BMJ Open

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

Patterns of multimorbidity and their effects on adverse outcomes in rheumatoid arthritis: a study of 5658 UK Biobank participants

Journal:	BMJ Open			
Manuscript ID	bmjopen-2020-038829			
Article Type:	Original research			
Date Submitted by the				
Author:		27-Mar-2020 \quad	Complete List of Authors:	McQueenie, Ross; University of Glasgow, GPPC, School of Medicine, Dentistry and Nursing, MVLS Nicholl, Barbara; University of Glasgow, General Practice and Primary Care Jani, Bhautesh; University of Glasgow, General Practice and Primary Care Canning, Jordan; University of Glasgow, General Practice and Primary Care MacDonald, Sara; University of Glasgow, McCowan, Colin; University of St. Andrews, School of Medicine Neary, Joanne; University of Glasgow, General Practice and Primary Care Browne, Susan; University of Glasgow, General Practice and Primary Care Mair, Frances; University of Glasgow, General Practice and Primary Care Siebert, Stefan; University of Glasgow, Institute of Infection, Immunity and Inflammation; NHS Greater Glasgow and Clyde,
---:	:---			
	RHEUMATOLOGY, CARDIOLOGY, EPIDEMIOLOGY			
Keywords:				

SCHOLARONE"
 Manuscripts

D)

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence - details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Patterns of multimorbidity and their effects on adverse outcomes in rheumatoid arthritis: a study of 5658 UK Biobank participants

Ross McQueenie ${ }^{1}$
Barbara I Nicholl ${ }^{1}$
Bhautesh Dinesh Jani ${ }^{1}$
Jordan Canning ${ }^{1}$
Sara Macdonald ${ }^{1}$
Colin McCowan ${ }^{3}$
Joanne Neary ${ }^{1}$
Susan Browne ${ }^{1}$
Frances S Mair ${ }^{\text {* }}$
Stefan Siebert 2^{*}
${ }^{1}$ Ross McQueenie BSc (Hons), PhD; Barbara Nicholl BSc, PhD; Bhautesh Dinesh Jani MRCGP, PhD; Jordan Canning BSc (Hons), MRes; Sara Maconald PhD; Joanne Neary BA
(Hons), MRes, PhD; Susan Browne MA(Hons), Mphil, PhD; Frances Mair MD, DRCOG,
FRCGP: General Practice and Primary Care, Institute of Health and Wellbeing, MVLS,
University of Glasgow, UK
${ }^{2}$ Stefan Siebert MD, FRCP, PhD: Institute of Infection, Immunity and Inflammation, MVLS, University of Glasgow, UK
${ }^{3}$ Colin McCowan PhD: School of Medicine, University of St Andrews, UK
*Joint Senior author

Stefan Siebert (corresponding author)

Institute of Infection, Immunity and Inflammation University of Glasgow

G12 9LX

25 email: stefan.siebert@glasgow.ac.uk
26 No author received financial support for the work reported in this manuscript, and all others 27 report no other financial interests that would be considered a conflict of interest.

29 Abstract

30 Objective

31 To investigate how type and number of long-term conditions (LTCs) impact on all-cause
32 mortality and major adverse cardiovascular events (MACE) in people with RA.

33 Design

34 Population-based cross-sectional cohort study.

35 Setting

36 UK Biobank.

37 Participants

38 UK Biobank participants $(\mathrm{N}=502,533)$ aged between 37 and 73 years old.

39 Primary outcome measures

40 Primary outcome measures were risk of all-cause mortality and MACE.

41 Methods

42 We examined the relationship between LTC count and individual comorbid LTCs ($\mathrm{N}=42$) on
43 adverse clinical outcomes in participants with self-reported RA ($\mathrm{N}=5658$). Risk of all-cause
44 mortality and MACE were compared using Cox's proportional hazard models adjusted for
lifestyle factors (smoking, alcohol intake, physical activity), demographic factors (sex, age, socioeconomic status), and rheumatoid factor.

Results

75.7% of participants with RA had multimorbidity and these individuals were at increased risk of all-cause mortality and MACE. RA and ≥ 4 LTCs showed a three-fold increased risk of allcause mortality (hazard ratio (HR) 3.30, 95% confidence interval (CI) 2.61-4.16), and MACE (HR 3.45, 95\% CI 2.66-4.49) compared to those without LTCs. Of the comorbid LTCs studied, osteoporosis was most strongly associated with adverse outcomes in participants with RA compared to those without RA or LTCs: two-fold increased risk of all-cause mortality (HR $2.20,95 \%$ CI 1.55-3.12) and three-fold increased risk of MACE (HR 3.17, 95\% CI 2.27-4.64). These findings remained in a subset $(\mathrm{N}=3683)$ with RA diagnosis validated from clinical records or medication reports.

Conclusion

Those with RA and other LTCs, particularly comorbid osteoporosis, are at increased risk of adverse outcomes. These results are clinically relevant for the monitoring and management of RA across the healthcare system, and future clinical guidelines for RA should acknowledge the importance of multimorbidity.

Keywords

Rheumatoid arthritis, mortality, multimorbidity, comorbidity, cardiovascular

Strengths and limitations

- This is the first study to examine both comorbidity and multimorbidity in RA and the associations with mortality and major adverse cardiovascular events (MACE).
- We used data from 5658 participants in UK Biobank with RA, including detailed information on participant demographics, lifestyle factors and rheumatoid factor status to examine multimorbidity and comorbidity using 42 non-RA LTCs.
- These results provide crucial new information which should be incorporated into clinical guidelines and used to influence management of peoples with RA.
- This study was limited by lack of information on RA disease severity which may play a role in both outcomes measured.

Introduction

Rheumatoid arthritis (RA) is a debilitating, chronic autoimmune disease characterised by inflammation of the synovial joints. RA is associated with physical and socio-economic issues, including increased pain levels, reduced physical functioning, and early mortality ${ }^{1-3}$. Globally, whilst disability adjusted life years for RA have improved since 1990, age-standardised prevalence and incidence rates are increasing ${ }^{4}$.

Between 60% and 75% of those with RA are reported to have multimorbidity - two or more long-term conditions (LTCs) - with higher number of LTCs reported with increasing age and disease activity ${ }^{56}$. Common comorbidities include cardiovascular conditions ${ }^{7}$ such as coronary artery disease ${ }^{8}$ and cardiac failure ${ }^{9}$, as well as mental health conditions such as depression ${ }^{10}$. Cardiovascular disease (CVD) accounts for the majority of the excess mortality observed in RA, with raised inflammatory markers and shared risk factors implicated ${ }^{11}$. However, the effects of comorbidities in RA have generally been studied in isolation and less is known regarding the risks posed by multimorbidity when RA co-occurs with more than one other long-term physical or mental health LTC.

Through analysis of UK Biobank data, this paper aims to explore the effect of multimorbidity and a wide range of comorbid LTCs on all-cause mortality and major adverse cardiovascular events (MACE) in people with RA. Our objectives were to:

1. Compare the effect of LTC count on all-cause mortality in those with and without selfreported RA.
2. Compare the effect of LTC count on MACE in those with and without self-reported RA.
3. Evaluate the effect of individual co-morbid LTCs on the risk of all-cause mortality and MACE in participants with self-reported RA.

Patients and Methods

Study design and data collection

This study utilised data from UK Biobank, a longitudinal population-based cohort of 502533 participants, aged 37-73 years in Great Britain. ${ }^{12}$ Data was collected between 2006-10 from recruitment centres in Scotland, England and Wales, and subsequently linked to mortality and hospitalisation outcomes. A subset of primary care data was available for 230105 participants. This study was covered by the generic ethics approval for UK Biobank studies from the NHS National Research Ethics Service (16/NW/0274).

Variables and outcome measures

UK Biobank collected information on a wide range of demographic, health-based lifestyle and self-reported LTC questions through self-administered touch screen questionnaire and nurseled interview. These include age, sex, socioeconomic status (measured using Townsend score, a UK area-based measure of deprivation) ${ }^{13}$, smoking status, frequency of alcohol intake, body mass index (BMI), level of physical activity and number of LTCs.

Age was categorised into bands of 37-49, 50-59 and 60-73 years. Sex was a binary categorical variable. Smoking status was categorised into "never" or "current or previous". Frequency of alcohol intake was categorised into four groups, "Never or special occasions only", "One to three times a month", "One to four times a week" or "Daily or almost daily". BMI was categorised into four groups based on WHO BMI guidelines ${ }^{14}$: "underweight <18.5 ", "normal weight $18.5-24.9$ ", "overweight $25-29.9$ " and "obese ≥ 30 ". Level of physical activity was defined as "none", "low", "medium", or "high" using Metabolic Equivalent Task (MET) scores data based on International Physical Activity Questionnaire (IPAQ) scoring protocol (available from https://sites.google.com/site/theipaq/scoring-protocol).

Rheumatoid factor was ascertained through participant blood samples and categorised into positive and negative status, with rheumatoid factor $<20 I \mathrm{IU} / \mathrm{ml}$ considered negative, and values above this considered positive (by manufacturer specification, available at https://www.beckmancoulter.com/wsrportal/techdocs?docname=/cis/988646/\%\%/RF 98864 6-\%25\%25 English.pdf). Participants whose rheumatoid factor was labelled as "not reportable at assay (too low)" were considered to be rheumatoid factor negative. Similarly, those labelled "not reportable at assay (too high)" were considered rheumatoid factor positive.

The list of 42 LTCs considered was based on previous work in UK Biobank ${ }^{15}$, the number of LTCs reported, apart from RA, were summed and then categorised as $0,1,2-3$ and ≥ 4 LTCs. RA and all LTCs in UK Biobank are based on self-report using a questionnaire and nurse-led interview asking for existing diagnoses.

All-cause mortality was calculated using data linkage to national mortality registers. MACE were calculated using stroke and myocardial infarction (MI) hospitalisation event data from UK Biobank, and using ICD-10 mortality codes: "I00-I78", "G45", "G451-G454", "G456", "G458", "G459", and "G460-G468". The median follow-up time of both outcome measures was nine years.

A sensitivity analysis of self-report RA by participants was performed by examining four other indicators of RA: any primary care RA Read code, any secondary care RA hospitalisation code, self-reporting of any common RA drugs or any primary care prescription record of RA drugs (as shown in Supplementary Table 2). Both prospective and retrospective data were used: primary care Read codes were available for a maximum period of January 1991 and December 2017, and primary care prescriptions were between January 1991 and December 2016; the time period for each participant varied, depending on records held. Participants were considered to have confirmed RA if they had a positive record for one or more of these indicators. This
analysis was performed on a subset (74\%) of participants who self-reported RA for whom primary care data in UK Biobank was available $(\mathrm{N}=4196 / 5658)$.

Statistical methods

In line with previous UK Biobank studies, $\chi 2$ tests were utilised for both categorical data and ordinal data. Kruskal-Wallis tests were used for continuous data ${ }^{17}$. Similarly, we used $\chi 2$ testing to examine differences in proportion of individual LTCs between those with and without RA. Age-adjusted Cox's proportional hazards tests were used to examine the relationship between LTC count / type of LTCs with all-cause mortality and MACE as outcome variables in those with and without RA. The model was further adjusted for demographic and lifestyle factors as described above. Among those with RA, cumulative hazards-based Kaplan-Meier plots were used to display proportion of events (all-cause mortality or MACE) in participants with $0,1,2-3$ and ≥ 4 co-morbid LTCs. To measure the contribution of individual index LTCs towards all-cause mortality and MACE in those with and without RA, we created a categorical variable that assigned participants to one of four groups: those with neither RA nor the index condition (reference group), those with RA but not the index LTC (RA only), those with no RA with the index LTC (index LTC only), and those with both RA and the index LTC. This variable was used as an outcome measure in an age-adjusted Cox's proportional hazards model controlling for demographic factors, lifestyle factors and rheumatoid factor status. To calculate the interaction between RA and each index LTC, we used an ANOVA to measure p values between two Cox's proportional hazards models: the first containing RA and the index LTC, and the second containing RA, the index LTC and an interaction term between RA and the index LTC. Interaction terms were considered significant when $\mathrm{p}<0.01$.

Results

5658 UK Biobank participants (1.1\%) reported having RA. Lifestyle and demographic characteristics of participants with and without self-reported RA are shown in Table 1. Participants with RA were significantly more likely to be older, female, have lower socioeconomic status, be current or previous smokers, have a lower frequency of alcohol intake, have a $\mathrm{BMI} \geq 30$, have lower levels of physical activity, and have larger numbers of co-morbid LTCs. $\chi 2$ testing showed participants with self-reported RA were significantly more likely to have rheumatoid factor positive status: 35.6% had rheumatoid factor levels of over $20 \mathrm{IU} / \mathrm{ml}$ compared with 3.6% in those without RA.

Prevalence of LTCs in people with RA

Proportions of number of LTCs in participants with and without RA are shown in Table 1. Reporting multiple long-term conditions was more common in those with RA: 34.5% had 2-3 LTCs (27.1% in those without RA), and 11.1% had ≥ 4 LTCs (4.9% in those without RA). Overall, 75.7% of people with RA were noted to be multimorbid. The difference in comorbidity experienced by those with and without RA is shown in Supplementary Table 1. Those with RA reported proportionately higher numbers of physical and mental health-based LTCs, namely: cardiovascular LTCs including hypertension, coronary heart disease, and stroke or transient ischemic attack; pulmonary LTCs including asthma, COPD and chronic bronchitis; digestive system LTCs including dyspepsia, irritable bowel syndrome and inflammatory bowel disease; musculoskeletal conditions including osteoporosis; and mental-health based LTCs including depression.

All-cause mortality and LTCs in people with RA

We examined the outcomes associated with different LTC counts in participants with RA using a Kaplan Meier plot (Supplementary Figure 1). There was an increased proportion of all-cause mortality in participants with RA concurrent with increasing multimorbidity counts: 4.2%
$(\mathrm{N}=58)$ in those with no additional LTCs, $5.3 \%(\mathrm{~N}=91)$ in those with 1 additional LTC, 9.9% ($\mathrm{N}=194$) in those with 2-3 additional LTCs and $14.4 \%(\mathrm{~N}=90)$ in those with ≥ 4 additional LTCs during the follow up period (median 9 years).

To quantify the effect of LTC count on all-cause mortality, we performed a Cox's proportional hazards test controlling for lifestyle factors, demographic factors and rheumatoid factor in participants with and without self-reported RA using a stepwise model adjustment (Table 2). Participants with RA and no additional LTCs had a significant increase in all-cause mortality when using an age-adjusted Cox's proportional hazards model fully adjusting for additional lifestyle and demographic factors (Hazard Ratio (HR) 1.59, 95\% confidence intervals (CI) 1.21-2.08) compared to those without RA or any LTCs. Whilst controlling additionally for rheumatoid factor status appeared to show some attenuation of all-cause mortality risk, a statistically significant risk for this group remained (HR 1.39, 95\% CI 1.05-1.84) when compared to those without RA or any LTCs. When examining additional co-morbid LTCs alongside RA, there appeared to be a dose-based response all-cause mortality risk, with a 44% increased risk of all-cause mortality in those with RA and one other LTC (HR 1.44, 95\% CI 1.14-1.81), an approximately two-and-a-half-fold increased risk for RA with 2-3 other LTCs (HR 2.48, 95% CI 2.12-2.90) and an over three-fold increased risk associated for RA with ≥ 4 other LTCs (HR 3.30, 95\% CI 2.61-4.16) compared to those without RA or any LTCs in the fully adjusted models, which included rheumatoid factor. A dose-based response was also observed in the non-RA population: those with 1 LTC had a 39% increased risk of death (HR $1.39,95 \%$ CI 1.33-1.46), and those with ≥ 4 were at a two-and-a-half-fold increased risk (HR 2.69 95\% CI 2.54-2.85) compared with participants without RA or any LTCs.

We next investigated the effect of LTC count on MACE in participants with RA using a Kaplan Meier plot (Supplementary Figure 2). For RA and no additional LTCs, 3.3\% ($\mathrm{N}=46$) of participants had a recorded MACE event, compared with 4.6% of participants with RA and one additional LTC ($\mathrm{N}=78$), 6.7\% those with RA and 2-3 additional LTCS ($\mathrm{N}=131$), and almost four times as many proportionately in participants with RA and ≥ 4 LTCs ($11.7 \%, \mathrm{~N}=73$ events) over the follow-up period.

Table 3 shows the risk of MACE for participants with and without RA using age-adjusted multivariate Cox's proportional hazards regression models. There was a 63% increased hazard of MACE for participants with RA and no other LTCs compared with participants without RA or any LTCs (HR 1.63, 95\% CI 1.21-2.21) in a fully adjusted model including demographic factors, lifestyle factors and rheumatoid factor status. This remained significant for people with RA with increasing LTCs count, with a 86% increased risk of MACE in participants with one other co-occurring LTC (HR 1.86, 95\% CI 1.31-2.15), an over two-fold increase in those with 2-3 co-occurring LTCs (HR 2.09, 95\% CI 1.73-2.54) and an almost three-and-a-half-fold increase in MACE for those with ≥ 4 LTCs (HR 3.39, 95% CI 2.61-4.40), compared to those without RA or any LTCs. This relationship was similar but to a lesser degree for participants without RA, with those with 1 LTC at 24% increased risk (HR 1.24, 95% CI 1.19-1.31), those with 2-3 LTCs at a 66% increased risk (HR $1.66,95 \%$ CI $1.59-1.74$) and those with ≥ 4 LTCs at over two times risk (HR 2.37 95\% CI 2.23-2.53) of MACE compared with those without LTCs.

Contribution of individual LTCs to all-cause mortality and MACE in people with $R A$

Using an age-adjusted Cox's proportional hazards model, adjusting for demographic factors, lifestyle factors and rheumatoid factor status, we investigated the role individual LTCs play in
risk of all-cause mortality and MACE, using participants with no RA and no index condition as the reference group (Table 4 and 5).

