

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

DO MEASURES OF PHYSICAL FUNCTION ENHANCE THE PREDICTION OF PERSISTENT PAIN AND DISABILITY FOLLOWING A WHIPLASH INJURY? PROTOCOL FOR A PROSPECTIVE OBSERVATIONAL STUDY

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035736
Article Type:	Protocol
Date Submitted by the Author:	13-Nov-2019
Complete List of Authors:	Alalawi, Ahmed; University of Birmingham, Centre of Precision Rehabilitation for Spinal Pain (CPR Spine); LUQUE-SUAREZ, ALEJANDRO; UNIVERSITY OF MALAGA, PHYSIOTHERAPY Fernandez-Sanchez, Manuel; Universidad De Almeria Facultad de Ciencias de la Educacion Enfermeria y Fisioterapia Gallina, Alessio; University of Birmingham, School of Sport, Exercise and Rehabilitation Sciences Evans, David; University of Birmingham, School of Sport, Exercise and Rehabilitation Sciences Falla, Deborah; University of Birmingham, School of Sport, Exercise and Rehabilitation Sciences
Keywords:	Rehabilitation medicine < INTERNAL MEDICINE, Musculoskeletal disorders < ORTHOPAEDIC & TRAUMA SURGERY, Spine < ORTHOPAEDIC & TRAUMA SURGERY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

relievont

DO MEASURES OF PHYSICAL FUNCTION ENHANCE THE PREDICTION OF PERSISTENT PAIN AND DISABILITY FOLLOWING A WHIPLASH INJURY? PROTOCOL FOR A **PROSPECTIVE OBSERVATIONAL STUDY** Alalawi A^{a,b}, Luque-Suarez A^{c,d}, Fernandez-Sanchez M^e, Gallina A^a, Evans DW^a, Falla D^a ^a Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, United Kingdom ^b Physical Therapy Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia. ^c Universidad de Malaga, Department of Physiotherapy, Malaga, Spain ^d Instituto de la Investigacion Biomedica de Malaga (IBIMA), Malaga, Spain ^e Department of Nursing, Physiotherapy and Medicine, University of Almeria, Spain 20 21 **Correspondence:** Professor Deborah Falla Centre of Precision Rehabilitation for Spinal Pain School of Sport, Exercise and Rehabilitation Sciences College of Life and Environmental Sciences University of Birmingham Birmingham, B15 2TT, UK Tel: +44 121 415 4220 Email: d.falla@bham.ac.uk

BMJ Open

2	
3 4	
5 6	
7 8	
9 10	
11	
12 13	
14 15	
16 17	
18 19	
20 21	
22	
23 24	
25 26	
27 28	
29 30	
31 32	
33	
34 35	
36 37	
38 39	
40 41	
42 43	
44	
45 46	
47 48	
49 50	
51 52	
53 54	
55	
56 57	
58 59	
60	

30 ABSTRACT

31 Introduction

32 Not all factors that predict persistent pain and disability following whiplash injury are known.

33 In particular, few physical factors, such as changes in motor function and muscle behaviour

34 have been investigated.

35 Aims and objectives

36 The aim of this study is to identify predictive factors that are associated with the development 37 of persistent pain and disability following a whiplash injury by combining contemporary 38 measures of physical function together with established psychological and pain-related

39 predictive factors.

40 Methods and analysis

A prospective observational study will recruit 150 consecutive eligible patients experiencing 41 whiplash-related symptoms, admitted to a private physiotherapy clinic in Spain within 15 42 43 days of their whiplash injury. The absolute risk of poor outcome will be measured using the 44 Neck Disability Index (NDI). Poor outcome is defined as an NDI absolute score of 30% or 45 greater at 6 months post-injury. Candidate predictors, including demographic characteristics, 46 injury characteristics, pain characteristics, self-reported psychosocial factors and physical 47 factors will be collected at baseline (within 15 days of inception). Regression analyses will be 48 performed to identify factors that are associated with persistent neck pain and disability over 49 the study period.

50 Ethics and dissemination

51 The project has been approved by the University of Birmingham Research Ethics Committee
52 and the Ethics Committee of the province of Malaga, Spain (#30052019). The results of this
53 study will be published in peer-reviewed journals.

1 2	
3 4	55
5 6 7	56
7 8 9	57
10	58
11 12 13	
13 14 15	59
15 16 17	60
17 18 19	61
20 21	62
22 23	63
24 25	64
26 27	(7
28 29	65
30 31	66
32 33	67
34 35	68
36 37	69
38 39 40	70
40 41 42	71
43 44	72
45 46	73
47 48	74
49 50	75
51 52 53	76
53 54 55	
55 56 57	77
58	78
59 60	79

5 STRENGTHS AND LIMITATIONS OF THIS STUDY 1. This protocol describes, *a priori*, the methods and analysis of identifying predictors of persistent pain and disability following a whiplash injury. 2. Specific physical measures together with established self-reported measures will be S captured within 15 days of inception. 3. Candidate predictors are selected using a combination of best available knowledge) and theory, and their applicability in clinical practice. 4. Trajectories of self-reported pain and disability will be recorded over the 12 month study period. ; mea. 5. Physical measures will not be measured throughout the course of the study.

