farajian S. The protective effects of breastfeeding on chronic non-communicable
26	647	diseases in adulthood. Advanced biomedical research 2014;3:3. doi: 10.4103/2277-
27 29	648	9175.124629 [published Online First: 2014/03/07]
28 29	649	42. Hermansson H, Kumar H, Collado MC, et al. Breast Milk Microbiota Is Shaped by Mode of Delivery
29 30	650	and Intrapartum Antibiotic Exposure. <i>Frontiers in nutrition</i> 2019;6:4. doi:
31	651	10.3389/fnut.2019.00004 [published Online First: 2019/02/20]
32	652	43. Soto A, Martin V, Jimenez E, et al. Lactobacilli and bifidobacteria in human breast milk: influence
33	653	of antibiotherapy and other host and clinical factors. <i>Journal of pediatric gastroenterology</i>
34	654	and nutrition 2014;59(1):78-88. doi: 10.1097/mpg.000000000000347 [published Online
35	655	First: 2014/03/05]
36	656	
37	657	44. Zimmermann P, Curtis N. Breast milk microbiota: A complex microbiome with multiple impacts
38	658	and conditioning factors. <i>J Infect</i> 2020 doi: 10.1016/j.jinf.2020.01.023 [published Online First:
39 40	659	2020/02/10]
40 41		45. Parnanen K, Karkman A, Hultman J, et al. Maternal gut and breast milk microbiota affect infant
42	660	gut antibiotic resistome and mobile genetic elements. <i>Nature communications</i>
43	661	2018;9(1):3891. doi: 10.1038/s41467-018-06393-w [published Online First: 2018/09/27]
44	662	46. Khodayar-Pardo P, Mira-Pascual L, Collado MC, et al. Impact of lactation stage, gestational age
45	663	and mode of delivery on breast milk microbiota. <i>Journal of perinatology : official journal of</i>
46	664	the California Perinatal Association 2014;34(8):599-605. doi: 10.1038/jp.2014.47 [published
47	665	Online First: 2014/03/29]
48	666	47. Toscano M, De Grandi R, Peroni DG, et al. Impact of delivery mode on the colostrum microbiota
49 50	667	composition. <i>BMC microbiology</i> 2017;17(1):205. doi: 10.1186/s12866-017-1109-0 [published
50 51	668	Online First: 2017/09/28]
52	669	48. Zimmermann P, Gwee A, Curtis N. The controversial role of breast milk in GBS late-onset disease.
53	670	J Infect 2017;74 Suppl 1:S34-s40. doi: 10.1016/s0163-4453(17)30189-5 [published Online
54	671	First: 2017/06/26]
55	672	
56		
57		
58		
59		

Table 1 Clinical outcomes for aim 3

Outcome	Main measure	Timing
Lower respiratory tract illness	Number of episodes & hospitalisations ^{19 20}	first 2 years of life
Acute otitis media	Number of episodes ^{19 20}	first 2 years of life
Allergic (atopic) sensitisation	Prevalence (positive skin prick test) ²³	at 2 years of age
Eczema	Prevalence (Williams criteria) ²¹	at 1 and 2 years of ag
Weight	Centile (WHO Child Growth Standards) ¹⁸	at 1 and 2 years of ag

Table 2 Study protocol

Time	Birth	7d	1m	2m	4m	6m	12m	24m
Diary		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Questionnaire		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Maternal blood sample	\checkmark							
Maternal stool sample	\checkmark							
Breast milk sample	√ ^{col}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark^{\star}		
Infant oral swab	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Infant stool sample	√ ^{mec}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Clinical examination							\checkmark	\checkmark
Skin prick test								\checkmark
Blood sampling (optional)	√cb						\checkmark	\checkmark

 $col = colostrum; mec = meconium; {}^{3}cb = cord blood;$

*or before breastfeeding is discontinued if earlier than 6 m

Figure 1 Summary of factors that might influence the composition of the maternal intestinal and breast milk microbiome, and the infant oral and intestinal microbiome together with possible associated adverse health outcomes

to occurrent only

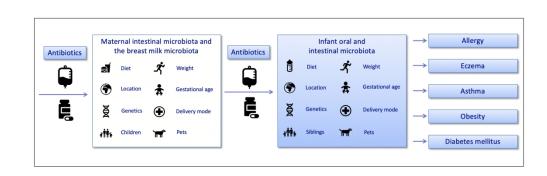


Figure 1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4 5		Standard Protocol Items: Recommendations for Interventional Trials	
6 7 8 SPIRIT 9 related		Checklist: Recommended items to address in a clinical trial protocol and ments*	
10 11 Section/item 12 13	ltem No	Description	Page Line
¹⁴ ₁₅ Administrative ii	nform	ation	
¹⁶ Title 17 18	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1 1-2
¹⁹ ₂₀ Trial registration ²¹	2a	Trial identifier and registry name. If not yet registered, name of intended registry	2 46
22 23 24 25 26	2b	All items from the World Health Organization Trial Registration Data Set	Available at Clinical trials.gov
27 Protocol version 28 29 30	3	Date and version identifier	Approved by the CER-VD
³¹ ₃₂ Funding ³³	4	Sources and types of financial, material, and other support	18 450
 34 35 Roles and 36 responsibilities 37 38 39 	5a	Names, affiliations, and roles of protocol contributors	1 5-20 18 441-4448
40 41 42	5b	Name and contact information for the trial sponsor	1 22-24
43 44 45 46 47 48	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	18 452-453
49 50 51 52 53 54 55 56 Introduction	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	18 441-448
⁵⁶ Background and ⁵⁸ rationale ⁶⁰	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	4-5

1	6b	Explanation for choice of comparators	4-5
2 3 • Objectives			
4 Objectives	7	Specific objectives or hypotheses	6-7
6 Trial design 7 8 9 10 11	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	7
12 Methods: Partic	ipants	s, interventions, and outcomes	
13 14 Study setting 15 16 17	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	7
 ¹⁸ Eligibility criteria 20 21 	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	7-8
22 23 Interventions 24 25	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	no intervention
26 27 28 29	11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease)	
30 31 32 33 34	11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	8
35 36 37	11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	NA
38 Outcomes 39 40 41 42 43 44 45	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	8-9 Table 1
⁴⁶ Participant ₄₇ timeline 49	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	Table 2
50 51 Sample size 52 53 54	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	11-12
⁵⁵ Recruitment 56 57	15	Strategies for achieving adequate participant enrolment to reach target sample size	7
58	nmen	t of interventions (for controlled trials)	

	Allocation:						
3 4 5 6 7 8 9	Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	NA			
10 11 12 13 14	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	NA			
15 16 17	Implementatio n	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	NA			
19	linding nasking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	7			
21 22 23		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	7			
	lethods: Data c	ollect	tion, management, and analysis				
28 m 29 30 31 32 33	ata collection nethods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	8-9			
34 35 36 37 38		18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	8-9			
40	ata nanagement	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	14			
45 S 46 47 m 48	tatistical nethods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	11-13			
49 50		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	NA			
51 52 53 54 55		20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	14			
	lethods: Monito	oring					

Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	15
9 10 11 12	21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	NA
¹³ Harms ¹⁴ 15 16	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	NA
17 ₁₈ Auditing 19 20	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	NA
²¹ Ethics and disse	emina	tion	
22	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	14
²⁶ Protocol ₂₇ amendments 29 30	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	NA
31 Consent or 32 assent 33	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	14
34 35 36	26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	14
 ³⁷ Confidentiality ³⁸ ³⁹ ⁴⁰ 	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	Approved by the CER-VD
41 42 Declaration of 43 interests 44	28	Financial and other competing interests for principal investigators for the overall trial and each study site	19
44 45 Access to data 46 47 48	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	Approved by the CER-VD
⁴⁹ Ancillary and ₅₁ post-trial care ⁵²	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	Approved by the CER-VD
54 Dissemination ⁵⁵ policy 56 57 58	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	7
59 60	31b	Authorship eligibility guidelines and any intended use of professional writers	NA

¢

1 2 3 4 5 A nnondia	31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	14
 Appendix ⁷ Informed ⁹ consent 10 materials 	ces 32	Model consent form and other related documentation given to participants and authorised surrogates	Attachment
11 12 Biological 13 specimen 14 15		Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	9-11
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Explanation protocol sho	y recommended that this checklist be read in conjunction with the SPIRIT 2013 & Elaboration for important clarification on the items. Amendments to the build be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT r the Creative Commons "Attribution-NonCommercial-NoDerivs 3.0 Unported"	3

Study protocol for the ABERRANT study: Antibiotic-induced disruption of the maternal and infant microbiome and adverse health outcomes - A prospective cohort study among children born at term