The presence of cardiovascular-based LTCs appeared to be a risk factor in those with RA for both all-cause mortality and MACE. Compared to those with no RA and no hypertension, RA with hypertension showing an over one-and-a-half-fold increased risk of all-cause mortality (HR 1.59, 95% CI 1.37-1.86) and an approximately two-fold increased risk of MACE (HR 2.07, 95\% CI 1.64-2.33).

Similarly, heart disease was associated with an over two-fold increase for both all-cause mortality (HR 2.07, 95\% CI 1.63-2.63) and MACE (HR 2.28 95\% CI 1.76-2.98) in those with RA compared to those with no RA and no heart disease. However, there was no evidence of interaction between RA and either cardiovascular condition. Whilst thyroid disorders showed no significant increased risk of all-cause mortality, they displayed an over two-fold increased risk of MACE (HR 2.10, 95\% CI 1.50-2.93) in those with RA compared to those without RA or thyroid disease but again there was no significant interaction between RA and thyroid disease and MACE event.

The co-occurrence of osteoporosis in participants with RA appeared to strongly influence both mortality and MACE; more than doubling all-cause mortality (HR 2.20, 95\% CI 1.55-3.12), and resulting in an over three times higher risk of MACE (HR 3.17, 95\% CI 2.17-4.64) compared to those without RA or osteoporosis. This increased risk in those with both RA and osteoporosis was greater than in those with RA but no osteoporosis or those with osteoporosis but no RA. Interaction terms for RA and osteoporosis showed no significant interaction with all-cause mortality $(\mathrm{p}=0.10)$ but displayed a significant interaction with MACE $(\mathrm{p}<0.01)$, suggesting a multiplicative effect in the association with MACE.

Sensitivity analysis of $R A$ self-report

To investigate sensitivity of self-report by participants with RA, was examined the proportion of people with any primary care RA Read code, any secondary care RA hospitalisation code, self-reporting of any common RA drugs and any primary care prescription record of RA drugs (see supplementary table 2) for participants who had self-reported RA and had available primary care data available in UK Biobank ($\mathrm{N}=4196$). Medications used here were previously reported by Siebert et al. ${ }^{17}$ Using this method, we were able to identify RA medications, hospitalisations or primary care Read code in 3683 (87.8\%) participants (Supplementary Table 3). Analysis performed in this study was repeated in these participants and showed the same relationships as those reported above in $\mathrm{N}=5658$ with self-report RA, with only small changes in HR observed (Supplementary Tables 4-8).

Discussion

Within UK Biobank, multiple LTCs was common in participants with RA, with approximately 75.7% reporting multimorbidity and 45% of participants reporting two or more additional LTCs alongside RA. In our fully adjusted modes, increasing LTC count was associated with increased mortality and MACE in people with RA. When examining individual LTCs, we observed hypertension, heart disease, osteoporosis and thyroid disorders to increase risk of adverse outcomes. Of these, osteoporosis was associated with one of the largest increases in both adverse outcomes measured: participants with both RA and osteoporosis were at over three times the risk of all-cause mortality and two times the risk of compared to those with neither LTC. The negative effect of having both RA and osteoporosis was particularly evident in MACE outcomes, for which there was a significant interaction between RA and osteoporosis, suggesting a multiplicative effect on MACE of having both these conditions together. The presence of hypertension or heart disease alongside RA increased the risk of mortality and MACE, in keeping with previous literature ${ }^{18}{ }^{19}$, but there was no evidence of statistical interaction.

To the best of our knowledge, this paper is the first to compare LTC count and type of comorbid LTCs and their association with all-cause mortality and MACE in men and women with RA after adjusting for a wide range of sociodemographic and lifestyle variables along with rheumatoid factor status. In our study, increasing LTC count resulted in adverse outcomes in participants with RA, with an increased rate of all-cause mortality and MACE.

We have shown that multimorbidity is common in participants with RA, with around 75% of participants with RA reporting one or more additional LTCs. This is in agreement with reported comorbidity rates of between 60% and 75% in those with RA ${ }^{5}{ }^{6}$, although these studies typically examined a smaller number of LTCs than in this study. We have shown participants with RA and 2-3 other LTCs were at over twice the risk of all-cause mortality, whilst those with ≥ 4 more were over three times the risk compared to participants with no LTCs. This data provides evidence for the first time the increased risk of all-cause mortality in men and women with RA and multimorbidity. While previous work has highlighted an increased risk of mortality in RA patients ${ }^{2021}$, or specific comorbidities alongside RA - for example in COPD ${ }^{22}$ and depression ${ }^{10}$ - these studies did not examine the effect of LTC count. One matched cohort study used a multimorbidity weighted index to study the effect of multimorbidity on mortality, but only examined effects in women ${ }^{23}$. Another examined LTCs using the Charlson comorbidity index ${ }^{24}$, however this measure uses only 19 LTCs and the study examined only all-cause mortality outcomes. Our study is the first study of its type to link multimorbidity in RA with MACE outcomes. Existing research has highlighted that RA increases the risk of cardiovascular events, and that individual LTCs such as diabetes and hypertension are risk factors ${ }^{25}$, however, to date, no study has shown an association between multimorbidity and MACE outcomes in people with RA. Collectively, the results presented here report for the first time the magnitude of adverse outcomes associated with multimorbidity in those with RA.

In keeping with previous studies, ${ }^{26}$ we have shown that osteoporosis prevalence is increased in those with RA compared to those without RA. The results presented in this paper, however, are the first to link osteoporosis in those with RA to increased risk of adverse outcomes and the first to show significant interaction between both conditions and MACE outcomes. The reasons for this association are not clear and cannot be extrapolated from the available data, which does not include factors such as disease severity or duration. One possibility may be that corticosteroids and RA disease activity play a role: corticosteroids are associated with increased prevalence of osteoporosis; people with RA with higher levels of disease activity are more likely to receive corticosteroids; both corticosteroid use and increased RA disease activity are reported to be associated with worse outcomes in mortality and MACE ${ }^{2728}$.

Our study therefore has several strong clinical implications. Current NICE guidelines for RA suggest annual checks for the development of hypertension, ischemic heart disease, osteoporosis and depression in RA ${ }^{29}$, but do not highlight the increased risk of the cooccurrence of these LTCs with RA nor the risk posed by multimorbidity in general. In addition, we have shown a greatly increased risk of adverse outcomes in people with osteoporosis and RA that merits further investigation.

Our study has several key strengths: UK Biobank is a large population-based study with several thousand participants reporting RA; the study setting encompasses three countries within the UK (Scotland, England and Wales); it includes details of participant demographic and lifestyle factors as well as rheumatoid factor levels, which allowed us to adjust for variables, which have not been explored in previous studies.

Our study is limited by self-reporting of RA and LTCs by these participants; however, recent studies have shown that self-report is a reliable method for reporting RA ${ }^{30}$ and in this study we additionally used four RA indicators (any primary care RA Read code, any secondary care

RA hospitalisation code, self-reporting of any common RA drugs and any primary care prescription record of RA drugs) to validate self-reported RA. We performed a sensitivity analysis using the subset of participants who had validated RA. Using this validation approach, we found a positive verification rate (participants self-reporting RA with further RA indicators) of 87.8% ($\mathrm{N}=3683$). Re-analysis of the subset of participants with RA (Supplementary Tables 4-8) who had a validated RA report $(\mathrm{N}=3683)$ showed only small changes to Cox's proportional hazards models, and observed effects were in agreement with the population who self-reported RA. This provides confidence in our findings that we are examining a true RA population. Furthermore, we were unable to determine the severity or duration of RA in participants, or their previous medications.

Rheumatoid factor positive status in those self-reporting RA (35.6\%) was lower than expected, however still a significantly higher proportion than in the UK Biobank population who did not report RA (3.6\%). Analysis of rheumatoid factor in those who had RA primary care Read codes, prescriptions or hospitalisations (described above) showed an increased proportion of positive rheumatoid factor (47.6%), but this level remained below previously reported proportions in RA populations. However, our validation of self-report RA suggests that we can be confident that we have a high level of true RA included, regardless of rheumatoid factor levels.

Participants in UK Biobank are known to be less deprived than the wider UK population ${ }^{31}$, suggesting that the level of multimorbidity reported here; and resulting associations are likely to be conservative in nature.

Conclusions

Multimorbidity is common in people with RA and is associated with increased risk of all-cause mortality and MACE. Certain comorbidities such as osteoporosis merit specific attention, in

391 This study was funded by Versus Arthritis (grant number 21970)
view of their association with adverse outcomes; it will be important to test whether this association is replicated in other datasets and if so, to explore the underpinning mechanisms. As multimorbidity has been shown here to influence outcomes for those with RA, forthcoming work will examine which clusters of LTCs most strongly drive this increased risk of poor outcomes. Future clinical guidelines for RA should acknowledge the importance of multimorbidity when considering management planning and patient outcomes.

Word count: 3683 words

Acknowledgements

This research has been conducted using the UK Biobank Resource, approved project number 14151; we are like to thank the participants and those managing the data. We would like to acknowledge Versus Arthritis for funding this project.

Ethical approval

All participants gave informed consent for data provision and linkage. UK Biobank has full ethical approval from the NHS National Research Ethics Service (16/NW/0274).

Competing interests

None declared.

Funding

Data sharing statement

The data used in this study are available via a direct application to UK Biobank.

Author contributions

This study was conceived by BN, FSM, SS, BJ and CM. The analysis was conducted by RM, BN and BJ. All authors (RM, BJ, BN, JC, SM, CM, JN, SB, FSM, SS) contributed to design, interpretation and discussion of all analysis. RM wrote this manuscript. All authors (RM, BJ, BN, JC, SM, CM, JN, SB, FSM, SS) edited, reviewed and commented on all versions of this manuscript. All authors read the manuscript draft and approved the final submission.

Patient and Public Involvement

The study was supported by a patient advisory group which provided input to the programme of research. This patient advisory group met on a regular basis for the duration of the study. Patients partnered with us and helped design research questions.

References

1. Andrews JS, Trupin L, Yelin EH, et al. Frailty and reduced physical function go hand in hand in adults with rheumatoid arthritis: a US observational cohort study. Clinical rheumatology 2017;36(5):1031-39. doi: 10.1007/s10067-017-3541-9 [published Online First: 2017/01/25]
2. Sokka T, Abelson B, Pincus T. Mortality in rheumatoid arthritis: 2008 update. Clinical and experimental rheumatology 2008;26(5 Suppl 51):S35-61. [published Online First: 2008/12/17]
3. Humphreys JH, Warner A, Chipping J, et al. Mortality trends in patients with early rheumatoid arthritis over 20 years: results from the Norfolk Arthritis Register. Arthritis care \& research 2014;66(9):1296-301. doi: 10.1002/acr. 22296 [published Online First: 2014/02/06]
4. Safiri S, Kolahi AA, Hoy D, et al. Global, regional and national burden of rheumatoid arthritis 19902017: a systematic analysis of the Global Burden of Disease study 2017. Annals of the Rheumatic Diseases 2019;78(11):1463. doi: 10.1136/annrheumdis-2019-215920
5. Espino-Lorenzo P, Manrique-Arija S, Urena I, et al. Baseline comorbidities in patients with rheumatoid arthritis who have been prescribed biological therapy: a case control study. Reumatologia clinica 2013;9(1):18-23. doi: 10.1016/j.reuma.2012.05.012 [published Online First: 2012/09/04]
6. Gron KL, Ornbjerg LM, Hetland ML, et al. The association of fatigue, comorbidity burden, disease activity, disability and gross domestic product in patients with rheumatoid arthritis. Results from 34 countries participating in the Quest-RA program. Clinical and experimental rheumatology 2014;32(6):869-77. [published Online First: 2014/10/21]
7. Nicola PJ, Crowson CS, Maradit-Kremers H, et al. Contribution of congestive heart failure and ischemic heart disease to excess mortality in rheumatoid arthritis. Arthritis and rheumatism 2006;54(1):60-7. doi: 10.1002/art. 21560 [published Online First: 2005/12/31]
8. Solomon DH, Goodson NJ, Katz JN, et al. Patterns of cardiovascular risk in rheumatoid arthritis. Ann Rheum Dis 2006;65(12):1608-12. doi: 10.1136/ard.2005.050377 [published Online First: 2006/06/24]
9. Nicola PJ, Maradit-Kremers H, Roger VL, et al. The risk of congestive heart failure in rheumatoid arthritis: a population-based study over 46 years. Arthritis and rheumatism 2005;52(2):41220. doi: 10.1002/art. 20855 [published Online First: 2005/02/05]
10. Ang DC, Choi H, Kroenke K, et al. Comorbid depression is an independent risk factor for mortality in patients with rheumatoid arthritis. The Journal of rheumatology 2005;32(6):1013-9. [published Online First: 2005/06/09]
11. Solomon DH, Kremer J, Curtis JR, et al. Explaining the cardiovascular risk associated with rheumatoid arthritis: traditional risk factors versus markers of rheumatoid arthritis severity. Ann Rheum Dis 2010;69(11):1920-5. doi: 10.1136/ard.2009.122226 [published Online First: 2010/05/07]
12. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS medicine 2015;12(3):e1001779. doi: 10.1371/journal.pmed. 1001779 [published Online First: 2015/04/01]
13. Townsend PJJosp. Deprivation. 1987;16(2):125-46.
14. Wolfe F. Pain extent and diagnosis: development and validation of the regional pain scale in 12,799 patients with rheumatic disease. The Journal of rheumatology 2003;30(2):369-78. [published Online First: 2003/02/04]
15. Jani BD, Nicholl BI, McQueenie R, et al. Multimorbidity and co-morbidity in atrial fibrillation and effects on survival: findings from UK Biobank cohort. EP Europace 2017;20(FI_3):f329-f36. doi: 10.1093/europace/eux322
16. Jani BD, Hanlon P, Nicholl BI, et al. Relationship between multimorbidity, demographic factors and mortality: findings from the UK Biobank cohort. BMC Medicine 2019;17(1):74. doi: 10.1186/s12916-019-1305-x
17. Siebert S, Lyall DM, Mackay DF, et al. Characteristics of rheumatoid arthritis and its association with major comorbid conditions: cross-sectional study of 502649 UK Biobank participants. RMD open 2016;2(1):e000267.
18. Cooksey R, Brophy S, Kennedy J, et al. Cardiovascular risk factors predicting cardiac events are different in patients with rheumatoid arthritis, psoriatic arthritis, and psoriasis. Seminars in arthritis and rheumatism 2018;48(3):367-73. doi: 10.1016/j.semarthrit.2018.03.005 [published Online First: 2018/04/17]
19. Lauper K, Courvoisier DS, Chevallier P, et al. Incidence and Prevalence of Major Adverse Cardiovascular Events in Rheumatoid Arthritis, Psoriatic Arthritis, and Axial Spondyloarthritis. Arthritis care \& research 2018;70(12):1756-63. doi: 10.1002/acr. 23567 [published Online First: 2018/04/03]
20. van den Hoek J, Boshuizen HC, Roorda LD, et al. Mortality in patients with rheumatoid arthritis: a 15-year prospective cohort study. Rheumatol Int 2017;37(4):487-93. doi: 10.1007/s00296-016-3638-5 [published Online First: 2016/12/30]
21. Gabriel SE, Crowson CS, Kremers HM, et al. Survival in rheumatoid arthritis: a population-based analysis of trends over 40 years. Arthritis and rheumatism 2003;48(1):54-8. doi: 10.1002/art. 10705 [published Online First: 2003/01/16]
22. Hyldgaard C, Løkke A, Pedersen AB, et al. Prognosis in rheumatoid arthritis patients with COPD: A nationwide, registry-based study. European Respiratory Journal 2017;50(suppl 61):OA1786. doi: 10.1183/1393003.congress-2017.OA1786
23. Yoshida K, Lin T-C, Wei M, et al. The roles of post-diagnosis accumulation of morbidities and lifestyle changes on excess total and cause-specific mortality risk in rheumatoid arthritis. Arthritis care \& research;n/a(n/a) doi: 10.1002/acr. 24120
24. Nikiphorou E, de Lusignan S, Mallen C, et al. Prognostic value of comorbidity indices and lung diseases in early rheumatoid arthritis: a UK population-based study. Rheumatology 2019 doi: 10.1093/rheumatology/kez409
25. Innala L, Moller B, Ljung L, et al. Cardiovascular events in early RA are a result of inflammatory burden and traditional risk factors: a five year prospective study. Arthritis research \& therapy 2011;13(4):R131. doi: 10.1186/ar3442 [published Online First: 2011/08/17]
26. Haugeberg G, Uhlig T, Falch JA, et al. Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis and rheumatism 2000;43(3):522-30. doi: 10.1002/1529-0131(200003)43:3<522::Aid-anr7>3.0.Co;2-y [published Online First: 2000/03/23]
27. del Rincon I, Battafarano DF, Restrepo JF, et al. Glucocorticoid dose thresholds associated with all-
cause and cardiovascular mortality in rheumatoid arthritis. Arthritis \& rheumatology (Hoboken, NJ) 2014;66(2):264-72. doi: 10.1002/art. 38210 [published Online First: 2014/02/08]
28. Listing J, Kekow J, Manger B, et al. Mortality in rheumatoid arthritis: the impact of disease activity, treatment with glucocorticoids, TNFalpha inhibitors and rituximab. Ann Rheum Dis treatment with glucocorticoids, TNFalpha inhibitors and rituximab. Ann Rheum Dis
$2015 ; 74(2): 415-21$. doi: 10.1136/annrheumdis-2013-204021 [published Online First: 2013/12/03]
29. National Institute for Health and Care Excellence. Rheumatoid arthritis in adults: management: National Insttute for Health and Care Excellence, 2018. 30. Peeters GM, Alshurafa M, Schaap L, et al. Diagnostic accuracy of self-reported arthritis in the general adult population is acceptable. J Clin Epidemiol 2015;68(4):452-9. doi: 10.1016/j.jclinepi.2014.09.019 [published Online First: 2014/12/03]
30. Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population. American Journal of Epidemiology 2017;186(9):1026-34. doi: 10.1093/aje/kwx246

Figure legends

Supplementary figure 1 - Kaplan-Meier plot of proportion of all-cause mortality during the follow-up period (median 108 months) for participants with RA and no LTCS (black line), RA and 1 LTC (red line), RA and 2-3 LTCs (green line) and RA and ≥ 4 LTCs (blue line).