BMJ Open

80 INTRODUCTION

The term 'whiplash' refers to an acceleration-deceleration motion of the neck, most commonly following a motor vehicle collision, that can result in tissue injury (1). Following whiplash, individuals may develop a variety of clinical signs and symptoms, collectively termed whiplash-associated disorders (WAD) (1). Soft tissue damage has been detected in some individuals with WAD; however, this has not been linked to the progression of symptoms (2-4). WAD is associated with a significant socioeconomic burden (5); the cost to the UK economy is \sim £3 billion per year (6). This burden is primarily acquired by those developing chronic, long-term symptoms and half of those with WAD continue to report neck pain at least one year after the injury (7). This highlights the importance of early identification of features associated with ongoing pain and disability; this would facilitate personalised treatment approaches to mitigate the risk associated with the development of chronic WAD (8).

High-quality evidence has shown higher pain and disability immediately post-injury to be the most consistent factor predicting longer-term pain and disability (9, 10). Studies have examined other factors that might predict the development of ongoing pain following whiplash covering all three elements of the biopsychosocial model: demographic factors (7, 11-14), pre-existing comorbidities (11, 13, 14), collision factors (7, 11-13, 15-18), physical factors (14, 19-24), radiological changes (2, 25-30), societal factors (31), and psychological factors (7, 32, 33). Yet, there is controversial evidence concerning the predictive ability of other factors including: general psychological distress, depression, previous neck pain, gender, and the use of a seatbelt at the time of the collision (9, 14, 32, 34, 35). This illustrates an incomplete picture regarding the predictive factors for recovery versus ongoing pain in WAD.

Page 6 of 38

1 2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13 14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54 55	
55 56	
57	
58	
59	
60	

1

104 There has been little investigation of the predictive utility of physical factors 105 following whiplash injury; of the studies conducted, measures of physical function have been 106 limited to measures such as range of motion (19, 20, 36, 37) and cranio-cervical flexion test 107 performance (38, 39). Yet, physical factors offer potential to improve prediction accuracy. 108 For example, there is a wealth of evidence describing changes in motor function and muscle 109 behaviour (40-42). Decreased maximum angular velocity of neck movements has been 110 observed in individuals with chronic WAD when compared to healthy individuals (40). Such 111 changes in movement behaviour have been confirmed in individuals with WAD and insidious 112 neck pain, where lower peak velocity was observed in both groups (41). In addition, a 113 significantly larger jerk index (measure of the smoothness of neck movement) has been reported in individuals with chronic neck pain of both insidious and traumatic onset, when 114 115 compared to asymptomatic individuals (41). Another feature reported in those with chronic 116 neck pain is increased co-activation of the neck flexors and extensors (42), which is associated with reduced neck strength (42). These additional features have not been 117 118 investigated in individuals with acute WAD, but results from experimental pain studies 119 suggest these adaptations occur soon after pain onset and may therefore have relevance for 120 ongoing symptoms in individuals with chronic WAD (43-50). 121 A number of methodological limitations of previously published studies in the field of

¹²¹ A number of methodological limitations of previously published studies in the field of
¹²² WAD prognosis have been identified. For instance, a review conducted by Walton et al. (10)
¹²³ found that many predictors have conflicting results (11, 12, 32). Inconsistent outcome
¹²⁴ measures have previously been used by to define recovery in WAD (51), with a different
¹²⁵ definition of recovery used in each study (7, 52). Other reasons for inconsistency can be
¹²⁶ attributed to poor reporting (11, 53) and the inclusion of subjects from different settings and
¹²⁷ at different inception points. Another recent review found controversial evidence with

BMJ Open

3 4	
4	128
5	120
6	129
7	12)
8	130
9 10	100
10 11	131
12	-
13	132
14	
15	133
16 17	
17	134
19	
20	135
21	
22	136
23	
24 25	137
25 26	
27	138
28	
29	139
30	
31 32	140
32 33	
34	141
35	
36	
37	
	142
38	142
38 39	142
38 39 40	142 143
38 39 40 41	
38 39 40 41 42 43	
38 39 40 41 42 43 44	143
38 39 40 41 42 43 44 45	143
 38 39 40 41 42 43 44 45 46 	143 144
 38 39 40 41 42 43 44 45 46 47 	143 144
 38 39 40 41 42 43 44 45 46 	143 144 145
 38 39 40 41 42 43 44 45 46 47 48 49 50 	143 144 145
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	143 144 145 146
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	143 144 145 146
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	143 144 145 146 147
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	143 144 145 146 147
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	 143 144 145 146 147 148
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	 143 144 145 146 147 148
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	 143 144 145 146 147 148 149 150
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	 143 144 145 146 147 148 149

28 regards to which demographic factors, prior pain, and psychological factors are associated 29 with the transition to chronic WAD. (9).