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-036275.R2
Article Type:	Protocol
Date Submitted by the Author:	12-May-2020
Complete List of Authors:	Volery, Maryse; University of Fribourg, Faculty of Science and Medicine Scherz, Valentin; University of Lausanne Jakob, William; HFR Fribourg Cantonal Hospital Bandeira, Diane; Hopital cantonal de Fribourg Deggim-Messmer, Vanessa; Hopital cantonal de Fribourg Lauber-Biason, Anna; University of Fribourg, Faculty of Science and Medicine Wildhaber, Johannes; University of Fribourg Falquet, Laurent; University of Fribourg, Department of Biology Curtis, Nigel; The University of Fribourg; The University of Melbourne Zimmermann, Petra; University of Fribourg; The University of Melbourne Faculty of Medicine Dentistry and Health Sciences, Department of Paediatrics
Primary Subject Heading :	Paediatrics
Secondary Subject Heading:	Infectious diseases
Keywords:	Immunology < BASIC SCIENCES, Molecular diagnostics < INFECTIOUS DISEASES, MICROBIOLOGY, NEONATOLOGY, Paediatric infectious disease & immunisation < PAEDIATRICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

3 4	1	Study protocol for the ABERRANT study: Antibiotic-induced disruption of the
5 6 7	2	maternal and infant microbiome and adverse health outcomes - A prospective cohort
7 8 9	3	study among children born at term
10	4	
11 12 13	5	Maryse Volery ^{1,2} , Valentin Scherz ³ , William Jakob ⁴ , Diane Bandeira ⁴ , Vanessa Deggim-
14 15	6	Messmer ⁴ , Anna Lauber-Biason ¹ , MD, PhD, Johannes Wildhaber ^{1,2} , MD, PhD, Laurent
16 17	7	Falquet ⁵ , PhD, Nigel Curtis ^{6,7,8} , FRCPCH, PhD, Petra Zimmermann ^{1,2,7} , MD, PhD
18 19 20	8	
21 22	9	Affiliations:
23 24 25	10	¹ Faculty of Science and Medicine, University of Fribourg, Switzerland
25 26 27	11	² Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
28 29	12	³ Institute of Microbiology, Lausanne University Hospital and University of Lausanne,
30 31 32	13	Lausanne, Switzerland
32 33 34	14	⁴ Microbiology Laboratory, Fribourg Hospital HFR, Fribourg, Switzerland
35 36	15	⁵ Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics,
37 38 39	16	Fribourg, Switzerland
40 41	17	⁶ Department of Paediatrics, The University of Melbourne, Parkville, Australia
42 43	18	⁷ Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville,
44 45 46	19	Australia
40 47 48	20	⁸ Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
49 50	21	
51 52	22	Address correspondence to: Dr Petra Zimmermann, Fribourg Hospital HFR and Faculty of
53 54	23	Science and Medicine, University of Fribourg, Route des Arsenaux 41, 1700 Fribourg,
55 56 57 58 59 60	24	Switzerland, Tel: +41 26306 0000, petra.zimmermann@unifr.ch

BMJ Open

ABSTRACT
Introduction: There is compositional overlap between the maternal intestinal microbiome,
the breast milk microbiome and the infant oral and intestinal microbiome. Antibiotics cause

the breast milk microbiome and the infant oral and intestinal microbiome. Antibiotics cause profound changes in the microbiome. However, the effect of intrapartum and early-life antibiotics on the maternal intestinal and breast milk microbiome, and the infant oral and intestinal microbiome, and whether effects are only short-term or persist long-term remain uncertain.

Methods and analyses: In this prospective cohort study, we will use metagenomic sequencing to determine: (i) the effect of *intrapartum antibiotics* on the composition of the breast milk, and the infant oral and intestinal microbiome, including the development and persistence of antibiotic resistance; (ii) the effect of antibiotic exposure in the first year of life on the composition of the infant oral and intestinal microbiome, including the development and persistence of antibiotic resistance; (iii) the effect of disruption of the infant oral and intestinal microbiome on health outcomes; and (iv) the compositional overlap between the maternal intestinal microbiome, the breast milk microbiome and the infant oral and intestinal microbiome.

Ethics and dissemination: The ABERRANT study has been approved by the commission
cantonale d'éthique de la recherche sur l'être humain (CER-VD) du Canton de Vaud (#201901567). Outcomes will be disseminated through publication and will be presented at scientific
conferences.

Trial registration number: The U.S. National Institutes of Health NCT04091282.

2	
	4
3 4 5 6 7 8 9	5
7 8	5
9 10 11	5
10 11 12 13	5
14 15 16	5
17	5
18 19 20	5
21	5
22 23 24 25 26	5
25 26 27	5
27 28 29	
30 31	
32 33	
34 35	
36 37	
38 39 40	
40 41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54 55	
55 56 57	
58 59	
60	

1

49 STRENGTHS AND LIMITATIONS OF THIS STUDY

- The use of metagenomic sequencing to determine the effect of intrapartum and earlylife antibiotics on the composition of the maternal breast milk and the infant oral and intestinal microbiome.
- The possibility to identify bacterial species, together with resistance genes and other
 important components of the microbiome such as archaea, eukaryotes (fungi) and
 viruses.
- The investigation of the association between the early-life intestinal microbiome and
 clinical health outcomes.
- The potential for contamination of low microbial biomass such as breast milk or
- meconium samples from the environment or extraction and sequencing kits.

BMJ Open

INTRODUCTION

Antibiotics are amongst the most commonly used drugs, especially in infants and children. Even before birth, more than 40% of infants are exposed to antibiotics.¹² Additionally, more than two-thirds of children receive antibiotics before reaching the age of two years.³⁴ The human intestine is the habitat for a large community of microbes, the intestinal microbiome. Colonisation of the intestinal tract increases rapidly after birth and the microbiome of the maternal intestine and breast milk are likely important source for the infant intestinal microbiome.⁵ Conversely, as retrograde flow of breast milk into mammary ducts has been documented,⁶ the infant oral microbiome might be responsible for colonising the mammary ducts and therefore could contribute to the breast milk microbiome. Consequently, there is compositional overlap between the maternal intestinal microbiome, the breast milk microbiome and the infant oral and intestinal microbiome.⁷⁸

Growing evidence shows that the composition of the intestinal microbiome in infants plays an
important role in the development and regulation of the immune system, especially in the
early-life 'critical window' during which the microbiome and the immune response develop
concurrently.⁹⁻¹¹

Antibiotics cause profound changes in the microbiome.^{12 13} However, the magnitude of the effect of intrapartum and early-life antibiotics on the breast milk, and the infant oral and intestinal microbiome, and whether effects are only short-term or persist long-term remain uncertain. Preliminary studies suggest that disruption of intestinal microbiome in the early-life period is associated with the development of a number of immune- and non-immunemediated diseases, including allergies,¹⁴ eczema,¹⁴ asthma,¹⁴ chronic inflammatory bowel disease,¹⁵ obesity¹⁶ and diabetes mellitus.¹⁷ Antibiotic exposure *in utero* and during infancy has been associated with an increased risk for the same diseases¹⁸⁻²⁰ and it is likely that the

association between antibiotic exposure and the subsequent development of these diseases is mediated through changes in the infant microbiome. However, the features and composition characteristics of the intestinal microbiome associated with the development of these conditions are unclear. Importantly, antibiotic exposure can also lead to the development of antibiotic resistance,¹² resulting in infections that are more difficult and costly to treat, often requiring longer duration of hospital stay, and the use of antibiotics with more adverse effects. Currently, in children, there is sparse data available on the effect of antibiotic exposure on the development and persistence of antibiotic resistance in their intestinal microbiome. In this prospective cohort study, we will use metagenomic sequencing to determine (i) the effect of *intrapartum antibiotics* on the composition of the breast milk, and the infant oral and intestinal microbiome (including the development and persistence of antibiotic resistance); (ii) the effect of antibiotic exposure in the first year of life on the composition of the infant oral and intestinal microbiome (including the development and persistence of antibiotic resistance); (iii) the effect of disruption of the infant oral and intestinal microbiome on health outcomes; and (iv) determine the compositional overlap between the maternal intestinal microbiome, the breast milk microbiome and the infant oral and intestinal microbiome. Determining the relationship between antibiotic exposure and changes in the breast milk, and the infant oral and intestinal microbiome, and their potential association with adverse health outcomes will provide stronger evidence for strict antibiotic stewardship. Additionally, it will form the basis for designing studies to investigate interventions to prevent adverse outcomes in situations where antibiotics cannot be avoided, including modifying the intestinal microbiome with directed pre- and probiotics, or bacteriophages.