Supplementary figure 1 - Kaplan-Meier plot of proportion of MACE during the follow-up period (median 108 months) for participants with RA and no LTCS (black line), RA and 1 LTC (red line), RA and 2-3 LTCs (green line) and RA and ≥ 4 LTCs (blue line). 0131(200003)43:3<522::Aid-anr7>3.0.Co,2-v [published Online First: 2000/03/23] 2013/12/03]

$$
\text { (red line), RA and 2-3 LTCs (green line) and RA and } \geq 4 \text { LTCs (blue line). }
$$

Tables
Table 1 - Demographic factors, lifestyle factors, number of long-term conditions and rheumatoid factor status in patients with and without rheumatoid arthritis. Unless indicated, $\mathrm{p}<0.01 . \chi 2$ test was used for categorical variables, Kruskal-Wallis test was used for continuous variables. $\mathrm{SD}=$ standard deviation.

	Participants with RA (\%) ($\mathrm{N}=5658$)	$\begin{gathered} \text { Participants without RA } \\ (\%) \\ (\mathrm{N}=496882) \end{gathered}$
Mean Age (years (SD)); missing values $=0$ (0%)	59.3 (7.1)	56.5 (8.1)
Age (years); missing values $=0$ (0\%)		
37-49	$\begin{gathered} 675 \\ (11.9 \%) \end{gathered}$	$\begin{aligned} & 117209 \\ & (23.6 \%) \end{aligned}$
50-59	$\begin{gathered} 1800 \\ (31.8 \%) \end{gathered}$	$\begin{aligned} & 165359 \\ & (33.3 \%) \end{aligned}$
60-73	$\begin{gathered} 3183 \\ (56.3 \%) \end{gathered}$	$\begin{aligned} & 214314 \\ & (43.1 \%) \end{aligned}$
Female	$\begin{gathered} 3952 \\ (69.8 \%) \end{gathered}$	$\begin{aligned} & 269452 \\ & (54.2 \%) \end{aligned}$
Male	$\begin{gathered} 1706 \\ (30.2 \%) \end{gathered}$	$\begin{gathered} 227430 \\ (45.8 \%) \end{gathered}$
Townsend score; missing values $=\mathbf{6 2 3} \mathbf{(0 . 1 2 \%)}$		
0-20 (least deprived)	$\begin{gathered} 998 \\ (17.7 \%) \end{gathered}$	$\begin{gathered} 99665 \\ (20.1 \%) \end{gathered}$
20-40	$\begin{gathered} 980 \\ (17.4 \%) \end{gathered}$	$\begin{aligned} & 99117 \\ & (20 \%) \end{aligned}$
40-60	$\begin{gathered} 1087 \\ (19.2 \%) \end{gathered}$	$\begin{aligned} & 99311 \\ & (20 \%) \end{aligned}$
60-80	$\begin{gathered} 1154 \\ (20.4 \%) \end{gathered}$	$\begin{aligned} & 99224 \\ & (20 \%) \end{aligned}$
80-100 (most deprived)	$\begin{gathered} 1429 \\ (25.3 \%) \end{gathered}$	$\begin{gathered} 98952 \\ (19.9 \%) \end{gathered}$
Smoking status; missing values $=\mathbf{2 9 5 0} \mathbf{(0 . 5 9 \%)}$		
Never	$\begin{gathered} 2625 \\ (46.8 \%) \end{gathered}$	$\begin{aligned} & 270916 \\ & (54.8 \%) \end{aligned}$
Current or Previous	$\begin{gathered} 2983 \\ (53.2 \%) \end{gathered}$	$\begin{aligned} & 223066 \\ & (45.2 \%) \end{aligned}$
Frequency of alcohol intake; missing values = $1502 \mathbf{(0 . 3 0 \%)}$		
Never or special occasions only	$\begin{gathered} 1830 \\ (32.4 \%) \end{gathered}$	$\begin{gathered} 96832 \\ (19.5 \%) \end{gathered}$
One to three times a month	$\begin{gathered} 690 \\ (12.2 \%) \end{gathered}$	$\begin{gathered} 55170 \\ (11.1 \%) \end{gathered}$
One to four times a week	2315	242428

	(41\%)	(48.9\%)
Daily or almost daily	811	100962
	(14.4\%)	(20.4\%)
BMI ($\mathrm{kg} / \mathrm{m}^{\mathbf{2}}$) ; missing values $=5820$ ($\mathbf{1 . 1 5 \%)}$		
underweight <18.5	50	2576
	(0.9\%)	(0.5\%)
normal weight 18.5-24.9	1543	155896
	(27.9\%)	(31.7\%)
overweight 25-29.9	2194	212032
	(39.6\%)	(43.2\%)
obese >30	1750	120679
obese ≥ 30	(31.6\%)	(24.6\%)
Physical activity; missing values $=7156$ (1.42\%)		
none	814	32035
	(14.8\%)	(6.5\%)
low	409	18531
	(7.4\%)	(3.8\%)
medium	4111	389412
	(74.5\%)	(79.5\%)
high	182	49890
	(3.3\%)	(10.2\%)
Number of long-term conditions; missing values = 1845 (0.36 \%)		
0	1369	173846
	(24.3\%)	(35.1\%)
1	1690	162657
	(30.0\%)	(32.9\%)
2-3	1943	134403
	(34.5\%)	(27.1\%)
≥ 4	623	24157
≥ 4	(11.1\%)	(4.9\%)

Rheumatoid Factor (IU/ml); missing values $=\mathbf{3 3 , 0 6 6}(\mathbf{6 . 6} \%)$
(64.4\%) (96.4\%)
(35.6\%) (3.6\%)

Table 2 Relationship between long term conditions and all-cause mortality in participants with and without selfreported RA using age-adjusted multivariate Cox's proportional hazards regression analysis. Unless otherwise shown, Cox's proportional hazards $\mathrm{p}<0.01$.

Risk of all-cause mortality						
Comorbidity status (reference: No RA and no other longterm conditions)		Adjusted for sex and Townsend score HR (95\% CI)	Adjusted for sex, Townsend score, alcohol status and smoking status HR (95\% CI)	Adjusted for sex, Townsend score, alcohol status, smoking status, BMI and physical activity HR (95\% CI)	Adjusted for sex, Townsend score, alcohol status, smoking status, BMI, physical activity and rheumatoid factor status HR (95\% CI)	Number of deaths (\%)
No other long-term conditions 1 other long-term condition	RA	1.84 (1.42-	1.72 (1.32-	1.59 (1.21-	1.39 (1.05-	58
		2.38)	2.2)	2.08)	1.84)	(4.2\%)
	No RA	1.45 (1.39-	1.42 (1.36-	1.40 (1.34-	1.39 (1.33-	5785
		1.51)	1.48)	1.47)	1.46)	(3.6\%)
	RA	$\begin{aligned} & 2.01 \text { (1.64- } \\ & 2.48) \end{aligned}$	$\begin{gathered} 1.88 \text { (1.53- } \\ 2.32) \end{gathered}$	$\begin{gathered} 1.72(1.38- \\ 2.14) \end{gathered}$	$\begin{gathered} 1.44 \text { (1.14- } \\ 1.81) \end{gathered}$	$\begin{gathered} 91 \\ (5.4 \%) \end{gathered}$
2-3 other long-term conditions	No RA	2.03 (1.95-	1.92 (1.84-	1.84 (1.77-	1.83 (1.75-	7914
		2.11)	2.00)	1.92)	1.91)	(5.9\%)
	RA	$\begin{gathered} 3.32 \text { (2.87- } \\ 3.84) \end{gathered}$	$\begin{gathered} 2.99(2.59- \\ 3.46) \end{gathered}$	$2.79(2.40-$	$\begin{gathered} 2.48(2.12- \\ 2.90) \end{gathered}$	$\begin{gathered} 194 \\ (10.0 \%) \end{gathered}$
≥ 4 other long-term conditions	No RA	3.39 (3.22-	3.04 (2.88-	2.71 (2.56-	2.69 (2.54-	2605
		3.57)	3.20)	2.86)	2.85)	(10.8\%)
	RA	4.68 (3.80-	3.95 (3.19-	3.52 (2.81-	3.30 (2.61-	90
		5.78)	4.89)	4.40)	4.16)	(14.4\%)

Risk of all-cause mortality

3 Relationship between long term conditions and major adverse cardiovascular events in participants with and without self-reported RA using age-adjusted multivariate Cox's proportional hazards regression analysis. Unless otherwise shown, Cox's proportional hazards $\mathrm{p}<0.01$.

Risk of MACE

Comorbidity status (reference: No RA and no other longterm conditions)		Adjusted for sex and Townsend score HR (95\% CI)	Adjusted for sex, Townsend score, alcohol status and smoking status HR (95\% CI)	Adjusted for sex, Townsend score, alcohol status, smoking status, BMI, and physical activity HR (95\% CI)	Adjusted for sex, Townsend score, alcohol status, smoking status, BMI, physical activity and rheumatoid factor status HR (95\% CI)	Number of MACE (\%)
No other long-term conditions 1 other long-term condition	RA	1.79 (1.33-	1.69 (1.26-	1.64 (1.21-	1.63 (1.21-	46
		2.39)	27)	2.20)	2.21))
	No RA	1.30 (1.24-	1.28 (1.22-	1.26 (1.20-	1.24 (1.19-	4512
		1.36)	1.34)	1.320	1.31)	(2.8\%)
	RA	$\begin{gathered} 2.08(1.66- \\ 2.61) \end{gathered}$	$\begin{aligned} & 1.91(1.52- \\ & 2.41) \end{aligned}$	$\begin{aligned} & 1.87 \text { (1.48- } \\ & 2.35) \end{aligned}$	$\begin{aligned} & 1.68(1.31- \\ & 2.15) \end{aligned}$	$\begin{gathered} 78 \\ (4.6 \%) \end{gathered}$
2-3 other long-term conditions	No RA	$\begin{gathered} 1.86(1.78- \\ 1.94) \end{gathered}$	$\begin{gathered} 1.78(1.70- \\ 1.86) \end{gathered}$	$\begin{gathered} 1.67(1.60- \\ 1.75) \end{gathered}$	$\begin{gathered} 1.66(1.59- \\ 1.74) \end{gathered}$	$\begin{gathered} 6208 \\ (4.6 \%) \end{gathered}$
	RA	$\begin{gathered} 2.72(2.28- \\ 3.24) \end{gathered}$	$\begin{gathered} 2.49(2.09- \\ 2.98) \end{gathered}$	$\begin{gathered} 2.19(1.82- \\ 2.64) \end{gathered}$	$\begin{gathered} 2.09 \text { (1.73- } \\ 2.54) \end{gathered}$	$\begin{gathered} 131 \\ (6.7 \%) \end{gathered}$
≥ 4 other long-term conditions	No RA	$3.04 \text { (2.87- }$	$\begin{gathered} 2.76(2.60- \\ 2.93) \end{gathered}$	$2.40(2.26-$	$2.37(2.23-$	$\begin{gathered} 1980 \\ (8.2 \%) \end{gathered}$
	RA	$\begin{gathered} 4.79(3.79- \\ 6.04) \\ \hline \end{gathered}$	$\begin{gathered} 4.07(3.21- \\ 5.16) \end{gathered}$	$\begin{gathered} 3.52(2.73- \\ 4.52) \\ \hline \end{gathered}$	$\begin{gathered} 2.53) \\ 3.39(2.61- \\ 4.40) \\ \hline \end{gathered}$	$\begin{gathered} (8.2 \%) \\ 73 \\ (11.7 \%) \end{gathered}$

	Risk of all-cause mortality			
	No RA, no index condition HR, (95\% CI), \mathbf{p}	No RA, with index condition HR, (95\% CI), \mathbf{p}	$\begin{gathered} \text { RA, no index } \\ \text { condition } \\ \text { HR, }(\mathbf{9 5 \%} \mathbf{p} \mathbf{~ C I}), \\ \hline \end{gathered}$	$\begin{aligned} & \text { RA and index } \\ & \text { condition } \\ & \text { HR, }(95 \% \mathrm{CI}), \mathrm{p} \end{aligned}$
Index condition				
Hypertension	1	1.24 1.21-1.28	1.29 1.11-1.48	1.59 1.37-1.86
Coronary	1	1.57 1.50-1.65	1.26 1.12-1.42	2.07 1.63-2.63
heart disease				
Diabetes	1	1.68 1.60-1.75	1.33 1.18-1.48	1.83 1.37-2.44
Asthma	1	1.10 1.05-1.15	1.27 1.13-1.42	1.56 1.22-2.00
Dyspepsia	1	$\begin{gathered} 1.010 .97-1.06 \\ \mathrm{p}=0.47 \end{gathered}$	1.27 1.14-1.43	1.45 1.10-1.90
Cancer	1	2.50 2.41-2.59	1.35 1.20-1.52	3.04 2.39-3.86
Depression	1	1.27 1.20-1.35	1.29 1.15-1.44	1.71 1.21-2.42
Thyroid disorder	1	$\begin{gathered} 1.050 .98-1.12 \\ \mathrm{p}=0.11 \end{gathered}$	1.32 1.18-1.47	$\begin{gathered} 1.140 .80-1.62 \\ \mathrm{p}=0.46 \end{gathered}$
COPD	1	2.11 1.98-2.49	1.26 1.13-1.42	2.68 2.00-3.58
Epilepsy	1	1.81 1.42-1.82	1.29 1.15-1.43	2.86 1.43-5.73
Migraine	1	0.85 0.76-0.94	1.29 1.16-1.44	$\begin{gathered} 1.090 .55-2.19 \\ \mathrm{p}=0.79 \end{gathered}$
Psoriasis	1	1.05 0.98-1.14	1.27 1.14-1.42	1.88 1.20-2.95
/Eczema		$\mathrm{p}=0.16$		
Prostate disease	1	0.83 0.76-0.90	1.30 1.17-1.45	$\begin{gathered} 0.900 .43-1.90 \\ p=0.79 \end{gathered}$
Osteoporosis	1	1.26 1.14-1.39	1.25 1.12-1.40	2.20 1.55-3.12
Atrial	1	1.40 1.45-1.57	1.30 1.17-1.45	1.32 0.50-3.52
fibrillation				$\mathrm{p}=0.58$
Anxiety	1	1.22 1.10-1.35	1.30 1.16-1.44	$\begin{gathered} 1.48 \text { 0.67-3.30 } \\ p=0.34 \end{gathered}$
Inflammatory bowel disease	1	1.37 1.20-1.57	1.30 1.17-1.44	$\begin{gathered} 1.300 .54-3.11 \\ \mathrm{p}=0.56 \end{gathered}$
Heart failure	1	2.69 2.22-3.25	1.29 1.16-1.43	5.14 2.14-12.38

Table 4 Risk of all-cause mortality for individual index conditions in patients with RA and no index condition, RA with index condition, RA with no index condition and RA and index condition. Age-adjusted Cox's proportional hazards models were adjusted for sex, Townsend score, smoking status, alcohol intake frequency, BMI, physical activity level and rheumatoid factor status. Unless otherwise shown, Cox's proportional hazards $\mathrm{p}<0.01$. Index conditions labelled * have interaction term $\mathrm{p}>0.01$

 ,

9

Table 5 Risk of MACE for individual index conditions in patients with RA and no index condition, RA with index condition, RA with no index condition and RA and index condition. Age-adjusted Cox's proportional hazards models were adjusted for sex, Townsend score, smoking status, alcohol intake frequency, BMI, physical activity level and rheumatoid factor status. Unless otherwise shown, $\mathrm{p}<0.01$. Index conditions labelled ${ }^{*}$ have interaction term $\mathrm{p}>0.01$

		Risk of	ACE	
	$\begin{aligned} & \text { No RA, no } \\ & \text { index } \\ & \text { condition } \\ & \text { HR, (95\% } \\ & \text { CI), p } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { No RA, with } \\ & \text { index } \\ & \text { condition } \\ & \text { HR, (95\% } \\ & \text { CI), } p \\ & \hline \end{aligned}$	RA, no index condition HR, (95\% CI), \mathbf{p}	RA and index condition HR, (95\% CI), p
Index condition	0			
Hypertension	1	1.50 1.44-1.55	1.48 1.25-1.75	1.97 1.66-2.33
Coronary	1	1.89 1.80-1.98	1.43 1.45-1.63	2.28 1.76-2.98
heart disease				
Diabetes	1	1.67 1.58-1.75	1.49 1.31-1.69	1.69 1.19-2.39
Asthma	1	1.12 1.06-1.18	1.43 1.25-1.63	1.47 1.09-1.98
Dyspepsia	1	1.14 1.08-1.20	1.39 1.22-1.58	1.85 1.30-2.34
Cancer	1	1.11 1.04-1.17	1.43 1.26-1.62	$\begin{gathered} 1.440 .98-2.11 \\ \mathrm{p}=0.07 \end{gathered}$
Depression	1	1.25 1.17-1.34	1.39 1.22-1.58	2.06 1.41-3.00
Thyroid disorder	1	1.14 1.03-1.23	1.37 1.20-1.55	2.10 1.50-2.93
COPD	1	1.49 1.37-1.62	1.40 1.24-1.59	1.97 1.33-2.92
Epilepsy	1	1.50 1.30-1.73	$1.411 .21-1.60$	$\begin{gathered} 2.210 .83-5.88 \\ \mathrm{p}=0.11 \end{gathered}$
Migraine	1	$\begin{gathered} 0.990 .89-1.12 \\ \mathrm{p}=0.97 \end{gathered}$	1.40 1.23-1.58	2.08 1.12-3.87
Psoriasis	1	1.05 0.96-1.14	1.42 1.26-1.61	1.23 0.64-2.37
/Eczema		$\mathrm{p}=0.25$		$\mathrm{p}=0.53$
Prostate disease	1	$\begin{gathered} 0.920 .83-1.00 \\ \mathrm{p}=0.07 \end{gathered}$	$1.411 .25-1.60$	$\begin{gathered} 1.27 \text { 0.64-2.54 } \\ \mathrm{p}=0.50 \end{gathered}$
Osteoporosis*	1	1.34 1.18-1.53	1.25 1.10-1.41	3.17 2.17-4.64
Atrial	1	1.41 1.25-1.60	1.72 1.53-1.93	2.67 1.99-5.95
fibrillation				
Anxiety	1	1.28 1.14-1.43	1.40 1.24-1.59	2.73 1.30-5.72
Inflammatory	1	1.09 0.92-1.29	1.42 1.26-1.60	1.11 0.36-3.44
bowel disease		$\mathrm{p}=0.32$		$\mathrm{p}=0.85$
Heart failure	1	2.64 2.15-3.24	$1.411 .25-1.59$	$\begin{gathered} 3.451 .11-10.70 \\ p=0.03 \end{gathered}$