30 Collectively, these limitations impact on our understanding of factors associated with 31 the transition to chronic WAD following a whiplash injury and highlight the need for an 32 adequately powered, methodologically robust observational study to provide useful 33 predictive estimates. Such knowledge could lead to the development of a new clinical care 34 pathway that matches early interventions to risk factors for poor recovery.

Aims of study 36

37 The aim of the study is to identify factors soon after a whiplash injury that predict the occurrence of persistent pain and disability six months later. We will include a broad range of 38 39 candidate predictors, including measures of physical function with self-reported measures of 40 pain, disability and established psychological constructs.

42 **METHODS**

43 **Study Design**

ezo, The study will be a prospective observational design. This protocol has been developed 44 45 in accordance with guidelines from the SPIRIT 2013 Statement (54), the Transparent Reporting 46 of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD) 47 statement (55), the Quality In Prognosis Studies (QUIPS) tool (56), the CHecklist for critical 48 Appraisal and data extraction for systematic Reviews of prediction Modelling Studies 49 (CHARMS) (57), and the PROGnosis RESearch Strategy (PROGRESS) framework (58).

152 Participants

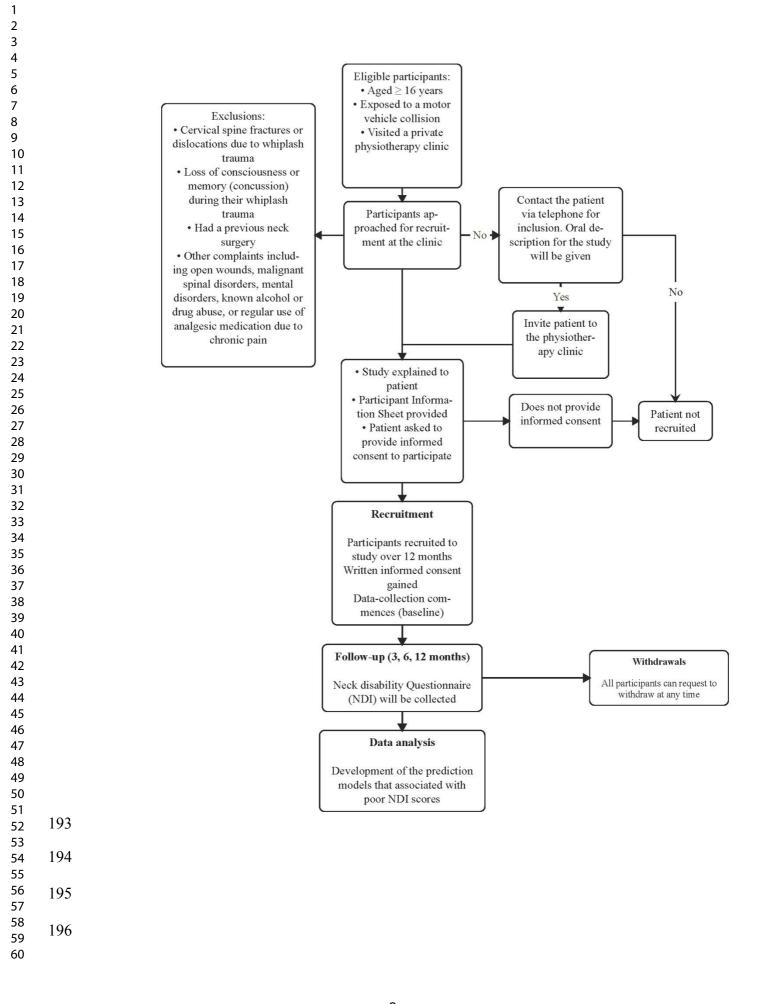
We aim to recruit 150 individuals presenting to a private physiotherapy clinic in Malaga, Spain with symptoms attributed to a recent (within the previous 15 days) whiplash injury. Consecutive eligible individuals will be invited to participate in the study for a followup period of 12 months until this target is achieved.

158 Eligibility criteria

Inclusion criteria: Adults aged 18 years or older, who are experiencing acute neck pain with or without other whiplash-related symptoms such as headache, upper limb symptoms, or dizziness (59) following a whiplash injury, attributed to a recent (previous 15 days) motor vehicle collision or sports injury. An ability to understand written and verbal Spanish language is also necessary.

Exclusion criteria: Individuals who experienced cervical spine fractures or dislocations during or since their whiplash injury (WAD grade IV) (1), loss of consciousness during or since their whiplash injury (60), or have ever received neck surgery (61) will be excluded from participation. Individuals with malignant spinal disorders, mental disorders (62, 63), or regular use of analgesic medication prior to the injury due to chronic pain will also be excluded.

- - 170 Recruitment


Participants will be recruited from a single private physiotherapy clinic in Malaga, Spain. Based on feasibility data (clinical records), we estimate that at least 300 eligible individuals will be eligible for recruitment over a 12 month period, and that at least 50% can be expected to consent to participation.