1 2		
2 3 4	112	
5 6	113	OBJECTIVES
7 8	114	METHODS AND ANALYSIS
9 10 11	115	Study design
12 13	116	A prospective single-centre cohort study of 400 mother-infant pairs.
14 15	117	
16 17 18	118	Aims
19 20	119	Aim 1: To determine the extent to which, and for how long, intrapartum antibiotics affect the
21 22	120	composition of the breast milk microbiome and the infant oral and intestinal microbiome, as
23 24 25	121	well as the prevalence of antibiotic resistance genes.
26 27	122	
28 29	123	Aim 2: To determine the extent to which, and for how long, antibiotics in the first year of life
30 31	124	affect the composition of the oral and intestinal microbiome in infants, as well as the
32 33 34	125	prevalence of antibiotic resistance genes.
35 36	126	
37 38	127	Aim 3: To determine health outcomes (Table 1) in children up to the age of 2 years who have
39 40 41	128	or have not been exposed to intrapartum antibiotics or antibiotics in the first year of life and
41 42 43	129	determine whether there is an association with the composition of the oral and intestinal
44 45	130	microbiome.
46 47	131	
48 49 50	132	Aim 4: To determine the degree to which the maternal intestinal and the breast milk
51 52	133	microbiome affect the composition of the infant oral intestinal microbiome and the prevalence
53 54	134	of antibiotic resistance genes.
55 56 57	135	
58 59	136	Aim 5: To determine the degree to which the infant oral microbiome affects the composition
60	137	of the breast milk microbiome.
		6

1 2		
3 4 5 6	138	
	139	Outcomes
7 8	140	Primary endpoints:
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	141	- Composition of the maternal intestinal and breast milk microbiome, and the infant oral
	142	and intestinal microbiome and the prevalence of antibiotic resistance genes within the
	143	infant microbiome at birth and when infants are 7 days, 1, 2, 4, 6, 12 and 24 months of
	144	age.
	145	- Number of episodes of lower respiratory tract illnesses and acute otitis media in the
	146	first two years of life.
	147	- Prevalence of allergic sensitisation and eczema at 1 and 2 years of age.
	148	- Weight at 1 and 2 years of age.
	149	
	150	Setting and participants
	151	Sampling frame and study sample: Women who give birth at the Hôpital fribourgeois (HFR)
	152	in Fribourg, Switzerland and their infants will be followed over a two-year period. If
	153	recruitment is slow a second study site will be added.
	154	
	155	Recruitment: Pregnant women attending the antenatal clinic will be given information about
44 45	156	the study by a research study nurse or doctor and asked to consider enrolling themselves and
46 47 48 49 50 51 52	157	their infant in the study. Either both parents or only mothers are present during the antenatal
	158	consent interview. We explicitly encourage caregivers to discuss participation with their
	159	partners, other family members, doctors and midwives (this is clearly stated in the consent
53 54 55	160	form). We will re-evaluate the willingness to participate when mothers are admitted to the
55 56 57	161	hospital for delivery. Paediatricians will be informed about the children's participation in the
58 59	162	study.
60	163	

BMJ Open

2 3 4	164	Blinding of outcome assessment: Doctors and study nurses will be blinded to the group of
4 5 6	165	infants (control or antibiotic-exposed) when outcomes are measured.
7 8 9	166	
9 10 11	167	Patient and Public Involvement
12 13 14 15 16 17 18	168	Patients and public were not involved in the design of this study. The results of this study will
	169	be disseminated to parents of the study participants via a participant newsletter distributed by
	170	email.
19 20	171	
21 22 23	172	Eligibility criteria
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	173	Inclusion criteria: Healthy infants born at 37 weeks or more gestation who are breastfed.
	174	Mothers will be asked at an antenatal consent interview if they intend to breastfeed. This will
	175	be reassessed at delivery. Mothers will only be included if they breastfeed their infants.
	176	However, if breastfeeding is stopped before the infant reaches six months of age, this will not
	177	be a reason for exclusion. All the breast milk samples up to that point, as well as stool
	178	samples and oral swabs collected afterwards will be analysed.
	179	
	180	Exclusion criteria: Women with the following criteria: HIV, hepatitis B or C infection or
	181	unscreened for these infections, antibiotics or probiotics in pregnancy or postpartum period
	182	other than during delivery. Infants with the following criteria: low birth weight (<2500 g) or
47 48	183	severe congenital abnormality.
49 50 51 52 53 54 55	184	
	185	Study outcome measures
	186	We will use internationally accepted validated measures for clinical outcomes. The study
56 57	187	protocol is depicted in Table 2.
58 59 60	188	
00	189	<i>Diary</i> : Parents will be given a structured diary where they can record information about their

infant's diet (introduction of formula and new foods), illnesses, medical visits, hospital
admissions, use of antibiotics and other medications. This will help them when filling in the
questionnaires at the required time points.

Questionnaire: We will do computer-assisted interviews at birth, and when infants are 7 days, 2, 4, 6, 12 and 24 months of age using best practice international protocols. The following data will be recorded: demographic variables including parental ancestry and education, family history of atopy, eczema, asthma and other immune disorders, antenatal variables such as maternal age, weight, smoking habits, underlying diseases, medication and supplementation use (e.g. probiotics and vitamins). In addition, we will collect data on delivery history, perinatal course (e.g. hospitalisation, infections, antibiotics or oxygen administration), breast-feeding (including episodes of mastitis and maternal antibiotic and probiotic use), age of introduction of formula and new foods, administration of probiotics and vitamins, use of antibiotics, antacids and other medications, GP and other medical visits, illnesses including infections and hospital admissions, number of siblings, child care attendance, parental smoking habits, pet ownership, suspected food allergy and eczema (presence, medications). Data will be stored using the Research Electronic Data Capture (REDCap Consortium) database.²¹

Clinical examination: Participants will be reviewed at 12 and 24 months of age in a specially
 designated clinic at the HFR by a study nurse or doctor using a structured interview and
 clinical eczema assessment.

Weight: Weight will be assessed during the clinical examination at 12 and 24 months of age.
The WHO Child Growth Standards will be used as a reference for percentiles.²²

BMJ Open

Lower respiratory tract illness (LRTI) and acute otitis media (AOM): Symptoms of acute
lower respiratory illness (such cough and wheeze) and the number of episodes of LRTI and
AOM will be recorded by parents, and specific questions will be asked in the questionnaires.
We will use the definitions for LRTI developed by Oddy *et al* and Kusel *et al.*^{23 24} *Eczema:* Prevalence of eczema at 12 and 24 months of life will be assessed by the Williams'

UK diagnostic criteria of the International Study of Asthma and Allergy in Childhood
(ISAAC).²⁵ This will be assessed by using parent-reported eczema from diary information and
from the clinical examinations at 12 and 24 months of age. We will assess the severity of
eczema using the SCORAD.²⁶ We will also collect data on age of onset of eczema,
distribution of eczema, use of eczema medications, and medical consultations and hospital
admissions.

Skin prick tests: Sensitisation to the following panel of allergens will be assessed at 24
months of age in children whose parents consent to this component of the study: cow's milk,
egg, peanut, sesame, house dust mite (*Dermatophagoides pteronyssinus 1*), cat, dog and grass
pollen. Skin prick allergy testing will be performed according to standard guidelines.²⁷ A
positive skin prick test will be defined as an average wheal diameter at least 3 mm greater
than that produced by a negative control solution at 15 minutes.²⁷

Blood sampling: We will collect maternal blood at time of delivery. We also will obtain cord
blood at birth. During the clinical examination at 12 and 24 months of age, blood will be
collected by personnel trained in infant venipuncture, whose parents consent to this
component of the study. The 5-10 ml volume required is safe and within limits for weight
recommended by the US-based Office of Human Research Protections guidelines for blood
collection from healthy infants.