2 Supplementary table 1 - Proportion of long term conditions in participants with and without RA. P value 3 determined using $\chi 2$ testing.
$\left.\begin{array}{llll}\hline & \begin{array}{ll}\text { Prevalence in } \\ \text { RA }\end{array} & \begin{array}{l}\text { Prevalence in non- } \\ \text { RA participants }\end{array} & \text { p value } \\ & \begin{array}{ll}\text { participants } \\ (\mathbf{\%})\end{array} & \mathbf{(\%)}\end{array}\right]$

Psychoactive substance misuse	0.03	0.02	0.30

33 Supplementary table 2 -Medications, primary care read codes and hospitalisation codes used for RA self-report 34 verification

Medications	Primary care read codes	Hospitalisation ICD-10 codes
Depomedrone	14G1	M05
Triamcinilone	F3712	M06
Methylprednisolone	F3964	
Prednisolone	G5yA.	
Prednisone	G5y8.	
Auranofin	H570.	
Azathioprine	N04..	
Hydroxychloroquine	N040.	
leflunomide	N0400	
Methotrexate	N0401	
Myocrisin	N0402	
Penicillamine	N0403	
Sulfasalazine	N0404	
Abatacept	N0405	
Adalimumab	N0406	
Certolizumab	N0407	
Etanercept	N0408	
Golimumab	N0409	
Infliximab	N040A	
Rituximab	N040B	
Tocilizumab	N040C	
	N040D	
	N040E	
	N040F	
	N040G	
	N040H	
	N040J	
	N040K	
	N040L	
	N040M	
	N040N	
	N040P	
	N040Q	
	N040R	
	N040S	
	N040T	
	N041.	
	N042.	
	N0421	
	N0422	
	N042z	
	N043.	
	N0430	

N0431
N0432
N0433
N043z
N047.
N04X.
N04y2
N0455
Nyu 10
Nyul1
Nyu 12
Nyu1G

Supplementary table 3 - Proportion of rheumatoid arthritis related hospitalisation, medication or primary care read code in participants who self-report rheumatoid arthritis.

Rheumatoid arthritis self-report	Any rheumatoid arthritis hospitalisation, medication or primary care read code		
	No	Yes	Total
No	141152	48634	189786
	74.4%	25.6%	100%
Yes	513	3683	4196
	12.2%	87.8%	100%
Total	141665	52317	193982
	73%	27%	100%

Supplementary table 4 - Demographic factors, lifestyle factors, number of long-term conditions and rheumatoid factor status in patients with and without RA. Unless indicated, $p<0 \cdot 01$. Chi squared test used for categorical variables, Kruskal-Wallis test used for continuous variables. $\mathrm{SD}=$ standard deviation. RA defined here as RA self-report plus hospitalisation, medication or primary care read code related to rheumatoid arthritis.

	$\begin{gathered} \hline \text { Participants with } \\ \text { RA }(\%) \\ (\mathrm{N}=3683) \\ \hline \end{gathered}$	Participants without RA (\%) ($\mathrm{N}=498857$)
Mean Age (years (SD)); missing values $=0$ (0%)	59.2 (7.1)	56.5 (8.1)
Age (years); missing values $=0$ (0%)		
37-49	413	117470
	11.2 \%	23.5 \%
50-59	1161	165992
	31.5 \%	33.3 \%
60-73	2109	215388
	57.3 \%	43.2 \%
Sex; missing values $=0$ (0%)		
Female	2672	270729
	72.5 \%	54.3 \%
Male	1011	228121
	27.5 \%	45.7 \%
Townsend score; missing values $=\mathbf{6 2 3} \mathbf{(0 \cdot 1 2 \%)}$		
0-20	672	99991
	18.3 \%	20.1 \%
20-40	666	99430
	18.1\%	20 \%
40-60	735	99663
	20 \%	20 \%
60-80	760	99615
	20.7 \%	20 \%
80-100	847	99531
	23 \%	20 \%
Smoking status; missing values $=\mathbf{2 9 5 0} \mathbf{(0 . 5 9 \%}$)		
Never	1679	271857
	46 \%	54.8 \%
Current or Previous	1973	224074
	54 \%	45.2 \%
Frequency of alcohol intake; missing values = 1502 (0.30\%)		
Never or special occasions only	1218	97442
	33.1 \%	19.6 \%
One to three times a month	453	55405
	12.3 \%	11.1 \%
One to four times a week	1504	243237
	40.9 \%	48.9 \%
Daily or almost daily	504	101268
	13.7 \%	20.4 \%
BMI ($\mathbf{k g} / \mathbf{m}^{\mathbf{2}}$) ; missing values $=5820$ ($\mathbf{1} \cdot \mathbf{1 5 \%}$)		
underweight <18.5	$\begin{gathered} 34 \\ 0.9 \% \end{gathered}$	$\begin{gathered} 2592 \\ 0.5 \% \end{gathered}$

normal weight 18.5-24.9	1084	156353
	30%	31.7 \%
	1425	212799
overweight 25-29.9	39.5 \%	43.2 \%
obese $>=30$ s	1067	121359
obese > $=30$ s	29.6\%	24.6 \%
Physical activity; missing values $=7156 \mathbf{(1 . 4 2 \%)}$		
none	595	32254
	16.6 \%	6.6 \%
low	286	18652
	8 \%	3.8 \%
medium	2596	390922
	72.4 \%	79.5 \%
	107	49965
high	3%	10.2 \%
Number of long-term conditions; missing values $=1845$ (0.36\%)		
0	922	174293
	25.2 \%	35.1 \%
1	1103	163244
	30.1 \%	32.8 \%
2-3	1255	135091
	34.3 \%	27.2 \%
≥ 4	379	24401
	10.4 \%	4.9 \%
Rheumatoid Factor (IU/mI); missing values = 33,066 ($6 \cdot 6 \%$)		
<20	1801	449067
	52.4 \%	96.4 \%
≥ 20	1639	16960
	47.6\%	3.6 \%

Supplementary Table 5 - Relationship between long term conditions and all-cause mortality in participants with and without RA using age-adjusted multivariate Cox's proportional hazards regression analysis. Unless otherwise shown, Cox's proportional hazards $\mathrm{p}<0 \cdot 01$. RA defined here as RA self-report plus hospitalisation, medication or primary care read code related to rheumatoid arthritis.

Risk of all-cause mortality

Comorbidity status (reference: No RA and no other long-term conditions)	Adjusted for sex, Townsend score, alcohol status, smoking status, BMI, physical activity and rheumatoid factor status HR (95\% CI)	Number of deaths $(\%)$	
		$1.50(1.09-2.07)$	
No other long-term conditions	RA	$1.39(1.33-1.46)$	$44(4.8 \%)$
$\mathbf{1 \quad \text { other long-term }}$condition	No RA	RA	$1.42(1.07-1.88)$
$\mathbf{2 - 3}$ other long-term	No RA	$1.83(1.75-1.91)$	$5810(3.6 \%)$
conditions	RA	$2.75(2.29-3.30)$	$66(5.9 \%)$
$\geq \mathbf{4}$ other long-term	No RA	$2.70(2.55-2.86)$	$142(11.3 \%)$
conditions	RA	$2.98(2.19-4.04)$	$2461(10.8 \%)$

```
        Comorbidity status
        (reference: No RA and no
        other long-term conditions)
```

Supplementary Table 6 - Relationship between long term conditions and major adverse cardiovascular events in participants with and without RA using age-adjusted multivariate Cox's proportional hazards regression analysis. Unless otherwise shown, Cox's proportional hazards $\mathrm{p}<0.01$. RA defined here as RA self-report plus hospitalisation, medication or primary care read code related to rheumatoid arthritis.

Risk of MACE

Risk of MACE		
Comorbidity status (reference: No RA and no other long-term conditions)	Adjusted for sex, Townsend score, alcohol status, smoking status, BMI, physical activity and rheumatoid factor status HR ($\mathbf{9 5 \%}$ CI)	$\begin{aligned} & \text { Number of } \\ & \text { MACE } \\ & (\%) \end{aligned}$
\qquad	1.63 (1.13-2.36)	32 (3.5\%)
1 other long-term No RA	1.24 (1.18-1.30)	4530 (2.8\%)
condition RA	1.95 (1.46-2.59)	60 (5.4\%)
2-3 other long-term No RA	1.66 (1.58-1.74)	6244 (4.6\%)
conditions RA	2.50 (2.00-3.12)	95 (7.6\%)
≥ 4 other long-term No RA	2.38 (2.23-2.54)	2007 (8.2\%)
conditions RA	3.30 (2.36-4.61)	46 (12.1\%)

Risk of all-cause mortality				
	No RA, no index condition HR, $(\mathbf{9 5 \%} \mathbf{C I})$, p	No RA, with index condition HR, (95\% CI), p	RA, no index condition HR, (95\% CI), \mathbf{p}	RA and index condition HR, (95\% CI), \mathbf{p}
Index condition				
Hypertension	1	1.24 1.20-1.28	1.27 1.07-1.52	1.69 1.41-2.02
Coronary heart disease		1.58 1.50-1.65	$1.301 .13-1.50$	2.08 1.55-2.79
Diabetes	1	1.68 1.60-1.76	$1.371 .20-1.57$	1.76 1.22-2.54
Asthma	1	1.10 1.05-1.15	1.32 1.14-1.52	1.48 1.10-2.00
Dyspepsia	1	$\begin{gathered} 1.020 .97-1.07 \\ \mathrm{p}=0.42 \end{gathered}$	1.31 1.15-1.50	1.46 1.04-2.06
Cancer	1	2.50 2.41-2.60	1.43 1.25-1.65	2.72 1.99-3.70
Depression	1	1.28 1.20-1.35	1.32 1.16-1.51	1.79 1.17-2.75
Thyroid disorder	1	$\begin{gathered} 1.050 .99-1.12 \\ \mathrm{p}=0.12 \end{gathered}$	1.36 1.19-1.55	$\begin{gathered} 1.140 .76-1.72 \\ p=0.53 \end{gathered}$
COPD	1	2.12 1.98-2.26	1.32 1.15-1.50	2.53 1.77-3.63
Epilepsy	1	1.62 1.43-1.84	1.33 1.17-1.51	$\begin{gathered} 2.150 .80-5.72 \\ \mathrm{p}=0.13 \end{gathered}$
Migraine	1	0.85 0.76-0.94	$1.331 .17-1.51$	$\begin{gathered} 1.020 .38-2.71 \\ \mathrm{p}=0.97 \end{gathered}$
Psoriasis /Eczema	1	$\begin{gathered} 1.060 .94-1.14 \\ \mathrm{p}=0.15 \end{gathered}$	$1.301 .14-1.49$	2.08 1.23-3.50
Prostate disease	1	0.83 0.75-0.90	1.32 1.16-1.51	$\begin{gathered} 1.330 .55-3.19 \\ \mathrm{p}=0.52 \end{gathered}$
Osteoporosis	1	1.27 1.16-1.40	1.29 1.13-1.48	2.09 1.38-3.14
Atrial fibrillation	1	1.40 1.25-1.58	1.34 1.18-1.52	$\begin{gathered} 0.990 .25-3.98 \\ \mathrm{p}=0.99 \end{gathered}$
Anxiety	1	1.23 1.11-1.36	1.34 1.18-1.53	$\begin{gathered} 0.72 \text { 0.18-2.89 } \\ \mathrm{p}=0.64 \end{gathered}$
Inflammatory bowel disease	1	1.38 1.21-1.58	1.35 1.18-1.53	$\begin{gathered} 0.630 .16-2.51 \\ p=0.51 \end{gathered}$
Heart failure	1	2.71 2.25-3.28	1.32 1.16-1.51	$\begin{gathered} 4.341 .39- \\ 13.43 \\ \hline \end{gathered}$

	No RA, no index condition HR, $(\mathbf{9 5 \%} \mathbf{C I})$, p	Risk of MACE No RA, with index condition HR, (95\% CI), p	RA, no index condition HR, (95\% CI), \mathbf{p}	$\begin{aligned} & \text { RA and index } \\ & \text { condition } \\ & \text { HR, (95\% } \\ & \text { CI), p } \end{aligned}$
Index condition				
Hypertension	1	1.49 1.44-1.55	1.55 1.26-1.90	$2.261 .85-2.76$
Coronary heart disease	1	1.89 1.80-1.98	1.60 1.37-1.88	2.31 1.65-3.22
Diabetes	1	1.66 1.58-1.75	1.62 1.39-1.90	1.66 1.58-1.75
Asthma	1	1.12 1.06-1.17	1.57 1.34-1.84	1.67 1.19-2.36
Dyspepsia	1	1.14 1.08-1.20	1.55 1.33-1.82	1.80 1.23-2.64
Cancer	1	1.11 1.05-1.17	1.59 1.37-1.85	$\begin{gathered} 1.420 .87-2.33 \\ \mathrm{p}=0.16 \end{gathered}$
Depression	1	1.25 1.17-1.34	1.53 1.31-1.78	2.38 1.52-3.74
Thyroid disorder	1	1.14 1.06-1.23	1.50 1.28-1.75	2.32 1.59-3.36
COPD	1	1.50 1.38-1.63	1.58 1.36-1.84	1.81 1.09-3.00
Epilepsy	1	1.50 1.31-1.74	1.56 1.35-1.81	$\begin{gathered} 1.740 .44-6.97 \\ \mathrm{p}=0.43 \end{gathered}$
Migraine	1	$\begin{gathered} 1.000 .90-1.12 \\ \mathrm{p}=0.96 \end{gathered}$	1.54 1.33-1.79	2.41 1.08-5.37
Psoriasis /Eczema	1	$\begin{gathered} 1.050 .96-1.14 \\ p=0.29 \end{gathered}$	$1.561 .34-1.80$	$\begin{gathered} 1.720 .86-3.44 \\ \mathrm{p}=0.12 \end{gathered}$
Prostate disease	1	$\begin{gathered} 0.910 .83-1.00 \\ \mathrm{p}=0.05 \end{gathered}$	1.53 1.32-1.78	$\begin{gathered} 2.531 .20-5.31 \\ \mathrm{p}=0.01 \end{gathered}$
Osteoporosis*	1	1.27 1.12-1.43	1.48 1.28-1.73	3.15 2.03-4.90
Atrial fibrillation	1	1.72 1.53-1.93	$1.561 .35-1.81$	$\begin{gathered} 2.78 \text { 1.04-7.43 } \\ \mathrm{p}=0.04 \end{gathered}$
Anxiety	1	1.29 1.15-1.44	$1.561 .35-1.81$	$\begin{gathered} 2.290 .86-6.10 \\ p=0.09 \end{gathered}$
Inflammatory bowel disease	1	$\begin{gathered} 1.090 .92-1.29 \\ p=0.30 \end{gathered}$	1.57 1.36-1.82	$\begin{gathered} 0.900 .23-3.63 \\ p=0.89 \end{gathered}$
Heart failure	1		1.57 1.35-1.81	$\begin{gathered} 1.711 .35- \\ 12.17 \\ \mathrm{p}=0.59 \end{gathered}$

E
Index condition
1Thyroid disorder1

COPD
Epilepsy
Migraine
Psoriasis 1
/Eczema
Prostate disease 1
Osteoporosis* 1
Atrial fibrillation 1
Anxiety 1
Inflammatory
bowel disease
Heart failure primary care read code related to rheumatoid arthritis.

Supplementary Table 8 - Risk of MACE for individual index conditions in patients with RA and no index condition, RA with index condition, RA with no index condition or RA and index condition. Age-adjusted Cox's proportional hazards models were adjusted for sex, Townsend score, smoking status, alcohol intake frequency, BMI, physical activity level and level of rheumatoid factor. Unless otherwise shown, $\mathrm{p}<0.01$. Index conditions labelled * have interaction term $\mathrm{p}>0.01$. RA defined here as RA self-report plus hospitalisation, medication or

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write " n / a " and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectionalreporting guidelines, and cite them as:
von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

Reporting Item

Title and abstract

Title \#1a Indicate the study's design with a commonly used term in the title or the abstract

Abstract \#1b Provide in the abstract an informative and balanced 2 summary of what was done and what was found

Introduction

| Bias | \#9 | Describe any efforts to address potential sources of bias |
| :--- | :--- | :--- | | n/a (data |
| :--- |
| collected by |

follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.