We will recruit eligible patients within 15 days of their whiplash injury. One designated
 physiotherapist working at the physiotherapy clinic will manually check electronic clinical

BMJ Open

records of all consecutive patients attending the clinic. Once an eligible patient is identified at the clinic, the designated clinic physiotherapist will contact the patient to invite them to participate in the study; this invitation will be done either in-person at the clinic after the first treatment session or via telephone after patients have returned home from their clinic appointment. A verbal and written description of the study will be provided during the invitation. Those patients interested in participation will be invited to attend an initial study session at the physiotherapy clinic. At this session, the researcher will again explain the study design and context, patients will be given a detailed information sheet, and written informed consent will be sought. Once recruited, participants (Figure 1) will be asked to complete a baseline self-reported questionnaire, after which physical data will be collected (Table 1). Participants will be informed that they can withdraw from the study at any time, without having to provide a reason. They will also be advised to carry on with their daily routines as usual, and that any interventions received during their physiotherapy sessions will be recorded for a descriptive analysis.

Figure 1: Study design

BMJ Open

2		
3 4 5	197	Outcome
5 6 7	198	Outcome will be measured using the Neck Disability Index (NDI) (64); a neck-
8 9	199	specific self-reported questionnaire used to assess neck pain-related disability. The NDI
10 11	200	consists of 10 items of daily activities including personal care, lifting, reading, work, driving,
12 13 14	201	sleeping, and recreation (64). Each item has five ordinal response options from 0 (no
15 16	202	disability) to 5 (complete disability), producing a maximum total score of 50 which can be
17 18	203	expressed as a percentage (0-100%). The reliability of NDI and validity have been
19 20 21	204	established in individuals with neck pain disorders (65).
21 22 23	205	The risk of poor outcome will be assessed at six months post-whiplash for the
24 25	206	prediction model (66). Using six months as a cut-off for identifying outcome is supported by
26 27	207	the finding that most individuals recover within three months of the whiplash injury, with
28 29 30	208	fewer recovering after this (11, 67), and a plateau after six months (68).
31 32	209	
33 34	210	Candidate predictors
35 36 37	211	Due to the current lack of consensus on predictive factors of poor outcome, several
37 38 39	212	self-reported and physical measures will be collected (9). Factors have been selected based
40 41	213	on current knowledge of prognosis in whiplash (2, 7, 9, 11-13, 24, 31-34, 69) and a
42 43	214	theoretical association with prognosis in individuals with neck pain, as informed by the
44 45 46	215	biopsychosocial model of pain (70). These factors are also chosen due to being feasible to
47 48	216	measure in clinical practice. Candidate predictors are summarised in Table 1 with further
49 50	217	information available in the supplementary file S1. All data collection will be standardised
51 52 53	218	through protocols and clinical report forms
53 54 55	219	
56 57	220	
58 59		
60		

Domain/Candidate predictor	Data collection instrument	Baseline commencing ≤ 15 days post- injury	3, 12 months, clinica course; 6 months, outcome assessment point
General patient characteristics i	ncluding previous musculoskeletal pain		· · ·
Gender at birth	Male/Female	√	
Education	Highest educational level attained	√	
Psychosocial features			
Catastrophizing	Pain Catastrophizing Scale (PCS)	\checkmark	
Kinesiophobia	Tampa Scale of Kinesiophobia [TSK- 11]	√	
Recovery Expectation	Numeric Rating scales (NRS)	√	
Injury characteristics			
Disability	Neck Disability Index (NDI)	√	√
Pain characteristics		1	1
Current neck pain intensity	Numeric Rating scales (NRS)	√	
Neck pain intensity at the end of neck range of motion tasks.	Numeric Rating scales (NRS)	~	
Neck pain intensity at the end of maximum contraction tasks of cranio-cervical flexion, neck flexion, and neck extension.	Numeric Rating scales (NRS)	√	
Neck pain intensity at the end of submaximum contraction tasks of cranio-cervical flexion, neck flexion, and neck extension.	Numeric Rating scales (NRS)	~	
Physical measures	4	1	1
Neck range of motion	G-Walk (Flexion, extension, rotation, & side flexion)	~	
Neck angular velocity	G-Walk (Flexion, extension, rotation, & side flexion)	1	
Smoothness of Neck movement	G-Walk (Flexion, extension, rotation, & side flexion)	✓	
Neck proprioception	G-Walk (Rotation with eyes closed)	1	
Maximal and sub-maximal isometric contractions	Dynamometer – evaluation of cranio- cervical flexion, flexion, and extension maximum voluntary contraction and control of sub-maximal force	\checkmark	
	Surface electromyography (EMG)	\checkmark	

Data collection

Baseline and follow-up

Data management

Sensitive data management:

BMJ Open

Baseline data including self-reported questionnaires and physical assessments will be

Participant data privacy will be maintained throughout data handling (collection

transfer, storage, and processing) and will comply with data protection requirements as set out

by the General Data Protection Regulation (GDPR) of the European Union, and UK Data