1 2		
3 4	242	
5 6	243	Breast milk samples: Study nurses will collect one colostrum sample as soon as possible after
7 8 9	244	birth. Mothers will be asked to collect breast milk (with date and time recorded) from their
9 10 11	245	first feed of the day (a minimum of 2 hours required to the previous feed) when infants are 7
12 13	246	days, 1, 2, 4, and 6 months old. If breastfeeding is ceased earlier than 6 months, breast milk
14 15	247	will be collected before breastfeeding is discontinued. Mothers will be instructed to wash their
16 17 18	248	hands and breasts meticulously and to then extract breast milk manually without touching the
19 20	249	areola. The first few drops will be discarded. Reminders will be sent by SMS. Sterile
21 22	250	containers will be provided.
23 24	251	
25 26 27	252	Oral swabs: Oral swabs will be taken from infants as soon as possible after birth by a study
28 29	253	nurse. Additionally, parents will then be asked to collect buccal swabs (with date and time
30 31	254	recorded) before the first feed of the day when infants are 7 days, 1, 2, 4, and 6 months old.
32 33	255	Sterile containers will be provided. Reminders will be sent by SMS.
	-00	Sterile containers will be provided. Reminders will be sent by Sivis.
34 35	256	Sterne containers will be provided. Reminders will be sent by Sivis.
34		<i>Stool samples:</i> Mothers will be asked to collect stool on or after the day of the delivery (with
34 35 36 37 38 39 40	256	
34 35 36 37 38 39 40 41 42	256 257	Stool samples: Mothers will be asked to collect stool on or after the day of the delivery (with
34 35 36 37 38 39 40 41 42 43 44	256 257 258	<i>Stool samples:</i> Mothers will be asked to collect stool on or after the day of the delivery (with date and time recorded). A meconium sample will be collected from infants as soon as
34 35 36 37 38 39 40 41 42 43	256 257 258 259	<i>Stool samples:</i> Mothers will be asked to collect stool on or after the day of the delivery (with date and time recorded). A meconium sample will be collected from infants as soon as possible after birth by a study nurse. Parents will then be asked to collect stool samples from
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	256 257 258 259 260	<i>Stool samples:</i> Mothers will be asked to collect stool on or after the day of the delivery (with date and time recorded). A meconium sample will be collected from infants as soon as possible after birth by a study nurse. Parents will then be asked to collect stool samples from their infants when they are 7 days, 1, 2, 4, 6, 12 and 24 months old. Reminders will be sent by
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	256 257 258 259 260 261	<i>Stool samples:</i> Mothers will be asked to collect stool on or after the day of the delivery (with date and time recorded). A meconium sample will be collected from infants as soon as possible after birth by a study nurse. Parents will then be asked to collect stool samples from their infants when they are 7 days, 1, 2, 4, 6, 12 and 24 months old. Reminders will be sent by SMS. To minimise variation, parents are asked to collect stool from the first bowel movement
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	256 257 258 259 260 261 262	<i>Stool samples:</i> Mothers will be asked to collect stool on or after the day of the delivery (with date and time recorded). A meconium sample will be collected from infants as soon as possible after birth by a study nurse. Parents will then be asked to collect stool samples from their infants when they are 7 days, 1, 2, 4, 6, 12 and 24 months old. Reminders will be sent by SMS. To minimise variation, parents are asked to collect stool from the first bowel movement of the day (with date and time recorded). Sterile containers will be provided.
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	256 257 258 259 260 261 262 263 264	Stool samples: Mothers will be asked to collect stool on or after the day of the delivery (with date and time recorded). A meconium sample will be collected from infants as soon as possible after birth by a study nurse. Parents will then be asked to collect stool samples from their infants when they are 7 days, 1, 2, 4, 6, 12 and 24 months old. Reminders will be sent by SMS. To minimise variation, parents are asked to collect stool from the first bowel movement of the day (with date and time recorded). Sterile containers will be provided.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	256 257 258 259 260 261 262 263 264 265	Stool samples: Mothers will be asked to collect stool on or after the day of the delivery (with date and time recorded). A meconium sample will be collected from infants as soon as possible after birth by a study nurse. Parents will then be asked to collect stool samples from their infants when they are 7 days, 1, 2, 4, 6, 12 and 24 months old. Reminders will be sent by SMS. To minimise variation, parents are asked to collect stool from the first bowel movement of the day (with date and time recorded). Sterile containers will be provided. Storage of samples: Parents will be instructed to freeze breast milk, oral swabs and stool samples in sealed bags in their domestic freezer at -20°C until collection by the research team.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	256 257 258 259 260 261 262 263 264	Stool samples: Mothers will be asked to collect stool on or after the day of the delivery (with date and time recorded). A meconium sample will be collected from infants as soon as possible after birth by a study nurse. Parents will then be asked to collect stool samples from their infants when they are 7 days, 1, 2, 4, 6, 12 and 24 months old. Reminders will be sent by SMS. To minimise variation, parents are asked to collect stool from the first bowel movement of the day (with date and time recorded). Sterile containers will be provided.

BMJ Open

2	
3 4	268
5 6	269
7 8	270
9 10	271
11 12 13	272
14 15	273
16 17	274
18 19	275
20 21 22	276
22 23 24	270
24 25 26	277
27 28	
29 30	279
31 32	280
33 34	281
35 36 37	282
37 38 39	283
40 41	284
42 43	285
44 45	286
46 47	287
48 49 50	288
50 51 52	289
53 54	290
55 56	291
57 58	292
59 60	293

200	
269	DNA extraction and sequencing: DNA from breast milk, oral swabs and stool samples
270	(approximately 200 mg) will be extracted using the FastDNA Spin Kit for soil (MP
271	Biomedicals, Santa Ana, California, USA). DNA concentrations will be quantified using a
272	Qubit 4.0 fluorometer (ThermoFisher Scientific, Waltham, Massachusetts, USA) and high
273	sensitivity DNA reagents. Bacterial DNA will be quantified by broad-range bacterial
274	quantitative polymerase chain reaction (qPCR). The library preparation will be done using
275	Nextera DNA Flex Library Preparations Kits. Extracted DNA will be indexed with IDT
276	Illumina Nextera DNA Unique Dual Indexes to allow analysis of pooled samples. 150-bp
277	pair-end sequencing will be done using the Illumina NextSeq. The required sequencing depth
278	to provide adequate coverage of microbial communities for taxonomic profiling will be
279	determined by rarefaction curves. We will aim for a minimum yield of 2-5x10 ⁶ read-pairs per
280	sample. Appropriate negative controls (including controls from sterile containers, extraction
281	kits etc.) and positive controls of mock communities will be included. These controls will be
282	sequenced together with the samples to identify potential environmental and laboratory
283	contaminants.
284	Researchers carrying out the microbial analyses will be blinded to the group identity of
285	infants (control or antibiotic exposed group).
286	

287 Storage of blood samples: Peripheral blood mononuclear cells will be separated from whole 288 blood and stored in liquid nitrogen. Plasma will be stored frozen at -80°C. These will be retained for future analysis in projects to evaluate the effect of microbiome on the immune 289 290 system, including immunophenotyping and analysis of markers of immune function.

292 Statistical power calculation

293 The analysis for the a priori computation of the required sample size was conducted using the

> G*Power 3.1 software. For the power analysis, the repeated measurements MANOVAs were considered. The calculation was based on F-tests for the interaction effect of the between-subject factor antibiotics vs no antibiotics and the within-subject factor time (8 time points). We chose a small to medium effect size of 0.22 for the calculation. With a significance level of 5% per test and a power of 80% the power analysis yields a sample size of 304. While we will attempt to retain and follow up all participants, we are powering our study on 'a worst-case scenario' assumption that complete 24-month data will be available for 76% of participants (this corresponds to a drop-out rate of 12% per year). We will therefore recruit approximately 400 infants in total (plus their mothers, therefore 800 participants). Approximately 40-50% of infants are exposed to prophylactic intrapartum antibiotics at our institution for colonisation with Group B streptococcus or premature rupture of membranes. Additional 50 to 60% of children are expected to be exposed to antibiotics during the first two years of life. ere **Bioinformatics** Sequences will be trimmed according to quality scores and sequencing adaptors will be

> Sequences will be trimmed according to quality scores and sequencing adaptors will be
> removed using Trimmomatic.²⁸ Host sequences will be removed by mapping against the
> Human genome with Bowtie2.²⁹ High-quality sequences will be used to create taxonomic and
> functional profiles using MetaphlAn2³⁰ and HUMAnN2³¹, respectively. Antibiotic resistance
> genes will be identified using ResFinder.³² We will share our metagenomic data through the
> European Nucleotide Archive (ENA).

316 Statistical analysis

5 317 Considered metrics:

318 <u>Alpha-diversity</u>: Alpha-diversity indexes are descriptive of the intra-sample richness (number
319 of taxonomic functional features), evenness (features distribution) or diversity (richness

weighted by evenness).³³ We will use Chao richness (number of different taxa) and Simpson diversity (distribution of taxa) to summarise the alpha-diversity for each sample.