Participants \#13b Give reasons for non-participation at each stage

Participants \#13c Consider use of a flow diagram n/a (not
applicable here)
confounder-adjusted estimates and their precision (eg,
95\% confidence interval). Make clear which confounders
were adjusted for and why they were included

Main results \#16b Report category boundaries when continuous variables were categorized
10-1313subgroups and interactions, and sensitivity analyses
Discussion
13 objectives
Limitations \#19 Discuss limitations of the study, taking into accountsources of potential bias or imprecision. Discuss bothdirection and magnitude of any potential bias.
Interpretation \#20 Give a cautious overall interpretation consideringobjectives, limitations, multiplicity of analyses, resultsfrom similar studies, and other relevant evidence.
Generalisability \#21 Discuss the generalisability (external validity) of the 16-17
Other Information
Funding \#22 Give the source of funding and the role of the funders for
study results

13c: n / a (not applicable here) The STROBE checklist is distributed under the terms of the Creative Commons Attribution License CC-BY. This checklist was completed on 25. March 2020 using https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with Penelope.ai

BMJ Open

Patterns of multimorbidity and their effects on adverse outcomes in rheumatoid arthritis: a study of 5658 UK Biobank participants

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038829.R1
Article Type:	Original research
Date Submitted by the Author:	20-Aug-2020
Complete List of Authors:	McQueenie, Ross; University of Glasgow, GPPC, School of Medicine, Dentistry and Nursing, MVLS; NHS Scotland, Public Health Scotland Nicholl, Barbara; University of Glasgow, General Practice and Primary Care Jani, Bhautesh; University of Glasgow, General Practice and Primary Care Canning, Jordan; University of Glasgow, General Practice and Primary Care MacDonald, Sara; University of Glasgow, McCowan, Colin ; University of St. Andrews, School of Medicine Neary, Joanne; University of Glasgow, General Practice and Primary Care Browne, Susan; University of Glasgow, General Practice and Primary Care Mair, Frances; University of Glasgow, General Practice and Primary Care Siebert, Stefan; University of Glasgow, Institute of Infection, Immunity and Inflammation; NHS Greater Glasgow and Clyde,
Primary Subject Heading:	Rheumatology
Secondary Subject Heading:	Epidemiology
Keywords:	RHEUMATOLOGY, CARDIOLOGY, EPIDEMIOLOGY

SCHOLARONE"
 Manuscripts

D)

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence - details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

1 Patterns of multimorbidity and their effects on adverse outcomes in rheumatoid arthritis: a

21 University of Glasgow, UK
University of Glasgow, UK
*Joint Senior author University of Glasgow, G12 9LX

Ross McQueenie ${ }^{1,2}$
Barbara I Nicholl ${ }^{1}$
Bhautesh Dinesh Jani ${ }^{1}$
Jordan Canning ${ }^{1}$
Sara Macdonald ${ }^{1}$
Colin McCowan ${ }^{3}$
Joanne Neary ${ }^{1}$
Susan Browne ${ }^{1}$
Frances S Mair ${ }^{1 *}$
Stefan Siebert ${ }^{* *}$
${ }^{1}$ Ross McQueenie BSc (Hons), PhD; Barbara Nicholl BSc, PhD; Bhautesh Dinesh Jani
MRCGP, PhD; Jordan Canning BSc (Hons), MRes; Sara Maconald PhD; Joanne Neary BA
(Hons), MRes, PhD; Susan Browne MA(Hons), Mphil, PhD; Frances Mair MD, DRCOG,
FRCGP: General Practice and Primary Care, Institute of Health and Wellbeing, MVLS,
${ }^{2}$ Ross McQueenie BSc (Hons), PhD, NHS Public Health Scotland
${ }^{3}$ Colin McCowan PhD: School of Medicine, University of St Andrews, UK
${ }^{4}$ Stefan Siebert MD, FRCP, PhD: Institute of Infection, Immunity and Inflammation, MVLS,

Stefan Siebert (corresponding author), Institute of Infection, Immunity and Inflammation

25 email: stefan.siebert@glasgow.ac.uk

26 No author received financial support for the work reported in this manuscript, and all others 27 report no other financial interests that would be considered a conflict of interest.

29 Abstract

30 Objective

31 To investigate how type and number of long-term conditions (LTCs) impact on all-cause
32 mortality and major adverse cardiovascular events (MACE) in people with rheumatoid
33 arthritis (RA).

34 Design

35 Population-based longitudinal cohort study.

36 Setting

37 UK Biobank.

38 Participants

39 UK Biobank participants ($\mathrm{N}=502,533$) aged between 37 and 73 years old.

Primary outcome measures

41 Primary outcome measures were risk of all-cause mortality and MACE.

42 Methods

43 We examined the relationship between LTC count and individual comorbid LTCs $(\mathrm{N}=42)$ on 44 adverse clinical outcomes in participants with self-reported RA (N=5658). Risk of all-cause 45 mortality and MACE were compared using Cox's proportional hazard models adjusted for

65 Rheumatoid arthritis, mortality, multimorbidity, comorbidity, cardiovascular
lifestyle factors (smoking, alcohol intake, physical activity), demographic factors (sex, age, socioeconomic status), and rheumatoid factor.

Results

75.7% of participants with RA had multimorbidity and these individuals were at increased risk of all-cause mortality and MACE. RA and $\geq 4 \mathrm{LTCs}$ showed a three-fold increased risk of all-cause mortality (hazard ratio (HR) 3.30, 95\% confidence interval (CI) 2.61-4.16), and MACE (HR 3.45, 95% CI 2.66-4.49) compared to those without LTCs. Of the comorbid LTCs studied, osteoporosis was most strongly associated with adverse outcomes in participants with RA compared to those without RA or LTCs: two-fold increased risk of allcause mortality (HR 2.20, 95% CI 1.55-3.12) and three-fold increased risk of MACE (HR 3.17, 95% CI 2.27-4.64). These findings remained in a subset $(\mathrm{N}=3683)$ with RA diagnosis validated from clinical records or medication reports.

Conclusion

Those with RA and other LTCs, particularly comorbid osteoporosis, are at increased risk of adverse outcomes, although the role of corticosteroids could not be evaluated in this study. These results are clinically relevant for the monitoring and management of RA across the healthcare system, and future clinical guidelines for RA should acknowledge the importance of multimorbidity.

Keywords

69

Strengths and limitations

- This is the first study to examine both comorbidity and multimorbidity in RA and the associations with mortality and major adverse cardiovascular events (MACE).
- We used data from 5658 participants in UK Biobank with RA, including detailed information on participant demographics, lifestyle factors and rheumatoid factor status to examine multimorbidity and comorbidity using 42 non-RA LTCs.
- These results provide crucial new information which should be incorporated into clinical guidelines and used to influence management of peoples with RA.
- This study was limited by lack of information on RA disease severity which may play a role in both outcomes measured.

Introduction

Rheumatoid arthritis (RA) is a debilitating, chronic autoimmune disease characterised by inflammation of the synovial joints. RA is associated with physical and socio-economic issues, including increased pain levels, reduced physical functioning, and early mortality. ${ }^{1-4}$ Globally, whilst disability adjusted life years for RA have improved since 1990, agestandardised prevalence and incidence rates are increasing. ${ }^{5}$

Between 60% and 75% of those with RA are reported to have multimorbidity - two or more long-term conditions (LTCs) - with higher number of LTCs reported with increasing age and disease activity. ${ }^{6-8}$ Common comorbidities include cardiovascular conditions ${ }^{9}$ such as coronary artery disease ${ }^{10}$ and cardiac failure, ${ }^{11}$ as well as mental health conditions such as depression. ${ }^{12}$ Cardiovascular disease (CVD) accounts for the majority of the excess mortality observed in RA, with raised inflammatory markers and shared risk factors implicated. ${ }^{13}$ However, the effects of comorbidities in RA have generally been studied in isolation and less is known regarding the risks posed by multimorbidity when RA co-occurs with more than one other long-term physical or mental health LTC.

Through analysis of UK Biobank data, this paper aims to explore the effect of multimorbidity and a wide range of comorbid LTCs on all-cause mortality and major adverse cardiovascular events (MACE) in people with RA. Our objectives were to:

1. Compare the effect of LTC count on all-cause mortality in those with and without selfreported RA.
2. Compare the effect of LTC count on MACE in those with and without self-reported RA.

3. Evaluate the effect of individual co-morbid LTCs on the risk of all-cause mortality and MACE in participants with self-reported RA.

Patients and Methods

Study design and data collection

This study utilised data from UK Biobank, a longitudinal population-based cohort of 502533 participants, aged 37-73 years in Great Britain ${ }^{14}$. UK Biobank baseline data was collected between 2006-10 from recruitment centres in Scotland, England and Wales, and subsequently linked to mortality and hospitalisation outcomes from external routine data registries over a median follow-up period of 9 years. A subset of primary care data was available for 230105 participants. This study was covered by the generic ethics approval for UK Biobank studies from the NHS National Research Ethics Service (16/NW/0274).

Variables and outcome measures

UK Biobank collected information on a wide range of demographic, health-based lifestyle and self-reported LTC questions through self-administered touch screen questionnaire and nurse-led interview. These include age, sex, socioeconomic status (measured using Townsend score, a UK area-based measure of deprivation), ${ }^{15}$ smoking status, frequency of alcohol intake, body mass index (BMI), level of physical activity and number of LTCs.

The age range of the study population was 37-73 years and was categorised into groups: 3749, 50-59 and 60-73 years. Sex was a binary categorical variable. Smoking status was categorised into "never" or "current or previous". Frequency of alcohol intake was categorised into four groups, "Never or special occasions only", "One to three times a month", "One to four times a week" or "Daily or almost daily". BMI was categorised into four groups based on WHO BMI guidelines ${ }^{16}$: "underweight <18.5", "normal weight 18.5-24.9", "overweight 25-29.9" and "obese ≥ 30 ". Level of physical activity was defined as "none",
"low", "medium", or "high" using Metabolic Equivalent Task (MET) scores data based on International Physical Activity Questionnaire (IPAQ) scoring protocol (available from $\underline{\mathrm{https}: / / s i t e s . g o o g l e . c o m / s i t e / t h e i p a q / s c o r i n g-p r o t o c o l) ~ w h i c h ~ h a s ~ s h o w n ~ m o d e r a t e ~ t o ~ g o o d ~}$ validity and reliability in adults in UK settings. ${ }^{17,18}$

Rheumatoid factor was ascertained, as part of a predefined biomarker panel, for all participants in UK Biobank, regardless of diagnosis, and categorised into positive and negative status, with rheumatoid factor $<20 \mathrm{IU} / \mathrm{ml}$ considered negative, and values above this considered positive (by manufacturer specification, available at https://www.beckmancoulter.com/wsrportal/techdocs?docname=/cis/988646/\%\%/RF 98864 6-\% $25 \% 25$ English.pdf). Participants whose rheumatoid factor was labelled as "not reportable at assay (too low)" were considered to be rheumatoid factor negative. Similarly, those labelled "not reportable at assay (too high)" were considered rheumatoid factor positive. The list of 42 LTCs considered was based on previous work in UK Biobank, ${ }^{19}$, 20 the number of LTCs reported, apart from RA, were summed and then categorised as $0,1,2-3$ and ≥ 4 LTCs. RA and all LTCs in UK Biobank are based on self-report using a questionnaire and nurse-led interview asking for existing diagnoses.

All-cause mortality was calculated using data linkage to national mortality registers. MACE were calculated using stroke and myocardial infarction (MI) hospitalisation event data from UK Biobank, and using ICD-10 mortality codes: "I00-I78", "G45", "G451-G454", "G456", "G458", "G459", and "G460-G468". The median follow-up time for both morality and MACE was nine years; the length of follow-up for each participant varied as follow-up continued until an event occurred (death or MACE) or until the mortality the linkage was carried out.

A sensitivity analysis of self-report RA by participants was performed by examining four other indicators of RA: any primary care RA Read code, any secondary care RA hospitalisation code, self-reporting of any common RA drugs or any primary care prescription record of RA drugs (as shown in Supplementary Table 1). Both prospective and retrospective data were used: primary care Read codes were available for a maximum period of January 1991 and December 2017, and primary care prescriptions were between January 1991 and December 2016; the time period for each participant varied, depending on records held. Participants were considered to have confirmed RA if they had a positive record for one or more of these indicators. This analysis was performed on a subset (74\%) of participants who self-reported RA for whom primary care data in UK Biobank was available ($\mathrm{N}=4196 / 5658$).

Statistical methods

In line with previous UK Biobank studies, $\chi 2$ tests were utilised for both categorical data and ordinal data. Kruskal-Wallis tests were used for continuous data. ${ }^{21}$ Similarly, we used $\chi 2$ testing to examine differences in proportion of individual LTCs between those with and without RA. Age-adjusted Cox's proportional hazards tests were used to examine the relationship between LTC count / type of LTCs with all-cause mortality and MACE as outcome variables in those with and without RA. The model was further adjusted for demographic, lifestyle and biological factors (sex, Townsend score, alcohol status, smoking status, BMI, physical activity and rheumatoid factor status) as described above. Among those with RA, cumulative hazards-based Kaplan-Meier plots were used to display proportion of events (all-cause mortality or MACE) in participants with $0,1,2-3$ and ≥ 4 co-morbid LTCs. To measure the contribution of individual index LTCs towards all-cause mortality and MACE in those with and without RA, we created a categorical variable that assigned participants to one of four groups: those with neither RA nor the index condition (reference
group), those with RA but not the index LTC (RA only), those with no RA with the index LTC (index LTC only), and those with both RA and the index LTC. This variable was used as an outcome measure in an age-adjusted Cox's proportional hazards model controlling for demographic factors, lifestyle factors and rheumatoid factor status. To calculate whether there was a multiplicative or synergistic effect between RA and each index LTC, we used an ANOVA to compare the p-values between two Cox's proportional hazards models: the first contained RA and the index LTC, and the second contained RA, the index LTC and a statistical interaction term between RA and the index LTC. A statistical interaction was considered significant when the ANOVA test has a $\mathrm{p}<0.01$.

Results

5658 UK Biobank participants (1.1\%) reported having RA. Lifestyle and demographic characteristics of participants with and without self-reported RA are shown in Table 1. Participants with RA were significantly more likely to be older, female, have lower socioeconomic status, be current or previous smokers, have a lower frequency of alcohol intake, have a BMI ≥ 30, have lower levels of physical activity, and have larger numbers of co-morbid LTCs. $\chi 2$ testing showed participants with self-reported RA were significantly more likely to have rheumatoid factor positive status: 35.6% had rheumatoid factor levels of over $20 \mathrm{IU} / \mathrm{ml}$ - compared with 3.6% in those without RA.

Prevalence of LTCs in people with $R A$

Proportions of number of LTCs in participants with and without RA are shown in Table 1. Reporting multiple long-term conditions was more common in those with RA: 34.5% had 2-3 LTCs (27.1% in those without RA), and 11.1% had ≥ 4 LTCs (4.9% in those without RA). Overall, 75.7% of people with RA were noted to be multimorbid. The difference in comorbidity experienced by those with and without RA is shown in Supplementary Table 2.

Those with RA reported proportionately higher numbers of physical and mental health-based LTCs, namely: cardiovascular LTCs including hypertension, coronary heart disease, and stroke or transient ischemic attack; pulmonary LTCs including asthma, COPD and chronic bronchitis; digestive system LTCs including dyspepsia, irritable bowel syndrome and inflammatory bowel disease; musculoskeletal conditions including osteoporosis; and mentalhealth based LTCs including depression.

All-cause mortality and LTCs in people with $R A$

We examined the outcomes associated with different LTC counts in participants with RA using a Kaplan Meier plot (Supplementary Figure 1). There was an increased proportion of all-cause mortality in participants with RA concurrent with increasing multimorbidity counts: $4.2 \%(\mathrm{~N}=58)$ in those with no additional LTCs, $5.3 \%(\mathrm{~N}=91)$ in those with 1 additional LTC, $9.9 \% ~(\mathrm{~N}=194)$ in those with $2-3$ additional LTCs and $14.4 \%(\mathrm{~N}=90)$ in those with ≥ 4 additional LTCs during the follow up period (median 9 years).

To quantify the effect of LTC count on all-cause mortality, we performed a Cox's proportional hazards test controlling for lifestyle factors, demographic factors and rheumatoid factor in participants with and without self-reported RA using a stepwise model adjustment (Table 2). Participants with RA and no additional LTCs had a significant increase in allcause mortality when using an age-adjusted Cox's proportional hazards model fully adjusting for additional lifestyle and demographic factors (Hazard Ratio (HR) 1.59, 95\% confidence intervals (CI) 1.21-2.08) compared to those without RA or any LTCs. Whilst controlling additionally for rheumatoid factor status appeared to show some attenuation of all-cause mortality risk, a statistically significant risk for this group remained (HR 1.39, 95\% CI 1.051.84) when compared to those without RA or any LTCs. When examining additional comorbid LTCs alongside RA, there appeared to be a dose-based response all-cause mortality
risk, with a 44% increased risk of all-cause mortality in those with RA and one other LTC (HR 1.44, 95\% CI 1.14-1.81), an approximately two-and-a-half-fold increased risk for RA with 2-3 other LTCs (HR 2.48, 95\% CI 2.12-2.90) and an over three-fold increased risk associated for RA with ≥ 4 other LTCs (HR 3.30, 95\% CI 2.61-4.16) compared to those without RA or any LTCs in the fully adjusted models, which included rheumatoid factor. A dose-based response was also observed in the non-RA population: those with 1 LTC had a 39% increased risk of death (HR $1.39,95 \%$ CI 1.33-1.46), and those with ≥ 4 were at a two-and-a-half-fold increased risk (HR 2.69 95\% CI 2.54-2.85) compared with participants without RA or any LTCs.