Protection Act 2018 (Figure 2). Participant data will be tracked using only study identification

(ID) numbers. Study ID numbers will be kept separate from study research data, which will be

Some participant data will be sensitive in nature; in particular consent forms which

contain identifiable data, name, phone, contact address and study ID numbers. Once each

participant has completed a consent form in the clinic, it will then be sealed in an envelope and

temporarily locked in a secure drawer at the physiotherapy clinic, with access only available

to members of the UoM research team. Once daily data collection has ended, all sealed

envelopes containing consent forms collected on that day will be physically transferred to the

UoM by one of the research team and locked in a secure filing cabinet there. Identifiable data

collected immediately following recruitment, at the physiotherapy clinic, by a trained

by telephone (MFS) at the University of Malaga (UoM) at three, six and twelve months

follow-up, in order to complete the NDI, as used previously (71).

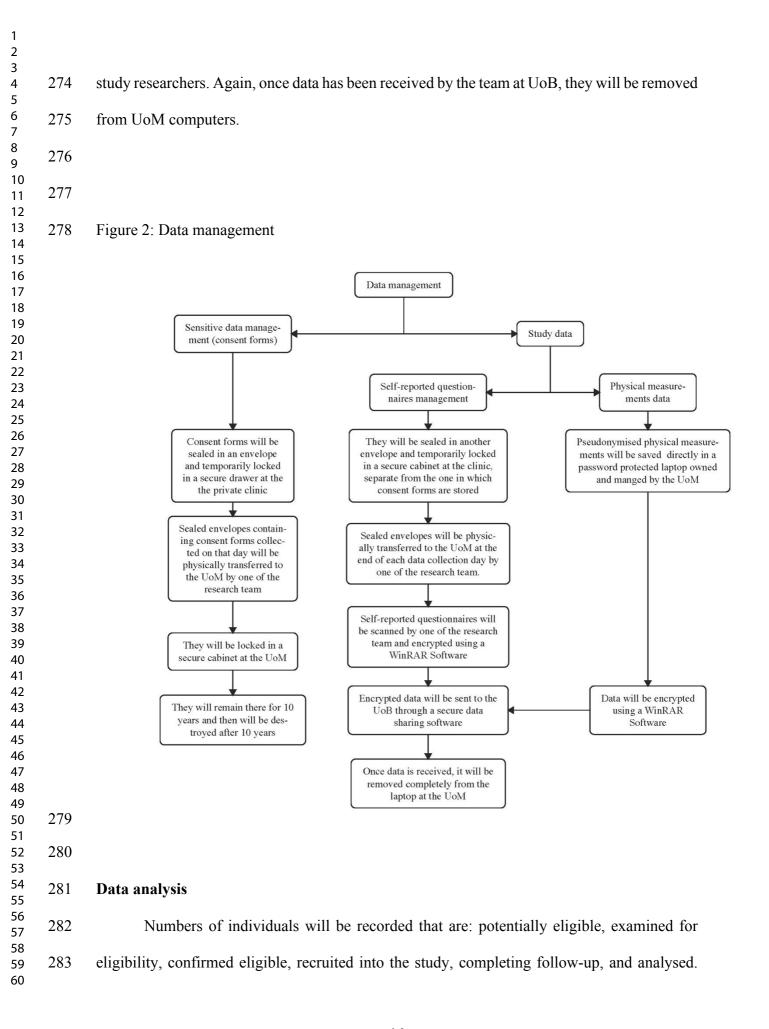
accessible only by members of the UoM research team.

assessor (MFS) within 15 days of injury. Participants will be contacted by the same assessor

1 2	
3 4 5	226
6 7	227
8 9	228
10 11 12	229
12 13 14	230
15 16	231
17 18	232
19 20 21	233
22 22 23	234
24 25	235
26 27 28	236
28 29 30	237
31 32	238
33 34	239
35 36 37	240
38 39	241
40 41	242
42 43 44	243
45 46	244
47 48	245
49 50 51	246
52 53	247
54 55	248
56 57	249
58 59 60	

12 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

will be securely stored at UoM for a period of 10 years, after which they will be destroyed. Noidentifiable data will be transferred outside of the UoM.


 253 <u>Self-reported questionnaires management:</u>

Self-reported paper questionnaires, identifiable only by study ID number for each participant, will be sealed in another envelope and temporarily locked in a secure cabinet at the clinic, separate from the one in which consent forms are stored. Sealed envelopes containing the pseudonymised self-reported questionnaires will be physically transferred to the UoM at the end of each data collection day by one of the research team. Once transferred, self-reported questionnaires will be scanned by one of the research team and saved in a password protected laptop computer, owned and managed by UoM. Scanned self-reported electronic data will be encrypted using a WinRAR Software before transit to the University of Birmingham (UoB) (via Power Folder data sharing software, hosted locally at the University). Once received, this pseudonymised data will be uploaded directly to physically secure servers at the UoB, where they will remain indefinitely on secure UoB servers with access restricted to members of the study team. Once uploaded to UoB servers, data will be removed completely from the laptop at UoM. The same procedures will be followed for follow-up NDI data at 3, 6, and 12 months.