> Beta-diversity: For beta-diversity, samples are compared for their composition in features of interest (taxonomic or functional units).³⁴ All-versus-all distances between samples are computed in pairwise comparisons and summarised in distance-matrices. We will use indices, with distance equal to 1-index value, to capture different dimensions of microbial structures,³⁴ restricting ourselves to non-Euclidean indices and excluding the "joint absences" as sharing of unseen features would have doubtful significance in this context. Feature presence/absence will be described by Jaccard indices and quantitative overlap by Bray-Curtis indices. In taxonomic comparisons, Unifrac (presence/absence) and Weighted Unifrac (quantitative) will be used to account for features phylogenetic distances.³⁵ Statistics on distances matrices require adapted methods to assess for significant differences in average location (centroid) of the samples of groups of interest. For this, we will use the PERMANOVA approach implemented in the Adonis2 function of the vegan R package. PERMANOVA can be sensitive to variance heterogeneity in unbalances groups. Thus, variance homogeneity will be tested by ANOVA to centroids.

Differential abundance testing: Metagenomics data are compositional due to technical limitations.^{36 37} Relative abundances of bacterial and non-bacterial (archaeal, eukaryotic and viral) taxa and antibiotic resistance genes, will be directly integrated for analyses. For bacteria, we will transform observed proportions into absolute quantities by multiplying proportions (%) by measured microbial loads, quantified by broad-range qPCR. Thus, we will explore correlation abundance testing of transformed counts for taxa and bacterial resistance genes. Statistical challenges of metagenomics data are the high number of features (and related multiple-testing false-discovery) and features sparsity (a given features - species or

genes – will be observed only in a few samples, leading to a high proportion of zeros in count tables). These limitations in metagenomics statistics were only recently recognised and the developments of methods accounting for these is a field of active research and publication. Thus, we will follow on future developments, recommendation and consensuses in the field regarding these challenges. Currently identified solutions accounting for these limitations are MetagenomSeq, Aldex2 and Maaslin2, which all integrate normalisation and correlation testing to account for the pre-mentioned limitations while trying to identify differentially abundant features (genes or species) between tested groups.

> Statistical plan for aim 1 and 2: Antibiotics exposed samples will be compared to non-exposed samples (grouped per received drug) for differences in alpha-diversity metrics and abundances of bacterial and non-bacterial taxa and antibiotic resistance genes with significant changes defined as a > 0.5% change in abundance between groups. Alpha-diversity metrics are continuous numeric values. Normality of the data will be checked by the Kolmogorov-Smirnov test and QQ-plots. For normal variables, a one-way ANOVA will be used. If normality cannot be reached by transformation, differences between groups will be analysed using a nonparametric Kruskal-Wallis test, or in case of pairwise comparisons, a Mann-Whitney U-test. For comparison of abundance Pearson x^2 tests will be used. Infant age, demographics, delivery mode, feeding method and antibiotic type and dose will be modelized in permutational multivariate analysis of variance (PERMANOVA, adonis2 in VEGAN package, R Foundation) using beta-diversity distance matrices to identify significant contributors to the microbiome composition.

4 368

Statistical plan for aim 3: For integrated analysis of the microbiome data and clinical
outcomes, allergic sensitisation, eczema, and overweight cases will be defined using the
prospectively collected outcome measures. The relationship between alpha-diversity and

Page 17 of 34

BMJ Open

clinical outcomes will be investigated using logistic regression. The relationship between taxa and these clinical outcomes will be determined by hierarchical clustering of communities using heatmaps and principal component analysis (PCA). Significance of grouping of clinical categories using permutational multivariate analysis of variance (PERMANOVA). Microbes that have significantly different abundance between the clinical outcome groups will be identified using Aldex2.³⁸ The potential influence of antenatal and postnatal factors on the microbiome or clinical outcomes will be accounted for in all analyses by PERMANOVA and unsupervised hierarchical clustering.

Statistical plan for aim 4: To compare paired maternal stool, breast milk, and infant stool samples, we will do clustering analysis and perform a Wilcoxon rank sum test on beta-diversity distances between true mother-infant pairs and randomly paired mothers and infants matched by infant age. These different analyses should allow to describe the relationships between samples of different origins and identify determinants of microbiome composition.

To further characterise the mother-to-infant microbiome transmission, the StrainPhlAn software will be used.³⁹ This software enables same-species sequence comparisons at the single nucleotide polymorphism (SNPs) level to define sample-specific strains. Combined results for shared species allow precise description of the phylogenetic distance between samples. Added to the beta-diversity analyses, this will allow to better disentangle the hypothesised seeding from maternal stool and breast milk to the infant oral and stool microbiome.

Statistical plan for aim 5: The same as for aim 4 will be done for comparison of the breast milk and the infant oral microbiome.

1		
2 3 4	398	Missing data
5 6	399	If the fraction of missing data is less than 5%, the primary analysis will be a complete case
7 8 9	400	analysis. If not, the rate and patterns of missing data will be examined and, if
10 11	401	appropriate, multiple imputation models will be applied for the outcome variables.
12 13 14	402	
14 15 16	403	ETHICS AND DISSEMINATION
17 18	404	Ethics approval
19 20 21	405	The ABERRANT study has been approved by the commission cantonale d'éthique de la
21 22 23	406	recherche sur l'être humain (CER-VD) du Canton de Vaud (#2019-01567), Switzerland.
24 25	407	
26 27	408	Recruitment and consent
28 29 30	409	Written informed consent will be obtained from all participants included in the trial.
31 32	410	Participants will be informed that they are not obliged to take part in the study and are free to
33 34	411	withdraw at any time without any impact on their future care.
35 36 37	412	
38 39	413	Data collection and storage
40 41	414	Data will be sourced from medical maternal and infant records, as well as by questionnaire
42 43 44	415	from parents. Data will be de-identified and entered in to a secure, web-based electronic
44 45 46	416	database.
47 48	417	
49 50	418	Safety
51 52 53	419	No serious adverse reactions are anticipated but these will be checked for by the Data Safety
54 55	420	and Monitoring Committee.
56 57	421	
58 59 60	422	Dissemination of results

1 2		
3 4	423	Outcomes will be disseminated through publication according to the SPIRIT statement and
5 6	424	will be presented at scientific conferences.
7 8	425	
9 10 11	426	Study duration
12 13	427	We aim to recruit participants over a two-year period.
14 15	428	
16 17 18	429	DISCUSSION
19 20	430	The intestinal microbiome is crucial in the development of the immune system and regulation
21 22	431	of immune responses, especially during infancy, when the intestinal microbiome and the
23 24 25	432	immune response develop concurrently. ⁴⁰ The development of intestinal microbiome is easily
25 26 27	433	disrupted by external factors and perturbation during this vulnerable period may have a large
28 29	434	influence on immune development. A number of factors influence the development of the
30 31 32	435	infant intestinal microbiome, including gestational age, delivery mode, feeding, and maternal
32 33 34	436	and infant antibiotic exposure (Figure 1). ⁴¹ While the effect of delivery mode and feeding
35 36	437	methods on the establishment of microbial communities has been well studied, much less is
37 38	438	known about the effects of intrapartum and early-life antibiotic exposure on the establishment
39 40 41	439	of microbial communities in the intestinal microbiome. ¹³
42 43	440	
44 45	441	A number of commonly used antibiotics have profound effects on specific bacteria within the
46 47 48	442	intestinal microbiome, as detailed in a recent systematic review. ¹² This 'collateral damage'
49 50	443	includes changes in diversity and abundance of microbial taxa, a decrease in 'colonisation
51 52	444	resistance' (protection against colonisation with potentially pathogenic organisms) and the
53 54 55	445	development of antibiotic resistance. To date, most studies on the effect of antibiotic exposure
55 56 57	446	on the intestinal microbiome have been done in adults. ¹² The main findings of these studies
58 59	447	are that antibiotics often lead to a decreased bacterial diversity, a decrease in the abundance of
60	448	anaerobic bacteria, an increase in abundance of <i>Enterobacteriaceae</i> other than <i>E. coli</i> and an

Page 20 of 34

BMJ Open

> increase in the abundance of yeast.¹² These studies show that changes in the intestinal microbiome after just one course of antibiotics can persist up to four years.¹² However, the clinical consequences of changes in the composition of the intestinal microbiome with antibiotic treatment are unknown. An increase in Enterobacteriaceae, which are often resistant to beta-lactam and other antibiotics, might render the host more susceptible to infections with antibiotic-resistant bacteria. This phenomenon has been observed in infants in neonatal intensive care units, who become more often colonised with Klebsiella spp., Enterobacter spp. and *Citrobacter* spp., when treated with antibiotics.⁴²

Intrapartum antibiotic prophylaxis (IAP) has become common practice in obstetric medicine and is used in up to 40% of deliveries, which makes it the most common source of antibiotic exposure in neonates.¹ IAP is routinely used in both elective and emergency Caesarean section (CS). It is also routinely used in women who are colonised with group B streptococcus (GBS). Despite the benefits, the risks associated with exposing a large number of infants to antibiotics, especially the long-term effects on health through changes in the microbiome, remain unclear. Infants who were exposed to IAP have been reported to have a lower alphadiversity, a lower relative abundance of Actinobacteria, especially Bifidobacteriaceae, and a larger relative abundance of Proteobacteria in their intestinal microbiome compared to non-exposed infants.¹³ Furthermore, they have been reported to have a higher number of beta-lactamase encoding genes.43 Breastfeeding has been shown to be beneficial in preventing many communicable and noncommunicable diseases.⁴⁴ Despite intensive research into the positive health effects of

the beneficial effects of breast milk is likely mediated through the microbiome and its

breastfeeding, the underlying mechanisms are still not understood. However, a large part of

associated immunomodulatory, anti-inflammatory and antimicrobial components. The breast

BMJ Open

474 milk microbiome also likely plays a part in shaping the infant's intestinal microbiome,⁵ to
475 which extent we will be investigated in this study.