MACE and LTCs in people with RA

We next investigated the effect of LTC count on MACE in participants with RA using a Kaplan Meier plot (Supplementary Figure 2). For RA and no additional LTCs, 3.3\% (N=46) of participants had a recorded MACE event, compared with 4.6% of participants with RA and one additional LTC ($\mathrm{N}=78$), 6.7% those with RA and 2-3 additional LTCS $(\mathrm{N}=131)$, and almost four times as many proportionately in participants with RA and ≥ 4 LTCs $(11.7 \%$, $\mathrm{N}=73$ events) over the follow-up period.

Table 3 shows the risk of MACE for participants with and without RA using age-adjusted multivariate Cox's proportional hazards regression models. There was a 63% increased hazard of MACE for participants with RA and no other LTCs compared with participants without RA or any LTCs (HR 1.63, 95\% CI 1.21-2.21) in a fully adjusted model including demographic factors, lifestyle factors and rheumatoid factor status. This remained significant for people with RA with increasing LTCs count, with a 86% increased risk of MACE in participants with one other co-occurring LTC (HR 1.86, 95\% CI 1.31-2.15), an over two-fold increase in those with 2-3 co-occurring LTCs (HR 2.09, 95\% CI 1.73-2.54) and an almost three-and-a-
half-fold increase in MACE for those with ≥ 4 LTCs (HR 3.39, 95\% CI 2.61-4.40), compared to those without RA or any LTCs. This relationship was similar but to a lesser degree for participants without RA, with those with 1 LTC at 24% increased risk (HR 1.24, $95 \% \mathrm{CI}$ 1.19-1.31), those with 2-3 LTCs at a 66% increased risk (HR 1.66, 95\% CI 1.59-1.74) and those with ≥ 4 LTCs at over two times risk (HR 2.37 95\% CI 2.23-2.53) of MACE compared with those without LTCs.

A similar pattern was observed for the relationship between LTC count and mortality/MACE for the group without RA (Supplementary Figures 3 and 4).

Contribution of individual LTCs to all-cause mortality and MACE in people with $R A$

Using an age-adjusted Cox's proportional hazards model, adjusting for demographic factors, lifestyle factors and rheumatoid factor status, we investigated the role individual LTCs play in risk of all-cause mortality and MACE, using participants with no RA and no index condition as the reference group (Table 4 and 5).

The presence of cardiovascular-based LTCs appeared to be a risk factor in those with RA for both all-cause mortality and MACE. Compared to those with no RA and no hypertension, RA with hypertension showing an over one-and-a-half-fold increased risk of all-cause mortality (HR 1.59, 95% CI 1.37-1.86) and an approximately two-fold increased risk of MACE (HR $2.07,95 \%$ CI $1.64-2.33)$.

Similarly, heart disease was associated with an over two-fold increase for both all-cause mortality (HR 2.07, 95\% CI 1.63-2.63) and MACE (HR 2.28 95\% CI 1.76-2.98) in those with RA compared to those with no RA and no heart disease. However, there was no evidence of interaction between RA and either cardiovascular condition. Whilst thyroid disorders showed no significant increased risk of all-cause mortality, they displayed an over two-fold increased
risk of MACE (HR 2.10, 95\% CI 1.50-2.93) in those with RA compared to those without RA or thyroid disease but again there was no significant interaction between RA and thyroid disease and MACE event.

The co-occurrence of osteoporosis in participants with RA appeared to strongly influence both mortality and MACE; more than doubling all-cause mortality (HR 2.20, 95% CI $1.55-$ 3.12), and resulting in an over three times higher risk of MACE (HR 3.17, 95\% CI 2.17-4.64) compared to those without RA or osteoporosis. This increased risk in those with both RA and osteoporosis was greater than in those with RA but no osteoporosis or those with osteoporosis but no RA. Interaction terms for RA and osteoporosis showed no significant interaction with all-cause mortality ($\mathrm{p}=0.10$), suggesting an additive effect only, but displayed a significant interaction with MACE ($\mathrm{p}<0.01$), suggesting a multiplicative or synergistic effect in the association with MACE.

Sensitivity analysis of $R A$ self-report

To investigate sensitivity of self-report by participants with RA, we examined the proportion of people with any primary care RA Read code, any secondary care RA hospitalisation code, self-reporting of any common RA drugs and any primary care prescription record of RA drugs (see supplementary table 1) for participants who had self-reported RA and had available primary care data available in UK Biobank ($\mathrm{N}=4196$). Medications used here were previously reported by Siebert et al. ${ }^{21}$ Using this method, we were able to identify RA medications, hospitalisations or primary care Read code in 3683 (87.8\%) participants (Supplementary Table 3). Analysis performed in this study was repeated in these participants and showed the same relationships as those reported above in $\mathrm{N}=5658$ with self-report RA, with only small changes in HR observed (Supplementary Tables 4-8).

Discussion

Within UK Biobank, multiple LTCs was common in participants with RA, with approximately 75.7% reporting multimorbidity and 45% of participants reporting two or more additional LTCs alongside RA. In our fully adjusted modes, increasing LTC count was associated with increased mortality and MACE in people with RA. When examining individual LTCs, we observed hypertension, heart disease, osteoporosis and thyroid disorders to increase risk of adverse outcomes. Of these, osteoporosis was associated with one of the largest increases in both adverse outcomes measured: participants with both RA and osteoporosis were at over three times the risk of all-cause mortality and two times the risk of compared to those with neither LTC. The negative effect of having both RA and osteoporosis was particularly evident in MACE outcomes, for which there was a significant interaction between RA and osteoporosis, suggesting a multiplicative or synergistic effect on MACE of having both these conditions together. The presence of hypertension or heart disease alongside RA increased the risk of mortality and MACE, in keeping with previous literature, ${ }^{22,23}$ but there was no evidence of a synergistic effect.

To the best of our knowledge, this paper is the first to compare LTC count and type of comorbid LTCs and their association with all-cause mortality and MACE in men and women with RA after adjusting for a wide range of sociodemographic and lifestyle variables along with rheumatoid factor status. In our study, increasing LTC count resulted in adverse outcomes in participants with RA, with an increased rate of all-cause mortality and MACE.

We have shown that multimorbidity is common in participants with RA, with around 75% of participants with RA reporting one or more additional LTCs. This is in agreement with reported comorbidity rates of between 60% and 75% in those with RA, ${ }^{6-8}$ although these studies typically examined a smaller number of LTCs than in this study. We have shown participants with RA and 2-3 other LTCs were at over twice the risk of all-cause mortality, whilst those with ≥ 4 more were over three times the risk compared to participants with no

LTCs. This data provides evidence for the first time the increased risk of all-cause mortality in men and women with RA and multimorbidity. While previous work has highlighted an increased risk of mortality in RA patients, ${ }^{24,}{ }^{25}$ or specific comorbidities alongside RA - for example in COPD ${ }^{26}$ and depression ${ }^{27}$ - these studies did not examine the effect of LTC count. One matched cohort study used a multimorbidity weighted index to study the effect of multimorbidity on mortality, but only examined effects in women. ${ }^{28}$ Another examined LTCs using the Charlson comorbidity index, ${ }^{29}$ however this measure uses only 19 LTCs and the study examined only all-cause mortality outcomes. Our study is the first study of its type to link multimorbidity in RA with MACE outcomes. Existing research has highlighted that RA increases the risk of cardiovascular events, and that individual LTCs such as diabetes and hypertension are risk factors, ${ }^{30}$ however, to date, no study has shown an association between multimorbidity and MACE outcomes in people with RA. Collectively, the results presented here report for the first time the magnitude of adverse outcomes associated with multimorbidity in those with RA.

In keeping with previous studies, ${ }^{8,31}$ we have shown that osteoporosis prevalence is increased in those with RA compared to those without RA. The results presented in this paper, however, are the first to link osteoporosis in those with RA to increased risk of adverse outcomes and the first to show significant interaction between both conditions and MACE outcomes. The reasons for this association are not clear and cannot be extrapolated from the available data, which does not include factors such as disease severity or duration. One possibility may be that corticosteroids and RA disease activity play a role: corticosteroids are associated with increased prevalence of osteoporosis ${ }^{32}$; people with RA with higher levels of disease activity are more likely to receive corticosteroids; both corticosteroid use and increased RA disease activity are reported to be associated with worse outcomes in mortality and MACE. ${ }^{33,34}$

Our study therefore has several strong clinical implications. Current NICE guidelines for RA suggest annual checks for the development of hypertension, ischemic heart disease, osteoporosis and depression in RA, ${ }^{35}$ but do not highlight the increased risk of the cooccurrence of these LTCs with RA nor the risk posed by multimorbidity in general. In addition, we have shown a greatly increased risk of adverse outcomes in people with osteoporosis and RA that merits further investigation.

Our study has several key strengths: UK Biobank is a large population-based study with several thousand participants reporting RA; the study setting encompasses three countries within the UK (Scotland, England and Wales); it includes details of participant demographic and lifestyle factors as well as rheumatoid factor levels, which allowed us to adjust for variables, which have not been explored in previous studies.

Our study is limited by self-reporting of RA and LTCs by these participants; however, recent studies have shown that self-report is a reliable method for reporting RA ${ }^{36}$. Inthis study we additionally used four RA indicators (any primary care RA Read code, any secondary care RA hospitalisation code, self-reporting of any common RA drugs and any primary care prescription record of RA drugs) to validate self-reported RA. Using this validation approach, we found a positive verification rate (participants self-reporting RA with further RA indicators) of $87.8 \%(\mathrm{~N}=3683)$. Re-analysis of the subset of participants with RA (Supplementary Tables 4-8) who had a validated RA report showed only small changes to Cox's proportional hazards models, and observed effects were in agreement with the population who self-reported RA. This provides confidence in our findings that we are examining a true RA population. Rheumatoid factor positive status in those self-reporting RA (35.6\%) was lower than expected, however still a significantly higher proportion than in the UK Biobank population who did not report RA (3.6\%). Analysis of rheumatoid factor in those who had a validated RA report showed an increased proportion of positive rheumatoid
factor (47.6\%), but this level remained below previously reported proportions in RA populations. We were unable to determine the severity or duration of RA in participants, or their previous medications. Participants in UK Biobank are known to be less deprived than the wider UK population, ${ }^{37}$ suggesting that the level of multimorbidity reported here; and resulting associations are likely to be conservative in nature. Future work will examine potential clusters of LTCs that are associated with poor health-related outcomes in people with RA to try to inform clinical management of patients with RA and multiple LTCs.

Conclusions

Multimorbidity is common in people with RA and is associated with increased risk of allcause mortality and MACE. Certain comorbidities such as osteoporosis merit specific attention, in view of their association with adverse outcomes; it will be important to test whether this association is replicated in other datasets and if so, to explore the underpinning mechanisms. As multimorbidity has been shown here to influence outcomes for those with RA, forthcoming work will examine which clusters of LTCs most strongly drive this increased risk of poor outcomes. Future clinical guidelines for RA should acknowledge the importance of multimorbidity when considering management planning and patient outcomes.

Word count: 3683 words

Acknowledgements

This research has been conducted using the UK Biobank Resource, approved project number 14151; we are like to thank the participants and those managing the data. We would like to acknowledge Versus Arthritis for funding this project.

Ethical approval

All participants gave informed consent for data provision and linkage. UK Biobank has full ethical approval from the NHS National Research Ethics Service (16/NW/0274).

Competing interests

None declared.

Funding

This study was funded by Versus Arthritis (grant number 21970)

Data sharing statement

The data used in this study are available via a direct application to UK Biobank.

Author contributions

This study was conceived by BN, FSM, SS, BJ and CM. The analysis was conducted by RM, BN and BJ. All authors (RM, BJ, BN, JC, SM, CM, JN, SB, FSM, SS) contributed to design, interpretation and discussion of all analysis. RM wrote this manuscript. All authors (RM, BJ, BN, JC, SM, CM, JN, SB, FSM, SS) edited, reviewed and commented on all versions of this manuscript. All authors read the manuscript draft and approved the final submission.

Patient and Public Involvement

The study was supported by a patient advisory group which provided input to the programme of research. This patient advisory group met on a regular basis for the duration of the study. Patients partnered with us and helped design research questions.

References

1. Andrews JS, Trupin L, Yelin EH, et al. Frailty and reduced physical function go hand in hand in adults with rheumatoid arthritis: a US observational cohort study. Clinical rheumatology 2017;36:1031-39. doi: 10.1007/s10067-017-3541-9
2. Sokka T, Abelson B, Pincus T. Mortality in rheumatoid arthritis: 2008 update. Clinical and experimental rheumatology 2008;26:S35-61.
3. Humphreys JH, Warner A, Chipping J, et al. Mortality trends in patients with early rheumatoid arthritis over 20 years: results from the Norfolk Arthritis Register. Arthritis care \& research 2014;66:1296-301. doi: 10.1002/acr. 22296
4. Gwinnutt JM, Verstappen SM, Humphreys JH. The impact of lifestyle behaviours, physical activity and smoking on morbidity and mortality in patients with rheumatoid arthritis. Best practice \& research Clinical rheumatology 2020:101562. doi: 10.1016/j.berh.2020.101562
5. Safiri S, Kolahi AA, Hoy D, et al. Global, regional and national burden of rheumatoid arthritis 19902017: a systematic analysis of the Global Burden of Disease study 2017. Annals of the Rheumatic Diseases 2019;78:1463. doi: 10.1136/annrheumdis-2019-215920
6. Espino-Lorenzo P, Manrique-Arija S, Urena I, et al. Baseline comorbidities in patients with rheumatoid arthritis who have been prescribed biological therapy: a case control study. Reumatologia clinica 2013;9:18-23. doi: 10.1016/j.reuma.2012.05.012
7. Gron KL, Ornbjerg LM, Hetland ML, et al. The association of fatigue, comorbidity burden, disease activity, disability and gross domestic product in patients with rheumatoid arthritis. Results from 34 countries participating in the Quest-RA program. Clinical and experimental rheumatology 2014;32:869-77.
8. Luque Ramos A, Redeker I, Hoffmann F, et al. Comorbidities in Patients with Rheumatoid Arthritis and Their Association with Patient-reported Outcomes: Results of Claims Data Linked to Questionnaire Survey. The Journal of rheumatology 2019;46:564-71. doi: 10.3899/jrheum. 180668
9. Løgstrup BB, Olesen KKW, Masic D, et al. Impact of rheumatoid arthritis on major cardiovascular events in patients with and without coronary artery disease. Ann Rheum Dis 2020 doi: 10.1136/annrheumdis-2020-217154
10. Solomon DH, Goodson NJ, Katz JN, et al. Patterns of cardiovascular risk in rheumatoid arthritis. Ann Rheum Dis 2006;65:1608-12. doi: 10.1136/ard.2005.050377
11. Nicola PJ, Maradit-Kremers H, Roger VL, et al. The risk of congestive heart failure in rheumatoid arthritis: a population-based study over 46 years. Arthritis and rheumatism 2005;52:412-20. doi: 10.1002/art. 20855
12. Matcham F, Rayner L, Steer S, et al. The prevalence of depression in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology (Oxford) 2013;52:2136-48. doi: 10.1093/rheumatology/ket169
13. Ferguson LD, Siebert S, McInnes IB, et al. Cardiometabolic comorbidities in RA and PsA: lessons learned and future directions. Nat Rev Rheumatol 2019;15:461-74. doi: 10.1038/s41584-019-0256-0
14. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS medicine 2015;12:e1001779. doi: 10.1371/journal.pmed. 1001779
15. Townsend PJJosp. Deprivation. 1987;16:125-46.
16. Wolfe F. Pain extent and diagnosis: development and validation of the regional pain scale in 12,799 patients with rheumatic disease. The Journal of rheumatology 2003;30:369-78.
17. Cleland C, Ferguson S, Ellis G, et al. Validity of the International Physical Activity Questionnaire (IPAQ) for assessing moderate-to-vigorous physical activity and sedentary behaviour of older adults in the United Kingdom. BMC Med Res Methodol 2018;18:176. doi: 10.1186/s12874-018-0642-3
18. Craig CL, Marshall AL, Sjostrom M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 2003;35:1381-95. doi: 10.1249/01.MSS.0000078924.61453.FB
19. Jani BD, Nicholl BI, McQueenie R, et al. Multimorbidity and co-morbidity in atrial fibrillation and effects on survival: findings from UK Biobank cohort. EP Europace 2017;20:f329-f36. doi: 10.1093/europace/eux322
20. Jani BD, Hanlon P, Nicholl BI, et al. Relationship between multimorbidity, demographic factors and mortality: findings from the UK Biobank cohort. BMC Medicine 2019;17:74. doi: 10.1186/s12916-019-1305-x
21. Siebert S, Lyall DM, Mackay DF, et al. Characteristics of rheumatoid arthritis and its association with major comorbid conditions: cross-sectional study of 502649 UK Biobank participants. RMD open 2016;2:e000267.
22. Cooksey R, Brophy S, Kennedy J, et al. Cardiovascular risk factors predicting cardiac events are different in patients with rheumatoid arthritis, psoriatic arthritis, and psoriasis. Seminars in arthritis and rheumatism 2018;48:367-73. doi: 10.1016/j.semarthrit.2018.03.005
23. Lauper K, Courvoisier DS, Chevallier P, et al. Incidence and Prevalence of Major Adverse Cardiovascular Events in Rheumatoid Arthritis, Psoriatic Arthritis, and Axial Spondyloarthritis. Arthritis care \& research 2018;70:1756-63. doi: 10.1002/acr. 23567
24. van den Hoek J, Boshuizen HC, Roorda LD, et al. Mortality in patients with rheumatoid arthritis: a 15-year prospective cohort study. Rheumatol Int 2017;37:487-93. doi: 10.1007/s00296-016-3638-5
25. Gabriel SE, Crowson CS, Kremers HM, et al. Survival in rheumatoid arthritis: a population-based analysis of trends over 40 years. Arthritis and rheumatism 2003;48:54-8. doi: 10.1002/art. 10705
26. Hyldgaard C, Løkke A, Pedersen AB, et al. Prognosis in rheumatoid arthritis patients with COPD: A nationwide, registry-based study. European Respiratory Journal 2017;50:0A1786. doi: 10.1183/1393003.congress-2017.OA1786
27. van den Hoek J, Boshuizen HC, Roorda LD, et al. Association of Somatic Comorbidities and Comorbid Depression With Mortality in Patients With Rheumatoid Arthritis: A 14-Year Prospective Cohort Study. Arthritis care \& research 2016;68:1055-60. doi: 10.1002/acr. 22812
28. Yoshida K, Lin T-C, Wei M, et al. The roles of post-diagnosis accumulation of morbidities and lifestyle changes on excess total and cause-specific mortality risk in rheumatoid arthritis. Arthritis care \& research 2019 doi: 10.1002/acr. 24120
29. Nikiphorou E, de Lusignan S, Mallen C, et al. Prognostic value of comorbidity indices and lung diseases in early rheumatoid arthritis: a UK population-based study. Rheumatology 2019 doi: 10.1093/rheumatology/kez409
30. Dalbeni A, Giollo A, Bevilacqua M, et al. Traditional cardiovascular risk factors and residual disease activity are associated with atherosclerosis progression in rheumatoid arthritis patients. Hypertens Res 2020;43:922-28. doi: 10.1038/s41440-020-0441-1
31. Lindner L, Callhoff J, Alten R, et al. Osteoporosis in patients with rheumatoid arthritis: trends in the German National Database 2007-2017. Rheumatol Int 2020 doi: 10.1007/s00296-020-04593-6
32. Wang Y, Zhao R, Gu Z, et al. Effects of glucocorticoids on osteoporosis in rheumatoid arthritis: a systematic review and meta-analysis. Osteoporos Int 2020;31:1401-09. doi: 10.1007/s00198-020-05360-w
33. del Rincon I, Battafarano DF, Restrepo JF, et al. Glucocorticoid dose thresholds associated with all-cause and cardiovascular mortality in rheumatoid arthritis. Arthritis \& rheumatology (Hoboken, NJ) 2014;66:264-72. doi: 10.1002/art. 38210
34. Listing J, Kekow J, Manger B, et al. Mortality in rheumatoid arthritis: the impact of disease activity, treatment with glucocorticoids, TNFalpha inhibitors and rituximab. Ann Rheum Dis 2015;74:415-21. doi: 10.1136/annrheumdis-2013-204021
35. National Institute for Health and Care Excellence. Rheumatoid arthritis in adults: management: National Insttute for Health and Care Excellence, 2018.
36. Peeters GM, Alshurafa M, Schaap L, et al. Diagnostic accuracy of self-reported arthritis in the general adult population is acceptable. J Clin Epidemiol 2015;68:452-9. doi: 10.1016/j.jclinepi.2014.09.019
37. Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population. American Journal of Epidemiology 2017;186:1026-34. doi: 10.1093/aje/kwx246