43 267

268 Physical data management:

Pseudonymised physical data will be saved in a password protected laptop owned and manged by UoM, whilst at the clinic study session. Access to the UoM laptop is restricted and only available to the local research team. As with other data, pseudonymised electronic data will be encrypted using a WinRAR Software, transferred to the UoB team, and uploaded to the physically secure servers at UoB, where they will remain indefinitely with access restricted to

1 2	
3	
4 5	284
6 7	285
8 9	286
10 11	287
12 13 14	288
14 15 16	289
17 18	290
19 20	291
21 22 23	292
23 24 25	293
26 27	294
28 29	295
30 31 32	296
33 34	297
35 36	298
37 38	299
39 40 41	300
41 42 43	301
44 45	302
46 47	
48 49	303
50 51	304
52 53 54	305
54 55 56	306
50 57 58	307
59 60	308

284 Loss to follow-up and withdrawals will be reported, with reasons where available. Descriptive analyses of participants at baseline will include participant demographics, self-reported 285 286 questionnaires and physical assessment data.

289 Linear regression analysis:

290 Multivariate linear regression models will be developed as a primary analysis to 291 determine the association between candidate predictors and neck pain and disability 292 (measured by NDI) at 6 months post injury. Factors with univariate associations at baseline 293 and the outcome will be established p < 0.20 (72) and deemed eligible to enter multivariable 294 analysis.

295 Logistic regression analysis:

296 Outcome (NDI) scores will be dichotomised into good or poor categories with a NDI score of >30% at six months post-injury defined as poor outcome, as described previously. 297 298 Logistic regression will be used to identify factors that are associated with poor outcomes. To 299 avoid overfitting the regression model, several steps will be taken. Firstly, linear univariate 300 associations between each predictor at baseline and the outcome will be assessed to establish 301 factors that are eligible to enter multivariable analysis. Those predictors with strong correlation 302 to the outcome (p<0.20) (72), will be identified for the multivariable analysis. Secondly, a 303 univariate logistic regression model will be constructed for each baseline predictor (Table 1) 304 and its association with NDI to select those entering the final logistic model as described 305 previously (73). Next, multivariable analysis will be conducted using stepwise logistic 306 regression (74), to identify predictors that maintain significance (p < 0.05) when included in the 307 final model. The final logistic model will be constructed to include predictors that maintain 308 significant relationship with chronic disability at all previous steps. The final model will be

BMJ Open

2	
3 4 5	309
6 7	310
8 9	311
10 11	312
12 13	313
14 15	314
16 17 19	315
18 19 20	316
20	510
22 23	317
24 25	318
26 27	319
28 29 30	320
31 32	321
33 34	322
35 36	323
37 38 39	324
39 40 41	325
42	
43 44	326
45 46	327
47 48	328
49 50	329
51 52 53	330
55 55	331
56 57	332
58	
59 60	333

309 checked for multicollinearity using variance inflation factors (VIF) to ensure no significant310 correlations between the included candidate predictors (75).

311 Model Performance:

The predictive performance of the prognostic screening tool will be assessed using the established traditional measures of overall prognosis, discrimination, and calibration (76). Brier score will be used to quantify the overall performance of the screening tool where the score ranges from 0 ('perfect model') to 0.25 ('not informative model') (76). The Receiver Operator Characteristic (ROC) curve will be used to discriminate between those who did or did not develop chronic whiplash. Finally, the calibration will be assessed through plotting the mean predicted against observed chronic whiplash cases.

321 Sample size

22 This study will consider the association between 16 candidate predictors (Table 1) 23 and neck pain and disability at 6 months. The authors will ensure that at least ten participants 24 per predictor will be used to develop an adequately powered linear regression analysis (77, 78). It is anticipated that some predictors may be excluded due to multicollinearity between 25 26 predictors and/or not meeting the conditions of developing a predictive model. For example, 27 only candidate predictors that reached the stated liberal significant level with the outcome 28 (p<0.20) (72) will be included. Therefore, a sample size target of 120 participants is required 9 to adequately powered a maximum of 12 candidate predictors into the multiple linear 0 regression, with the addition of 30 participants to allow for possible loss of follow-up (total = 51 150).

332 For the logistic regression analysis sample size, a minimum of 5 events per predictor
 333 will be considered (78), as used previously (72). Based on the current knowledge about the

transition rate from acute to chronic WAD, it is expected that 50% of patients will report persistent neck pain and disability (11, 79, 80). This leaves 60 out of our potential participants who might develop persistent neck pain and disability 6 months post whiplash injury. Therefore, a sample size of 60 participants is adequate to power a logistic regression analysis of 12 candidate predictors with 5 events per predictor.