There is relatively little data about the effects of IAP on the composition of the breast milk microbiome.⁴⁵⁻⁴⁷ Mothers who receive IAP have been reported to have a lower abundance or even an absence of the beneficial bacteria *Bifidobacterium* spp. in their breast milk.⁴⁵⁴⁶ Furthermore, in a small study IAP has been shown to increase antibiotic resistance genes in the breast milk microbiome.⁴⁸ There is also some evidence suggesting that mothers who receive IAP have a higher bacterial richness and diversity in their breast milk microbiome compared with mothers who do not receive antibiotics.⁴⁵ However, these findings have to be interpreted with caution: it could be that antibiotics lead to lower bacterial numbers and therefore signals from contamination, e.g. bacteria found in DNA extraction or sequencing kits might be amplified more leading to a the detection of a higher diversity. Use of broad-range qPCR to quantity bacterial load in milk samples will allow to assess this potential bias. Interestingly, recent preliminary studies have also shown that delivery mode affects the composition of the breast milk microbiome.^{45 47 49 50} However, during suckling, a high degree of retrograde flow of milk into the mammary ducts can occur,⁶ transferring bacteria from the infant to the mother, as postulated for GBS.⁵¹ It is therefore possible that the differences in the breast milk microbiome observed with different delivery modes are mediated through differences in the oral microbiome of infants. This study will determine the effect of intrapartum and early-life antibiotics on the

495 composition of the breast milk, and the infant oral and intestinal microbiome and antibiotic
496 resistance. The knowledge gained by this study will make an important contribution to the
497 growing field of research investigating the importance of the immunological role of the breast
498 milk microbiome and the infant intestinal microbiome on infant health. It will form the basis
499 for investigating the interplay between the microbiome and the regulation of the human

2 3	500
4 5 6	501
7 8	502
9 10	503
11 12	504
13 14 15	505
15 16 17	506
18 19	507
20 21	508
22 23	
24 25 26	509
20 27 28	510
29 30	511
31 32	512
33 34	513
35 36 37	514
37 38 39	515
40 41	516
42 43	517
44 45	518
46 47 49	519
48 49 50	520
51 52	521
53 54	522
55 56	523
57 58 59	524
59 60	

1

500 immune system and possible adverse health outcomes, such as the development of immune and non-immune mediated diseases, including allergic diseases. 501

503 The results of this study will also build a stronger evidence base for strict antibiotic 504 stewardship and form the basis for development of evidence-based interventions to prevent 505 adverse outcomes in situations where antibiotics cannot be avoided, including modifying the 506 intestinal microbiome with directed pre- and probiotics or bacteriophages.

Contributors PZ is the lead investigator. VS, LF, NC and PZ were responsible for study 508 509 conception and design. PZ, JW and ALB were responsible for funding acquisition and 510 implementation. MV drafted the manuscript and coordinated the manuscript preparation and 511 revision. PZ and VS has developed the statistical analysis plan. MV and PZ developed the 512 online questionnaires and database set-up in REDCap. WJ will be responsible for sample 513 analysis. MV, VS, WJ, DB, VDM, ALB, JW, LF and NC provided critical evaluation and 514 revision of manuscript and have given final approval of the manuscript accepting 515 responsibility for all aspects.

517 Funding This trial is funded by the University of Fribourg and the Fribourg Hospital HFR, 518 Switzerland. VS is supported by a SNSF grant (n° 10531C-170280 - L. Falquet, G. Greub and 519 F. Taroni). None of the funders had a role in designing the study or in the study conduct and 520 they will not be involved in the publication of the results from the study.

522 Competing interests None.

524 Provenance and peer review Not commissioned; externally peer reviewed.

1		
2		
3	525	References
4	526	Acted circles
5	520 527	1. Stokholm J, Schjorring S, Pedersen L, et al. Prevalence and predictors of antibiotic administration
6	528	during pregnancy and birth. <i>PloS one</i> 2013;8(12):e82932. doi: 10.1371/journal.pone.0082932
7	529	[published Online First: 2013/12/18]
8 9	530	2. Zimmermann P, Curtis N. Prophylactic antibiotics after operative vaginal delivery. <i>Lancet</i>
9 10	531	2020;395(10219):189. doi: 10.1016/s0140-6736(19)32632-7 [published Online First:
11	532	2020/01/20]
12	533	3. Hellman J, Grape M, Ternhag A. Antibiotic consumption among a Swedish cohort of children born
13	534	in 2006. Acta paediatrica (Oslo, Norway : 1992) 2015;104(10):1035-8. doi:
14	535	10.1111/apa.13097 [published Online First: 2015/06/26]
15	536	4. Anderson H, Vuillermin P, Jachno K, et al. Prevalence and determinants of antibiotic exposure in
16	537	infants: A population-derived Australian birth cohort study. J Paediatr Child Health
17 18	538	2017;53(10):942-49. doi: 10.1111/jpc.13616 [published Online First: 2017/07/28]
19	539	5. Pannaraj PS, Li F, Cerini C, et al. Association Between Breast Milk Bacterial Communities and
20	540	Establishment and Development of the Infant Gut Microbiome. JAMA pediatrics
21	541	2017;171(7):647-54. doi: 10.1001/jamapediatrics.2017.0378 [published Online First:
22	542	2017/05/12]
23	543	6. Ramsay DT, Kent JC, Owens RA, et al. Ultrasound imaging of milk ejection in the breast of lactating
24	544	women. <i>Pediatrics</i> 2004;113(2):361-7. [published Online First: 2004/02/03]
25 26	545	7. Perez PF, Dore J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons
20	546	from maternal cells? Pediatrics 2007;119(3):e724-32. doi: 10.1542/peds.2006-1649
28	547	[published Online First: 2007/03/03]
29	548	8. Jost T, Lacroix C, Braegger CP, et al. Vertical mother-neonate transfer of maternal gut bacteria via
30	549	breastfeeding. Environmental microbiology 2014;16(9):2891-904. doi: 10.1111/1462-
31	550	2920.12238 [published Online First: 2013/09/17]
32	551	9. Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the
33 34	552	gut microbiome. <i>Cell host & microbe</i> 2015;17(5):592-602. doi: 10.1016/j.chom.2015.04.007
35	553	[published Online First: 2015/05/15]
36	554	10. Panzer AR, Lynch SV. Influence and effect of the human microbiome in allergy and asthma.
37	555	Current Opinion in Rheumatology;27(4):373-80. 🥢
38	556	11. Coit P, Sawalha AH. The human microbiome in rheumatic autoimmune diseases: A
39	557	comprehensive review. <i>Clinical immunology (Orlando, Fla)</i> 2016;170:70-9. doi:
40	558	10.1016/j.clim.2016.07.026 [published Online First: 2016/08/06]
41 42	559	12. Zimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota.
42	560	Journal of Infection 2019;Published online [published Online First: 2019/10/21]
44	561	13. Zimmermann P, Curtis N. Effect of intrapartum antibiotics on the intestinal microbiota of infants:
45	562	a systematic review. Arch Dis Child Fetal Neonatal Edition 2019 doi: 10.1136/archdischild-
46	563	2018-316659 [published Online First: 2019/07/13]
47	564	14. Zimmermann P, Messina N, Mohn WW, et al. Association between the intestinal microbiota and
48	565	allergic sensitization, eczema, and asthma: A systematic review. The Journal of allergy and
49 50	566	clinical immunology 2018 doi: 10.1016/j.jaci.2018.09.025 [published Online First:
50	567	2019/01/03]
52	568 569	15. Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn's
53	570	disease revealed by a metagenomic approach. <i>Gut</i> 2006;55(2):205-11. doi:
54	570 571	10.1136/gut.2005.073817 [published Online First: 2005/09/29] 16. Scott FI, Horton DB, Mamtani R, et al. Administration of Antibiotics to Children Before Age 2 Years
55	572	Increases Risk for Childhood Obesity. <i>Gastroenterology</i> 2016;151(1):120-29.e5. doi:
56 57	573	10.1053/j.gastro.2016.03.006 [published Online First: 2016/03/24]
57 58	574	17. Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. <i>Nature</i>
59	575	reviews Endocrinology 2016;12(3):154-67. doi: 10.1038/nrendo.2015.218 [published Online
60	576	First: 2016/01/06]
	210	
		22