Figure legends
Supplementary figure 1 - Kaplan-Meier plot of proportion of all-cause mortality during the follow-up period (median 108 months) for participants with RA and no LTCS (black line), RA and 1 LTC (red line), RA and 2-3 LTCs (green line) and RA and ≥ 4 LTCs (blue line).

Supplementary figure 2 - Kaplan-Meier plot of proportion of MACE during the follow-up period (median 108 months) for participants with RA and no LTCS (black line), RA and 1 LTC (red line), RA and 2-3 LTCs (green line) and RA and ≥ 4 LTCs (blue line).

Supplementary figure 3 - Kaplan-Meier plot of proportion of all-cause mortality during the follow-up period (median 108 months) for participants no RA and no LTCS (black line), RA no RA and 1 LTC (red line), no RA and 2-3 LTCs (green line) and no RA and ≥ 4 LTCs (blue line).

Supplementary figure 4 - Kaplan-Meier plot of proportion of MACE during the follow-up period (median 108 months) for participants no RA and no LTCS (black line), RA no RA and 1 LTC (red line), no RA and 2-3 LTCs (green line) and no RA and ≥ 4 LTCs (blue line).

Tables

Table 1 - Demographic factors, lifestyle factors, number of long-term conditions and rheumatoid factor status in patients with and without rheumatoid arthritis. Unless indicated, $\mathrm{p}<0.01$. $\chi 2$ test was used for categorical variables, Kruskal-Wallis test was used for continuous variables. $\mathrm{SD}=$ standard deviation. Unless otherwise indicated, all results are shown as number (\%).

	Participants with RA $(\mathbf{N}=\mathbf{5 6 5 8})$	Participants without RA $(\mathbf{N}=\mathbf{4 9 6 8 8 2})$
Mean Age $($ years $(\mathbf{S D})) ;$ missing values $=\mathbf{0}(\mathbf{0 \%})$ Age $($ years $) ;$ missing values $=\mathbf{0}(\mathbf{0 \%})$	$59.3(7.1)$	$56.5(8.1)$
(

37-49	675 (11.9\%)	117209 (23.6\%)
50-59	1800 (31.8\%)	165359 (33.3\%)
60-73	3183 (56.3\%)	214314 (43.1\%)
Sex; missing values $=0$ (0\%)		
Female	3952 (69.8\%)	269452 (54.2\%)
Male	1706 (30.2\%)	227430 (45.8\%)
Townsend score; missing values = 623 (0.12\%)		
0-20 (least deprived)	998 (17.7\%)	99665 (20.1\%)
20-40	980 (17.4\%)	99117 (20\%)
40-60	1087 (19.2\%)	99311 (20\%)
60-80	1154 (20.4\%)	99224 (20\%)
80-100 (most deprived)	1429 (25.3\%)	98952 (19.9\%)
Smoking status; missing values $=2950$ (0.59 \%)		
Never	2625 (46.8\%)	270916 (54.8\%)
Current or Previous	2983 (53.2\%)	223066 (45.2\%)
Frequency of alcohol intake; missing values = 1502 (0.30 \%)		
Never or special occasions only	1830 (32.4\%)	96832 (19.5\%)
One to three times a month	690 (12.2\%)	55170 (11.1\%)
One to four times a week	2315 (41\%)	242428 (48.9\%)
Daily or almost daily	811 (14.4\%)	100962 (20.4\%)
BMI ($\mathbf{k g} / \mathrm{m}^{2}$) ; missing values $=5820$ ($\mathbf{1 . 1 5 \%)}$		
underweight <18.5	50 (0.9\%)	2576 (0.5\%)
normal weight 18.5-24.9	1543 (27.9\%)	155896 (31.7\%)
overweight 25-29.9	2194 (39.6\%)	212032 (43.2\%)
obese ≥ 30	1750 (31.6\%)	120679 (24.6\%)
Physical activity; missing values $=\mathbf{7 1 5 6} \mathbf{(1 . 4 2 \%)}$		
none	814 (14.8\%)	32035 (6.5\%)
low	409 (7.4\%)	18531 (3.8\%)
medium	4111 (74.5\%)	389412 (79.5\%)
high	182 (3.3\%)	49890 (10.2\%)
Number of long-term conditions; missing values = 1845 (0.36 \%)		
0	1369 (24.3\%)	173846 (35.1\%)
1	1690 (30.0\%)	162657 (32.9\%)
2-3	1943 (34.5\%)	134403 (27.1\%)
≥ 4	623 (11.1\%)	24157 (4.9\%)
Rheumatoid Factor (IU/ml); missing values $=33,066$ (6.6 \%)		
<20	3396 (64.4\%)	447472 (96.4\%)
>20	1879 (35.6\%)	16720 (3.6\%)

Table 2 - Relationship between long term conditions and all-cause mortality in participants with and without self-reported RA using age-adjusted multivariate Cox's proportional hazards regression analysis. Unless otherwise shown, Cox's proportional hazards $\mathrm{p}<0.01$.

Risk of all-cause mortality

Comorbidity status	Adjusted	Adjusted	Adjusted	Adjusted for	Number
(reference: No $\boldsymbol{R} \boldsymbol{A}$	for sex and	for sex,	for sex,	sex,	of
and no other long-	Townsend	Townsend	Townsend	Townsend	deaths
term conditions)	score	score,	score,	score, alcohol	(\%)
	HR	alcohol	alcohol	status,	
	$(95 \%$ CI)	status and smoking	status, smoking status, BMI	smoking status, BMI, physical	
			status	stand	

$\left.\begin{array}{cccccc}\hline & & & \begin{array}{c}\text { HR } \\ (\mathbf{9 5 \%} \mathbf{C I})\end{array} & \begin{array}{c}\text { and } \\ \text { physical } \\ \text { activity } \\ \text { HR }\end{array} & \begin{array}{c}\text { activity and } \\ \text { rheumatoid } \\ \text { factor status }\end{array} \\ \hline \text { HR }\end{array}\right]$

Table 3 Relationship between long term conditions and major adverse cardiovascular events in participants with and without self-reported RA using age-adjusted multivariate Cox's proportional hazards regression analysis. Unless otherwise shown, Cox's proportional hazards $\mathrm{p}<0.01$.

Risk of MACE

Comorbidity status reference: No RA and no other long-term conditions)	for sex and Townsend score	Adjusted for sex, Townsend score,	for sex, Townsend score,	Adjusted for sex, Townsend score,	Number of MACE (\%)

		$\begin{gathered} \text { HR } \\ (95 \% \mathrm{CI}) \end{gathered}$	alcohol status and smoking status HR (95\% CI)	$\begin{aligned} & \hline \text { alcohol } \\ & \text { status, } \\ & \text { smoking } \\ & \text { status, } \\ & \text { BMI, and } \\ & \text { physical } \\ & \text { activity } \\ & \text { HR } \\ & (95 \% \mathrm{CI}) \end{aligned}$	alcohol status, smoking status, BMI, physical activity and rheumatoid factor status HR $(95 \% \mathrm{CI})$	
No other long-term conditions	RA	$\begin{gathered} 1.79 \\ (1.33-2.39) \end{gathered}$	$\begin{gathered} 1.69 \\ (1.26-2.27) \end{gathered}$	$\begin{gathered} 1.64 \\ (1.21-2.20) \end{gathered}$	$\begin{gathered} 1.63 \\ (1.21-2.21) \end{gathered}$	$\begin{gathered} 46 \\ (3.4 \%) \end{gathered}$
1 other long-term	No RA	$\begin{gathered} 1.30 \\ (1.24-1.36) \end{gathered}$	$\begin{gathered} 1.28 \\ (1.22-1.34) \end{gathered}$	$\begin{gathered} 1.26 \\ (1.20-1.320 \end{gathered}$	$\begin{gathered} 1.24 \\ (1.19-1.31) \end{gathered}$	$\begin{gathered} 4512 \\ (2.8 \%) \end{gathered}$
condition	RA	$\begin{gathered} 2.08 \\ (1.66-2.61) \end{gathered}$	$\begin{gathered} 1.91 \\ (1.52-2.41) \end{gathered}$	$\begin{gathered} 1.87 \\ (1.48-2.35) \end{gathered}$	$\begin{gathered} 1.68 \\ (1.31-2.15) \end{gathered}$	$\begin{gathered} 78 \\ (4.6 \%) \end{gathered}$
2-3 other long-term	No RA	$\begin{gathered} 1.86 \\ (1.78-1.94) \end{gathered}$	$\begin{gathered} 1.78 \\ (1.70-1.86) \end{gathered}$	$\begin{gathered} 1.67 \\ (1.60-1.75) \end{gathered}$	$\begin{gathered} 1.66 \\ (1.59-1.74) \end{gathered}$	$\begin{gathered} 6208 \\ (4.6 \%) \end{gathered}$
conditions	RA	$\begin{gathered} 2.72 \\ (2.28-3.24) \end{gathered}$	$\begin{gathered} 2.49 \\ (2.09-2.98) \end{gathered}$	$\begin{gathered} 2.19 \\ (1.82-2.64) \end{gathered}$	$\begin{gathered} 2.09 \\ (1.73-2.54) \end{gathered}$	$\begin{gathered} 131 \\ (6.7 \%) \end{gathered}$
≥ 4 other long-term	No RA	$\begin{gathered} 3.04 \\ (2.87-3.22) \end{gathered}$	$\begin{gathered} 2.76 \\ (2.60-2.93) \end{gathered}$	$\begin{gathered} 2.40 \\ (2.26-2.56) \end{gathered}$	$\begin{gathered} 2.37 \\ (2.23-2.53) \end{gathered}$	$\begin{gathered} 1980 \\ (8.2 \%) \end{gathered}$
conditions	RA	$\begin{gathered} 4.79 \\ (3.79-6.04) \\ \hline \end{gathered}$	$\begin{gathered} 4.07 \\ (3.21-5.16) \end{gathered}$	$\begin{gathered} 3.52 \\ (2.73-4.52) \end{gathered}$	$\begin{gathered} 3.39 \\ (2.61-4.40) \end{gathered}$	$\begin{gathered} 73 \\ (11.7 \%) \\ \hline \end{gathered}$

Table 4 Risk of all-cause mortality for individual index conditions in patients with RA and no index condition, RA with index condition, RA with no index condition and RA and index condition. Age-adjusted Cox's proportional hazards models were adjusted for sex, Townsend score, smoking status, alcohol intake frequency, BMI, physical activity level and rheumatoid factor status. Cox's proportional hazards $p<0 \cdot 01$, except for those labelled with ${ }^{+}$indicating $\mathrm{p}>0.01$. Index conditions labelled * have interaction term $\mathrm{p}<0.01$

Risk of all-cause mortality

No RA,	No RA, with	RA, no index	RA and index
no index	index condition	condition	condition
condition	HR, (95\% CI)	HR, (95\% CI)	HR, (95\% CI)

Index condition

Hypertension	1	$1.24(1.21-1.28)$	$1.29(1.11-1.48)$	$1.59(1.37-1.86)$
Coronary heart disease	1	$1.57(1.50-1.65)$	$1.26(1.12-1.42)$	$2.07(1.63-2.63)$
Diabetes	1	$1.68(1.60-1.75)$	$1.33(1.18-1.48)$	$1.83(1.37-2.44)$
Asthma	1	$1.10(1.05-1.15)$	$1.27(1.13-1.42)$	$1.56(1.22-2.00)$
Dyspepsia	1	$1.01(0.97-1.06)^{+}$	$1.27(1.14-1.43)$	$1.45(1.10-1.90)$
Cancer	1	$2.50(2.41-2.59)$	$1.35(1.20-1.52)$	$3.04(2.39-3.86)$
Depression	1	$1.27(1.20-1.35)$	$1.29(1.15-1.44)$	$1.71(1.21-2.42)$
Thyroid disorder	1	$1.05(0.98-1.12)^{+}$	$1.32(1.18-1.47)$	$1.14(0.80-1.62)^{+}$
COPD	1	$2.11(1.98-2.49)$	$1.26(1.13-1.42)$	$2.68(2.00-3.58)$
Epilepsy	1	$1.81(1.42-1.82)$	$1.29(1.15-1.43)$	$2.86(1.43-5.73)$
Migraine	1	$0.85(0.76-0.94)$	$1.29(1.16-1.44)$	$1.09(0.55-2.19)^{+}$
Psoriasis/Eczema	1	$1.05(0.98-1.14)^{+}$	$1.27(1.14-1.42)$	$1.88(1.20-2.95)$
Prostate disease	1	$0.83(0.76-0.90)$	$1.30(1.17-1.45)$	$0.90(0.43-1.90)^{+}$
Osteoporosis	1	$1.26(1.14-1.39)$	$1.25(1.12-1.40)$	$2.20(1.55-3.12)$
Atrial fibrillation	1	$1.40(1.45-1.57)$	$1.30(1.17-1.45)$	$1.32(0.50-3.52)^{+}$
Anxiety	1	$1.22(1.10-1.35)$	$1.30(1.16-1.44)$	$1.48(0.67-3.30)^{+}$
Inflammatory bowel disease	1	$1.37(1.20-1.57)$	$1.30(1.17-1.44)$	$1.30(0.54-3.11)^{+}$
Heart failure	1	$2.69(2.22-3.25)$	$1.29(1.16-1.43)$	$5.14(2.14-12.38)$

Table 5 Risk of MACE for individual index conditions in patients with RA and no index condition, RA with index condition, RA with no index condition and RA and index condition. Age-adjusted Cox's proportional hazards models were adjusted for sex, Townsend score, smoking status, alcohol intake frequency, BMI, physical activity level and rheumatoid factor status. Cox's proportional hazards $\mathrm{p}<0 \cdot 01$, except for those labelled with ${ }^{+}$ indicating $\mathrm{p}>0.01$. Index conditions labelled * have interaction term $\mathrm{p}<0.01$

Risk of MACE

No RA, no			
index			
condition	No RA, with index	condition	RA, no index
condition	RA and index		
condition			
		HR $(95 \%$ CI)	HR, (95\% CI)