Management of missing data

For each variable of interest, numbers of participants with missing data will be reported. Any potential bias due to loss of follow-up will be assessed and compared using baseline data of subjects who withdraw or lost at follow-up (66). Multiple imputation (81) will be used to deal with missing outcome data, if appropriate and necessary. Participants will be excluded from the predictive model and subsequent analyses if they request to withdraw from the study ezie following recruitment (66).

Ethics and dissemination:

The study will be conducted according to the Declaration of Helsinki. The project has been approved by the Ethics Committee of the province of Malaga, Spain (#30052019). The results of the study will be disseminated via reports published in peer-reviewed journals and national and international conferences. Participant burden has been taken into consideration when developing this study. The number of measures has been kept to a minimum. To ensure the privacy of each patient, a unique identification number will be assigned to each participant at the time of recruitment. Only pseudonymised or anonymised data will be used during analyses. Participants will be informed that they can withdraw from the study at any time, without having to provide a reason; however, where a reason is given it will be recorded. If a participant withdraws, no further data will be collected but data already

Page 19 of 38

BMJ Open

359 collected will be retained for analyses. Baseline characteristics of any participants that360 withdraw will be compared to retained participants to assess for any differences.

At each data collection session, confirmation to proceed will be gained before any data are collected. Any concerns and/or adverse events will be noted and fed back to clinical staff, according to the Good Clinical Practice principles. For ethical reasons, routine treatment will not be withheld from individuals at any point during the study. The details and frequency of any received treatment will be recorded and reported. The protocol and conduct of this study are strengthened by the inclusion of patient and public involvement, who contributed to the development of study design and documentation. In addition, they will contribute to the processes of performing data analysis, interpretation of results, and producing a lay summary of findings.

DISCUSSION

This is the first protocol to describe, *a priori*, the methods and analysis for identifying predictive factors for ongoing pain and disability following acute whiplash injury. In particular, self-reported measures together with novel physical measure will be incorporated including angular velocity, smoothness of movements, force steadiness, and neck muscle co-activation to predict poor outcome in individuals with WAD recruited within 15 days of the injury. The selected candidate predictors are included based on current knowledge and the possible utilisation in clinical practice. The knowledge gained through this study can assist in the identification of personalised interventions to facilitate recovery and therefore minimise the transition to chronic whiplash.

381 SPIRIT 2013 Statement, TRIPOD, PROGRESS, QUIPS and CHARMS statements
 382 and frameworks have informed design to ensure rigorous conduct of this study (54-58). The
 383 results from this study will provide new insights into who is likely to recover versus who is

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
23 24	
25	
26	
27	
28	
29	
30	
30 31	
31	
32	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
60	

384 likely to develop persistent symptoms following a whiplash injury. Using a novel

385 combination of outcome measures will allow the future development of a tool to predict

386 development of chronic and disabling pain following a whiplash injury providing new

387 opportunities to identify precision intervention.

388

1

389 Author Contributions

All authors contributed to the focus of this study. AA is a PhD student with DF as Lead
Supervisor and AG and ALS as Co-Supervisors. AA drafted the initial protocol with
guidance from DF at all stages. DE, ALS, MFS and AG provided guidance on topic,
methodology and analyses. ALS and MFS will be involved in collecting data from
participants. All authors approved the final version for publication. DF is guarantor.

396

397 Funding Statement

- ⁶ 398 This research received no specific grant from any funding agency in the public, commercial
- ⁸ 399 or not-for-profit sectors.
- 400 **Competing Interests Statement**
- ⁸ 401 The authors have no competing interests to report.

⁵ 402 **Patient consent**

- $\frac{7}{8}$ 403 Not required.
- **50** 404 **Ethics approval**
- ² 405 Approved by Ethics Committee of the province of Malaga, Spain (#30052019).
- 406 **Data sharing statement**
- 7 407 No additional data are available.
- 9 408

1 2		
3 4	409	Amendment Protocol
5 6 7	410	If changes in the protocol deemed to be necessary during conducting the study, they will be
8 9	411	documented on the main report of the study.
10 11 12	412	
13 14	413	
15 16 17	414	
18	415	
19	416	
20	417	
21	418	
22	419	
23 24	420	
24 25	421	
26	422	
27	423	
28	423	
29		
30 31	425	
32	426	
33	427	
34	428	
35	429	
36 37	430	
38	431	
39	432	
40	433	
41	434	
42 43	435	
44	436	
45	437	
46	438	
47	439	
48 49	440	
49 50	441	
51	442	
52	443	
53	444]
54	445	
55 56	446	
50 57	447	
58	448	
59	449	
60		