1		
2 3	577	10 Mueller NT M/huett D. Heenney L. et al. Drepetal evenesure to entiblication exception and
4	577 578	18. Mueller NT, Whyatt R, Hoepner L, et al. Prenatal exposure to antibiotics, cesarean section and
5	578 579	risk of childhood obesity. <i>International journal of obesity (2005)</i> 2015;39(4):665-70. doi: 10.1038/ijo.2014.180 [published Online First: 2014/10/10]
6	580	19. Ong MS, Umetsu DT, Mandl KD. Consequences of antibiotics and infections in infancy: bugs,
7	580	drugs, and wheezing. Annals of allergy, asthma & immunology : official publication of the
8	582	American College of Allergy, Asthma, & Immunology 2014;112(5):441-45.e1. doi:
9	582	10.1016/j.anai.2014.01.022 [published Online First: 2014/03/19]
10 11	585	20. Ungaro R, Bernstein CN, Gearry R, et al. Antibiotics associated with increased risk of new-onset
12	585	Crohn's disease but not ulcerative colitis: a meta-analysis. The American journal of
13	586	gastroenterology 2014;109(11):1728-38. doi: 10.1038/ajg.2014.246 [published Online First:
14	587	2014/09/17]
15	588	21. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap) - a metadata-
16	589	driven methodology and workflow process for providing translational research informatics
17	590	support. J Biomed Inform 2009;42(2):377-81. doi: 10.1016/j.jbi.2008.08.010 [published
18 19	591	Online First: 2008/10/22]
20	592	22. Organization WH. WHO Child Growth Standards 2006 [Available from:
21	593	https://www.who.int/childgrowth/standards/en/.
22	594	23. Oddy WH, de Klerk NH, Sly PD, et al. The effects of respiratory infections, atopy, and
23	595	breastfeeding on childhood asthma. <i>Eur Respir J</i> 2002;19(5):899-905. [published Online First:
24	596	2002/05/28]
25	597	24. Kusel MM, de Klerk NH, Holt PG, et al. Role of respiratory viruses in acute upper and lower
26 27	598	respiratory tract illness in the first year of life: a birth cohort study. <i>Pediatr Infect Dis J</i>
27 28	599	2006;25(8):680-6. doi: 10.1097/01.inf.0000226912.88900.a3 [published Online First:
20 29	600	2006/07/29]
30	601	25. Williams HC, Burney PG, Pembroke AC, et al. The U.K. Working Party's Diagnostic Criteria for
31	602	Atopic Dermatitis. <i>Br J Dermatol</i> 1994;131(3):406-16. [published Online First: 1994/09/01]
32	603	26. Pucci N, Novembre E, Cammarata MG, et al. Scoring atopic dermatitis in infants and young
33	604	children: distinctive features of the SCORAD index. <i>Allergy</i> 2005;60(1):113-6. doi:
34	605	10.1111/j.1398-9995.2004.00622.x [published Online First: 2004/12/04]
35 36	606	27. Bernstein IL, Storms WW. Practice parameters for allergy diagnostic testing. Joint Task Force on
30 37	607	Practice Parameters for the Diagnosis and Treatment of Asthma. The American Academy of
38	608	Allergy, Asthma and Immunology and the American College of Allergy, Asthma and
39	609	Immunology. Ann Allergy Asthma Immunol 1995;75(6 Pt 2):543-625. [published Online First:
40	610	1995/12/01]
41	611	28. Andrews S. FastQC: a quality control tool for high throughput sequence data. Available online at:
42	612	http://wwwbioinformaticsbabrahamacuk/projects/fastqc 2010
43	613	29. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9(4):357-
44 45	614	9. doi: 10.1038/nmeth.1923 [published Online First: 2012/03/06]
45 46	615	30. Segata N, Waldron L, Ballarini A, et al. Metagenomic microbial community profiling using unique
47	616	clade-specific marker genes. Nat Methods 2012;9(8):811-4. doi: 10.1038/nmeth.2066
48	617	[published Online First: 2012/06/13]
49	618	31. Abubucker S, Segata N, Goll J, et al. Metabolic reconstruction for metagenomic data and its
50	619	application to the human microbiome. <i>PLoS Comput Biol</i> 2012;8(6):e1002358. doi:
51	620	10.1371/journal.pcbi.1002358 [published Online First: 2012/06/22]
52	621	32. Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes.
53 54	622	The Journal of antimicrobial chemotherapy 2012;67(11):2640-44. doi: 10.1093/jac/dks261
54 55	623	[published Online First: 2012/07/10]
55 56	624	33. Kim BR, Shin J, Guevarra R, et al. Deciphering Diversity Indices for a Better Understanding of
57	625	Microbial Communities. J Microbiol Biotechnol 2017;27(12):2089-93. doi:
58	626	10.4014/jmb.1709.09027 [published Online First: 2017/10/17]
59		
60		

1		
2		
3 4	627	34. Anderson MJ, Crist TO, Chase JM, et al. Navigating the multiple meanings of beta diversity: a
5	628	roadmap for the practicing ecologist. <i>Ecol Lett</i> 2011;14(1):19-28. doi: 10.1111/j.1461-
6	629	0248.2010.01552.x [published Online First: 2010/11/13]
7	630	35. Lozupone CA, Hamady M, Kelley ST, et al. Quantitative and qualitative beta diversity measures
8	631	lead to different insights into factors that structure microbial communities. <i>Applied and</i>
9	632 633	environmental microbiology 2007;73(5):1576-85. doi: 10.1128/aem.01996-06 [published
10 11	634	Online First: 2007/01/16] 36. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, et al. Microbiome Datasets Are Compositional: And
12	635	This Is Not Optional. <i>Front Microbiol</i> 2017;8:2224. doi: 10.3389/fmicb.2017.02224 [published
13	636	Online First: 2017/12/01]
14	637	37. Quinn TP, Erb I, Gloor G, et al. A field guide for the compositional analysis of any-omics data.
15	638	Gigascience 2019;8(9) doi: 10.1093/gigascience/giz107 [published Online First: 2019/09/24]
16	639	38. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics
17 18	640	of microbiome census data. <i>PloS one</i> 2013;8(4):e61217. doi: 10.1371/journal.pone.0061217
10	641	[published Online First: 2013/05/01]
20	642	39. Truong DT, Tett A, Pasolli E, et al. Microbial strain-level population structure and genetic diversity
21	643	from metagenomes. <i>Genome research</i> 2017;27(4):626-38. doi: 10.1101/gr.216242.116
22	644	[published Online First: 2017/02/06]
23	645	40. Zeevi D, Korem T, Segal E. Talking about cross-talk: the immune system and the microbiome.
24 25	646	Genome biology 2016;17:50. doi: 10.1186/s13059-016-0921-4 [published Online First:
25 26	647	2016/03/19]
27	648	41. Zimmermann P, Curtis N. Factors Influencing the Intestinal Microbiome During the First Year of
28	649	Life. Pediatr Infect Dis J 2018 doi: 10.1097/inf.000000000002103 [published Online First:
29	650	2018/05/11]
30	651	42. Goldmann DA, Leclair J, Macone A. Bacterial colonization of neonates admitted to an intensive
31	652	care environment. <i>J Pediatr</i> 1978;93(2):288-93. [published Online First: 1978/08/01]
32 33	653	43. Nogacka A, Salazar N, Suarez M, et al. Impact of intrapartum antimicrobial prophylaxis upon the
34	654	intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered
35	655	full-term neonates. <i>Microbiome</i> 2017;5(1):93. doi: 10.1186/s40168-017-0313-3 [published
36	656	Online First: 2017/08/10]
37	657	44. Kelishadi R, Farajian S. The protective effects of breastfeeding on chronic non-communicable
38	658 659	diseases in adulthood. Advanced biomedical research 2014;3:3. doi: 10.4103/2277-
39 40	660	9175.124629 [published Online First: 2014/03/07] 45. Hermansson H, Kumar H, Collado MC, et al. Breast Milk Microbiota Is Shaped by Mode of Delivery
41	661	and Intrapartum Antibiotic Exposure. <i>Frontiers in nutrition</i> 2019;6:4. doi:
42	662	10.3389/fnut.2019.00004 [published Online First: 2019/02/20]
43	663	46. Soto A, Martin V, Jimenez E, et al. Lactobacilli and bifidobacteria in human breast milk: influence
44	664	of antibiotherapy and other host and clinical factors. <i>Journal of pediatric gastroenterology</i>
45 46	665	and nutrition 2014;59(1):78-88. doi: 10.1097/mpg.000000000000347 [published Online
40 47	666	First: 2014/03/05]
48	667	47. Zimmermann P, Curtis N. Breast milk microbiota: A review of the factors that influence
49	668	composition. J Infect 2020 doi: 10.1016/j.jinf.2020.01.023 [published Online First:
50	669	2020/02/10]
51	670	48. Parnanen K, Karkman A, Hultman J, et al. Maternal gut and breast milk microbiota affect infant
52 53	671	gut antibiotic resistome and mobile genetic elements. Nature communications
53 54	672	2018;9(1):3891. doi: 10.1038/s41467-018-06393-w [published Online First: 2018/09/27]
55	673	49. Khodayar-Pardo P, Mira-Pascual L, Collado MC, et al. Impact of lactation stage, gestational age
56	674	and mode of delivery on breast milk microbiota. Journal of perinatology : official journal of
57	675	the California Perinatal Association 2014;34(8):599-605. doi: 10.1038/jp.2014.47 [published
58	676	Online First: 2014/03/29]
59 60		
00		