Index condition				
Hypertension	1	$1.50(1.44-1.55)$	$1.48(1.25-1.75)$	$1.97(1.66-2.33)$
Coronary heart disease	1	$1.89(1.80-1.98)$	$1.43(1.45-1.63)$	$2.28(1.76-2.98)$
Diabetes	1	$1.67(1.58-1.75)$	$1.49(1.31-1.69)$	$1.69(1.19-2.39)$
Asthma	1	$1.12(1.06-1.18)$	$1.43(1.25-1.63)$	$1.47(1.09-1.98)$
Dyspepsia	1	$1.14(1.08-1.20)$	$1.39(1.22-1.58)$	$1.85(1.30-2.34)$
Cancer	1	$1.11(1.04-1.17)$	$1.43(1.26-1.62)$	$1.44(0.98-2.11)^{+}$
Depression	1	$1.25(1.17-1.34)$	$1.39(1.22-1.58)$	$2.06(1.41-3.00)$
Thyroid disorder	1	$1.14(1.03-1.23)$	$1.37(1.20-1.55)$	$2.10(1.50-2.93)$
COPD	1	$1.49(1.37-1.62)$	$1.40(1.24-1.59)$	$1.97(1.33-2.92)$
Epilepsy	1	$1.50(1.30-1.73)$	$1.41(1.21-1.60)$	$2.21(0.83-5.88)^{+}$
Migraine	1	$0.99(0.89-1.12)^{+}$	$1.40(1.23-1.58)$	$2.08(1.12-3.87)$
Psoriasis/Eczema	1	$1.05(0.96-1.14)^{+}$	$1.42(1.26-1.61)$	$1.23(0.64-2.37)^{+}$
Prostate disease	1	$0.92(0.83-1.00)^{+}$	$1.41(1.25-1.60)$	$1.27(0.64-2.54)^{+}$
Osteoporosis*	1	$1.34(1.18-1.53)$	$1.25(1.10-1.41)$	$3.17(2.17-4.64)$
Atrial fibrillation	1	$1.41(1.25-1.60)$	$1.72(1.53-1.93)$	$2.67(1.99-5.95)$
Anxiety	1	$1.28(1.14-1.43)$	$1.40(1.24-1.59)$	$2.73(1.30-5.72)$
Inflammatory bowel disease	1	$1.09(0.92-1.29)^{+}$	$1.42(1.26-1.60)$	$1.11(0.36-3.44)^{+}$
Heart failure	1	$2.64(2.15-3.24)$	$1.41(1.25-1.59)$	$3.45(1.11-10.70)^{+}$

```
6 6 3
```


2 Supplementary table 1 - Proportion of long term conditions in participants with and without RA. P value 3 determined using $\chi 2$ testing.
$\left.\begin{array}{llll}\hline & \begin{array}{ll}\text { Prevalence in } \\ \text { RA }\end{array} & \begin{array}{l}\text { Prevalence in non- } \\ \text { RA participants }\end{array} & \text { p value } \\ & \begin{array}{ll}\text { participants } \\ (\mathbf{\%})\end{array} & \mathbf{(\%)}\end{array}\right]$

Psychoactive substance misuse	0.03	0.02	0.30

33 Supplementary table 2 -Medications, primary care read codes and hospitalisation codes used for RA self-report 34 verification

Medications	Primary care read codes	Hospitalisation ICD-10 codes
Depomedrone	14G1	M05
Triamcinilone	F3712	M06
Methylprednisolone	F3964	
Prednisolone	G5yA.	
Prednisone	G5y8.	
Auranofin	H570.	
Azathioprine	N04..	
Hydroxychloroquine	N040.	
leflunomide	N0400	
Methotrexate	N0401	
Myocrisin	N0402	
Penicillamine	N0403	
Sulfasalazine	N0404	
Abatacept	N0405	
Adalimumab	N0406	
Certolizumab	N0407	
Etanercept	N0408	
Golimumab	N0409	
Infliximab	N040A	
Rituximab	N040B	
Tocilizumab	N040C	
	N040D	
	N040E	
	N040F	
	N040G	
	N040H	
	N040J	
	N040K	
	N040L	
	N040M	
	N040N	
	N040P	
	N040Q	
	N040R	
	N040S	
	N040T	
	N041.	
	N042.	
	N0421	
	N0422	
	N042z	
	N043.	
	N0430	

N0431
N0432
N0433
N043z
N047.
N04X.
N04y2
N0455
Nyu 10
Nyul1
Nyu 12
Nyu1G

Supplementary table 3 - Proportion of rheumatoid arthritis related hospitalisation, medication or primary care read code in participants who self-report rheumatoid arthritis.

Rheumatoid arthritis self-report	Any rheumatoid arthritis hospitalisation, medication or primary care read code	Total	
	No	Yes	
No	141152	48634	189786
	74.4%	25.6%	100%
Yes	513	3683	4196
	12.2%	87.8%	100%
Total	141665	52317	193982
	73%	27%	100%

Supplementary table 4 - Demographic factors, lifestyle factors, number of long-term conditions and rheumatoid factor status in patients with and without RA. Unless indicated, $p<0 \cdot 01$. Chi squared test used for categorical variables, Kruskal-Wallis test used for continuous variables. $\mathrm{SD}=$ standard deviation. RA defined here as RA self-report plus hospitalisation, medication or primary care read code related to rheumatoid arthritis.

	$\begin{gathered} \hline \text { Participants with } \\ \text { RA }(\%) \\ (\mathrm{N}=3683) \\ \hline \end{gathered}$	Participants without RA (\%) ($\mathrm{N}=498857$)
Mean Age (years (SD)); missing values $=0$ (0%)	59.2 (7.1)	56.5 (8.1)
Age (years); missing values $=0$ (0%)		
37-49	413	117470
	11.2 \%	23.5 \%
50-59	1161	165992
	31.5 \%	33.3 \%
60-73	2109	215388
	57.3 \%	43.2 \%
Sex; missing values $=0$ (0%)		
Female	2672	270729
	72.5 \%	54.3 \%
Male	1011	228121
	27.5 \%	45.7 \%
Townsend score; missing values $=\mathbf{6 2 3} \mathbf{(0 \cdot 1 2 \%)}$		
0-20	672	99991
	18.3 \%	20.1 \%
20-40	666	99430
	18.1\%	20 \%
40-60	735	99663
	20 \%	20 \%
60-80	760	99615
	20.7 \%	20 \%
80-100	847	99531
	23 \%	20 \%
Smoking status; missing values $=\mathbf{2 9 5 0} \mathbf{(0 . 5 9 \%}$)		
Never	1679	271857
	46 \%	54.8 \%
Current or Previous	1973	224074
	54 \%	45.2 \%
Frequency of alcohol intake; missing values = 1502 (0.30\%)		
Never or special occasions only	1218	97442
	33.1 \%	19.6 \%
One to three times a month	453	55405
	12.3 \%	11.1 \%
One to four times a week	1504	243237
	40.9 \%	48.9 \%
Daily or almost daily	504	101268
	13.7 \%	20.4 \%
BMI ($\mathbf{k g} / \mathbf{m}^{\mathbf{2}}$) ; missing values $=5820$ ($\mathbf{1} \cdot \mathbf{1 5 \%}$)		
underweight <18.5	$\begin{gathered} 34 \\ 0.9 \% \end{gathered}$	$\begin{gathered} 2592 \\ 0.5 \% \end{gathered}$

normal weight 18.5-24.9	1084	156353
	30%	31.7 \%
	1425	212799
overweight 25-29.9	39.5 \%	43.2 \%
obese $>=30$ s	1067	121359
obese > $=30 \mathrm{~s}$	29.6 \%	24.6 \%
Physical activity; missing values $=7156$ ($\mathbf{1 . 4 2 \% \text {) }}$		
none	595	32254
	16.6 \%	6.6 \%
low	286	18652
	8 \%	3.8 \%
medium	2596	390922
	72.4 \%	79.5 \%
	107	49965
high	3%	10.2 \%
Number of long-term conditions; missing values $=1845$ (0.36\%)		
0	922	174293
	25.2 \%	35.1 \%
1	1103	163244
	30.1 \%	32.8 \%
2-3	1255	135091
	34.3 \%	27.2 \%
≥ 4	379	24401
	10.4 \%	4.9 \%
Rheumatoid Factor (IU/mI); missing values = 33,066 (6.6\%)		
<20	1801	449067
	52.4 \%	96.4\%
	1639	16960
≥ 20	47.6\%	3.6 \%

Supplementary Table 5 - Relationship between long term conditions and all-cause mortality in participants with and without RA using age-adjusted multivariate Cox's proportional hazards regression analysis. Unless otherwise shown, Cox's proportional hazards $\mathrm{p}<0 \cdot 01$. RA defined here as RA self-report plus hospitalisation, medication or primary care read code related to rheumatoid arthritis.

Risk of all-cause mortality

Comorbidity status (reference: No RA and no other long-term conditions)	Adjusted for sex, Townsend score, alcohol status, smoking status, BMI, physical activity and rheumatoid factor status HR (95\% CI)	Number of deaths $(\%)$	
		$1.50(1.09-2.07)$	
No other long-term conditions	RA	$1.39(1.33-1.46)$	$44(4.8 \%)$
$\mathbf{1 \quad \text { other long-term }}$condition	No RA	RA	$1.42(1.07-1.88)$
$\mathbf{2 - 3}$ other long-term	No RA	$1.83(1.75-1.91)$	$5810(3.6 \%)$
conditions	RA	$2.75(2.29-3.30)$	$66(5.9 \%)$
$\geq \mathbf{4}$ other long-term	No RA	$2.70(2.55-2.86)$	$142(11.3 \%)$
conditions	RA	$2.98(2.19-4.04)$	$2461(10.8 \%)$

```
        Comorbidity status
        (reference: No RA and no
        other long-term conditions)
```

Supplementary Table 6 - Relationship between long term conditions and major adverse cardiovascular events in participants with and without RA using age-adjusted multivariate Cox's proportional hazards regression analysis. Unless otherwise shown, Cox's proportional hazards $\mathrm{p}<0.01$. RA defined here as RA self-report plus hospitalisation, medication or primary care read code related to rheumatoid arthritis.

Risk of MACE

Comorbidity status (reference: No RA and no other long-term conditions)	Risk of MACE	
	Adjusted for sex, Townsend score, alcohol status, smoking status, BMI, physical activity and rheumatoid factor status HR (95\% CI)	Number of MACE (\%)
\qquad	1.63 (1.13-2.36)	32 (3.5\%)
1 other long-term No RA	1.24 (1.18-1.30)	4530 (2.8\%)
condition RA	1.95 (1.46-2.59)	60 (5.4\%)
2-3 other long-term No RA	1.66 (1.58-1.74)	6244 (4.6\%)
conditions RA	2.50 (2.00-3.12)	95 (7.6\%)
≥ 4 other long-term No RA	2.38 (2.23-2.54)	2007 (8.2\%)
conditions RA	3.30 (2.36-4.61)	46 (12.1\%)

 ,

 ,

 8

Supplementary Table 7 - Table 4 Risk of all-cause mortality for individual index conditions in patients with RA and no index condition, RA with index condition, RA with no index condition or RA and index condition. Ageadjusted Cox's proportional hazards models were adjusted for sex, Townsend score, smoking status, alcohol intake frequency, BMI, physical activity level and level of rheumatoid factor. Unless otherwise shown, Cox's proportional hazards $\mathrm{p}<0 \cdot 01$. Index conditions labelled $*$ have interaction term $\mathrm{p}>0.01$. RA defined here as RA self-report plus hospitalisation, medication or primary care read code related to rheumatoid arthritis.

Risk of all-cause mortality

Risk of all-cause mortality			
No RA, no index condition HR, (95\% CI), p	No RA, with index condition HR, (95\% CI), p	RA, no index condition HR, (95\% CI), \mathbf{p}	RA and index condition HR, (95\% CI), \mathbf{p}

	No RA, no index condition HR, $(95 \% \mathbf{C I})$, p	Risk of MACE No RA, with index condition HR, (95\% CI), p	RA, no index condition HR, (95\% CI), \mathbf{p}	RA and index condition HR, $\mathbf{~ (9 5 \% ~}$ CI), \mathbf{p}
Index condition				
Hypertension	1	1.49 1.44-1.55	$1.551 .26-1.90$	2.26 1.85-2.76
Coronary heartdisease				
Diabetes	1	1.66 1.58-1.75	1.62 1.39-1.90	1.66 1.58-1.75
Asthma	1	1.12 1.06-1.17	1.57 1.34-1.84	1.67 1.19-2.36
Dyspepsia	1	1.14 1.08-1.20	$1.551 .33-1.82$	1.80 1.23-2.64
Cancer	1	1.11 1.05-1.17	1.59 1.37-1.85	$\begin{gathered} 1.420 .87-2.33 \\ \mathrm{p}=0.16 \end{gathered}$
Depression	1	1.25 1.17-1.34	1.53 1.31-1.78	2.38 1.52-3.74
Thyroid disorder	1	1.14 1.06-1.23	1.50 1.28-1.75	2.32 1.59-3.36
COPD	1	1.50 1.38-1.63	1.58 1.36-1.84	1.81 1.09-3.00
Epilepsy	1	1.50 1.31-1.74	1.56 1.35-1.81	$\begin{gathered} 1.740 .44-6.97 \\ \mathrm{p}=0.43 \end{gathered}$
Migraine	1	$\begin{gathered} 1.000 .90-1.12 \\ \mathrm{p}=0.96 \end{gathered}$	1.54 1.33-1.79	2.41 1.08-5.37
Psoriasis	1	1.05 0.96-1.14	$1.561 .34-1.80$	1.72 0.86-3.44
/Eczema		$\mathrm{p}=0.29$		$\mathrm{p}=0.12$
Prostate disease	1	$\begin{gathered} 0.910 .83-1.00 \\ \mathrm{p}=0.05 \end{gathered}$	1.53 1.32-1.78	$\begin{gathered} 2.531 .20-5.31 \\ \mathrm{p}=0.01 \end{gathered}$
Osteoporosis*	1	1.27 1.12-1.43	1.48 1.28-1.73	3.15 2.03-4.90
Atrial fibrillation	1	1.72 1.53-1.93	$1.561 .35-1.81$	$\begin{gathered} 2.78 \text { 1.04-7.43 } \\ \mathrm{p}=0.04 \end{gathered}$
Anxiety	1	1.29 1.15-1.44	$1.561 .35-1.81$	$\begin{gathered} 2.290 .86-6.10 \\ p=0.09 \end{gathered}$
Inflammatory bowel disease Heart failure	1	$\begin{gathered} 1.090 .92-1.29 \\ \mathrm{p}=0.30 \end{gathered}$	1.57 1.36-1.82	$\begin{gathered} 0.90 \text { 0.23-3.63 } \\ \mathrm{p}=0.89 \end{gathered}$
	1	2.67 2.18-3.28	1.57 1.35-1.81	1.71 1.35-
				$\begin{gathered} 12.17 \\ \mathrm{n}=0.59 \end{gathered}$

E
Index condition
1Thyroid disorder1

COPD
Epilepsy
Migraine
Psoriasis 1
/Eczema
Prostate disease 1
Osteoporosis* 1
Atrial fibrillation 1
Anxiety 1
Inflammatory
bowel disease
Heart failure primary care read code related to rheumatoid arthritis.

Supplementary Table 8 - Risk of MACE for individual index conditions in patients with RA and no index condition, RA with index condition, RA with no index condition or RA and index condition. Age-adjusted Cox's proportional hazards models were adjusted for sex, Townsend score, smoking status, alcohol intake frequency, BMI, physical activity level and level of rheumatoid factor. Unless otherwise shown, $\mathrm{p}<0.01$. Index conditions labelled * have interaction term $\mathrm{p}>0.01$. RA defined here as RA self-report plus hospitalisation, medication or

Reporting checklist for cross sectional study.

Based on the STROBE cross sectional guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write " n / a " and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the STROBE cross sectionalreporting guidelines, and cite them as:
von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies.

Reporting Item

Title and abstract

Title \#1a Indicate the study's design with a commonly used term in the title or the abstract

Abstract \#1b Provide in the abstract an informative and balanced 2 summary of what was done and what was found

Introduction

Bias	\#9	Describe any efforts to address potential sources of bias	n/a (data
			collected by
			UK Biobank)
Study size	\#10	Explain how the study size was arrived at	6
Quantitative	\#11	Explain how quantitative variables were handled in the	6-7
variables		analyses. If applicable, describe which groupings were	
Statistical	\#12a	Describe all statistical methods, including those used to	8
methods		control for confounding	
Statistical	\#12b	Describe any methods used to examine subgroups and	8
methods		interactions	
Statistical	\#12c	Explain how missing data were addressed	8
methods			
Statistical	\#12d	If applicable, describe analytical methods taking account	8
methods		of sampling strategy	
Statistical	\#12e	Describe any sensitivity analyses	8
methods			
Results			
Participants	\#13a	Report numbers of individuals at each stage of study-	9
		eg numbers potentially eligible, examined for eligibility,	
		confirmed eligible, included in the study, completing	

follow-up, and analysed. Give information separately for for exposed and unexposed groups if applicable.

Participants \#13b Give reasons for non-participation at each stage

Participants \#13c Consider use of a flow diagram n/a (not
were adjusted for and why they were included
\#16b Report category boundaries when continuous variables were categorized

1	Main results	\#16c	If relevant, consider translating estimates of relative risk	10-13
3			into absolute risk for a meaningful time period	
5				
6	Other analyses	\#17	R	13
8				
9			subgroups and interactions, and sensitivity analyses	
10				
11				
12	Discussion			
13				
14				
15	Key results	\#18	Summarise key results with reference to study	13
16				
17 18			objectives	
19				
20	Limitations	\#19	Discuss limitations of the study, taking into account	15
21 22			Discuss limitations of the study, taking into account	15
23			sources of potential bias or imprecision. Discuss both	
24				
25			direction and magnitude of any potential bias.	
26				
27				
28	Interpretation	\#20	Give a cautious overall interpretation considering	14
29				
30 31			objectives, limitations, multiplicity of analyses, results	
31 32			objectives, limitations, multiplicity of analyses, results	
32 33			from similar studies, and other relevant evidence.	
34				
35				
36	Generalisability	\#21	Discuss the generalisability (external validity) of the	16-17
37				
38			study results	
39				
40				
41	Other Information			
42				
43				
44 45	Funding	\#22	Give the source of funding and the role of the funders for	17
46				
47			the present study and, if applicable, for the original study	
48				
49			on which the present article is based	
50				
51				
52	Notes:			
53				
54				
55	- 6a: n/a (data collected		by UK Biobank)	
56				
57				
58	- 9: n/a (data collected by UK Biobank)			
59				
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

13c: n / a (not applicable here) The STROBE checklist is distributed under the terms of the Creative Commons Attribution License CC-BY. This checklist was completed on 25. March 2020 using https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with Penelope.ai