1 2 3 4 5 6 7 8 9 10 11 12	677 678 679 680 681 682 683	 50. Toscano M, De Grandi R, Peroni DG, et al. Impact of delivery mode on the colostrum microbiota composition. <i>BMC microbiology</i> 2017;17(1):205. doi: 10.1186/s12866-017-1109-0 [published Online First: 2017/09/28] 51. Zimmermann P, Gwee A, Curtis N. The controversial role of breast milk in GBS late-onset disease. <i>J Infect</i> 2017;74 Suppl 1:S34-s40. doi: 10.1016/s0163-4453(17)30189-5 [published Online First: 2017/06/26]
 13 14 15 16 17 18 19 20 21 22 23 24 25 		
26 27 28 29 30 31 32 33 34 35 36 37		
 38 39 40 41 42 43 44 45 46 47 48 49 50 		
50 51 52 53 54 55 56 57 58 59 60		

Outcome Lower respiratory tract illness	Main measureNumber of episodes & hospitalisations23 24	Timingfirst 2 years of li
Acute otitis media	Number of episodes ^{23 24}	first 2 years of li
Allergic (atopic) sensitisation	Prevalence (positive skin prick test) ²⁷	at 2 years of age
Eczema	Prevalence (Williams criteria) ²⁵	at 1 and 2 years
Weight	Centile (WHO Child Growth Standards) ²²	at 1 and 2 years

84 Table 2 Study protocol

Time	Birth	7d	1m	2m	4m	6m	12m	24m
Diary		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Questionnaire		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Maternal blood sample	\checkmark							
Maternal stool sample	\checkmark							
Breast milk sample	√ ^{col}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark^*		
Infant oral swab	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Infant stool sample	√ ^{mec}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Clinical examination							\checkmark	\checkmark
Skin prick test (optional)								\checkmark
Blood sampling(optional)	√cb						\checkmark	\checkmark

col = colostrum; mec = meconium; ³ cb = cord blood;

or before breastfeeding is discontinued if earlier than 6 m

Koerterier ont

Figure 1 Summary of factors that might influence the composition of the maternal intestinal and breast milk microbiome, and the infant oral and intestinal microbiome together with possible associated adverse health outcomes

tor occurrence in the second

BMJ Open: first published as 10.1136/bmjopen-2019-036275 on 23 June 2020. Downloaded from http://bmjopen.bmj.com/ on April 23, 2024 by guest. Protected by copyright.

BMJ Open

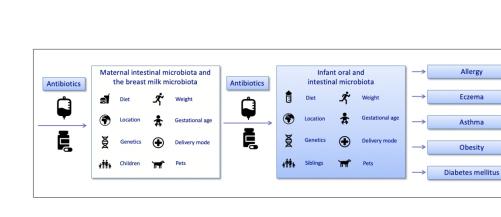


Figure 1

1 2 3 4 5 6		STANDARD PROTOCOL ITEMS: RECOMMENDATIONS FOR INTERVENTIONAL TRIALS	
9 related		Checklist: Recommended items to address in a clinical trial protocol and ments*	
10 11 Section/item 12 13	ltem No	Description	Page Line
¹⁴ ₁₅ Administrative i	nform	ation	
¹⁶ 17 18	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1 1-2
¹⁹ 20 Trial registration 21	2a	Trial identifier and registry name. If not yet registered, name of intended registry	2 46
22 23 24 25 26	2b	All items from the World Health Organization Trial Registration Data Set	Available at Clinical trials.gov
27 Protocol version 28 29 30	3	Date and version identifier	Approved by the CER-VD
³¹ 32 Funding 33	4	Sources and types of financial, material, and other support	18 450
 34 35 Roles and 36 responsibilities 37 38 39 	5a	Names, affiliations, and roles of protocol contributors	1 5-20 18 441-4448
40 41 42	5b	Name and contact information for the trial sponsor	1 22-24
43 44 45 46 47 48	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	18 452-453
49 50 51 52 53 54 55 Introduction	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	18 441-448
⁵⁶ Background and ⁵⁷ Background and ⁵⁹ rationale ⁶⁰	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	4-5

1 2	F	3b	Explanation for choice of comparators	4-5
3 4 Objectives		7	Specific objectives or hypotheses	6-7
5 6 Trial desig 7 8 9 10 11			Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	7
12 Methods: 13	Particip	ants	, interventions, and outcomes	
14 Study setti 15 16 17	ing S	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	7
¹⁸ Eligibility c 20 21	riteria 1	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	7-8
22 23 Interventio 24 25	ins 1	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	no intervention
26 27 28 29	1	11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease)	
30 31 32 33 34	1	11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	8
34 35 36 37	1	11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	NA
38 Outcomes 39 40 41 42 43 44 45	1	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	8-9 Table 1
⁴⁶ Participant ⁴⁷ timeline ⁴⁹	t 1	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	Table 2
50 51 Sample siz 52 53 54	ze 1	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	11-12
⁵⁵ Recruitmen 56 57	nt 1	15	Strategies for achieving adequate participant enrolment to reach target sample size	7
⁵⁸ Methods: ⁵⁹	Assignr	nent	of interventions (for controlled trials)	

_	Allocation:				
3 4 5 6 7 8 9	Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	NA	
10 11 12 13 14	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	NA	
15 16 17	Implementatio n	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	NA	
19	Blinding masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	7	
21 22 23		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	7	
	4 5 Methods: Data collection, management, and analysis				
	ata collection nethods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	8-9	
34 35 36 37 38		18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	8-9	
40	oata nanagement	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	14	
45 g	tatistical nethods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	11-13	
49 50		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	NA	
51 52 53 54 55		20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	14	
	lethods: Monito	oring			

	Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	15
	3 9 10 11 12	21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	NA
	¹³ Harms 4 15	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	NA
	¹⁷ ₁₈ Auditing ¹⁹ ²⁰ ²¹ Ethics and disse	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	NA
	22 22			
	 ²³ Research ethics ²⁴ approval 	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	14
	 ²⁶ Protocol 28 amendments 29 29 	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	NA
	30 31 Consent or 32 assent 33	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	14
	34 35 36	26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	14
	³⁷ Confidentiality ³⁸ ³⁹	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	Approved by the CER-VD
2	⁴¹ 42 Declaration of 43 interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site	19
	¹⁴ 15 Access to data 16 17 18	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	Approved by the CER-VD
	⁴⁹ Ancillary and 51 post-trial care 52 53	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	Approved by the CER-VD
	53 54 Dissemination 55 policy 56 57 58	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	7
	59 50	31b	Authorship eligibility guidelines and any intended use of professional writers	NA

1 2 3 3 4	1c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	14
⁵ ₆ Appendices			
 ⁷ Informed 32 ⁹ consent ¹⁰ materials 	2	Model consent form and other related documentation given to participants and authorised surrogates	Attachment
13 specimens 14	3	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	9-11
17 Explanati 18 protocol s	ion & shou	recommended that this checklist be read in conjunction with the SPIRIT 2013 & Elaboration for important clarification on the items. Amendments to the lid be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT the Creative Commons "Attribution-NonCommercial-NoDerivs 3.0 Unported"	