34 450 References

4 450 5 451

Spitzer WO, Skovron ML, Salmi LR, Cassidy JD, Duranceau J, Suissa S, et al. 1. Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining "whiplash" and its management. Spine (Phila Pa. 1995;20(8 Suppl):1S-73S. Li Q, Shen H, Li M. Magnetic resonance imaging signal changes of alar and 2. transverse ligaments not correlated with whiplash-associated disorders: a meta-analysis of case-control studies. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2013;22(1):14-20. Kongsted A, Sorensen JS, Andersen H, Keseler B, Jensen TS, Bendix T. Are early 3. MRI findings correlated with long-lasting symptoms following whiplash injury? A prospective trial with 1-year follow-up. European Spine Journal. 2008;17(8):996-1005. Ichihara D, Okada E, Chiba K, Toyama Y, Fujiwara H, Momoshima S, et al. 4. Longitudinal magnetic resonance imaging study on whiplash injury patients: minimum 10-year follow-up. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association. 2009;14(5):602-10. Holm LW, Carroll LJ, Cassidy JD, Hogg-Johnson S, Cote P, Guzman J, et al. The 5. burden and determinants of neck pain in whiplash-associated disorders after traffic collisions: results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. J Manipulative Physiol Ther. 2009;32(2 Suppl):S61-9. Melody J. Whiplash associated disorder training pack. London: British Association 6. for Accident and Emergency Medicine. 2003. Carroll LJ, Holm LW, Hogg-Johnson S, Cote P, Cassidy JD, Haldeman S, et al. 7. Course and prognostic factors for neck pain in whiplash-associated disorders (WAD): results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. Spine (Phila Pa. 2008;33(4 Suppl):S83-92. doi: 10.1097/BRS.0b013e3181643eb8. Jull GA, Soderlund A, Stemper BD, Kenardy J, Gross AR, Cote P, et al. Toward 8. optimal early management after whiplash injury to lessen the rate of transition to chronicity: discussion paper 5. Spine (Phila Pa 1976). 2011;36(25 Suppl):S335-42. Sarrami P, Armstrong E, Naylor JM, Harris IA. Factors predicting outcome in 9. whiplash injury: a systematic meta-review of prognostic factors. J Orthop Traumatol. 2017;18(1):9-16. Walton DM, Carroll LJ, Kasch H, Sterling M, Verhagen AP, Macdermid JC, et al. An 10. Overview of Systematic Reviews on Prognostic Factors in Neck Pain: Results from the International Collaboration on Neck Pain (ICON) Project. The open orthopaedics journal. 2013;7:494-505. Kamper SJ, Rebbeck TJ, Maher CG, McAuley JH, Sterling M. Course and prognostic 11. factors of whiplash: A systematic review and meta-analysis. Pain. 2008;138(3):617-29. Scholten-Peeters GG, Verhagen AP, Bekkering GE, van der Windt DA, Barnsley L, 12. Oostendorp RA, et al. Prognostic factors of whiplash-associated disorders: a systematic review of prospective cohort studies. PAIN. 2003;104(1-2):303. Cote P, Cassidy JD, Carroll L, Frank JW, Bombardier C. A systematic review of the 13. prognosis of acute whiplash and a new conceptual framework to synthesize the literature. Spine (Phila Pa 1976). 2001;26(19):E445-58. Walton DM, MacDermid JC, Giorgianni AA, Mascarenhas JC, West S, Zammit CA. 14. Risk factors for persistent problems following acute whiplash injury: Update of a systematic review and meta-analysis. JOURNAL OF ORTHOPAEDIC AND SPORTS PHYSICAL THERAPY. 2013;43(2):31.

BMJ Open

3						
4	499	15. Atherton K, Wiles NJ, Lecky FE, Hawes SJ, Silman AJ, Macfarlane GJ, et al.				
5	500	Predictors of persistent neck pain after whiplash injury. Emergency Medicine Journal.				
6	501	2006;23(3):195-201.				
7	502	16. Hartling L, Pickett W, Brison RJ. Derivation of a clinical decision rule for whiplash				
8 9	503	associated disorders among individuals involved in rear-end collisions. Accident; analysis				
10	504	and prevention. 2002;34(4):531-9.				
11	505	17. Hendriks EJ, Scholten-Peeters GG, van der Windt DA, Neeleman-van der Steen CW,				
12	506	Oostendorp RA, Verhagen AP. Prognostic factors for poor recovery in acute whiplash				
13	507	patients. Pain. 2005;114(3):408-16.				
14	508	18. Radanov BP, Sturzenegger M, Di GS. Long-term outcome after whiplash injury. A 2-				
15 16	509	year follow-up considering features of injury mechanism and somatic, radiologic, and				
17	510	psychosocial findings. Medicine. 1995;74(5):281-97.				
18	511	19. Kasch H, Bach FW, Jensen TS. Handicap after acute whiplash injury A 1-year				
19	512	prospective study of risk factors. Neurology. 2001;56(12):1637-43.				
20	513	20. Kasch H, Qerama E, Kongsted A, Bendix T, Jensen TS, Bach FW. Clinical				
21	514	assessment of prognostic factors for long-term pain and handicap after whiplash injury: a 1-				
22	515	year prospective study. European journal of neurology. 2008;15(11):1222-30.				
23 24	516	21. Brijnath B, Bunzli S, Xia T, Singh N, Schattner P, Collie A, et al. General				
24	517	practitioners knowledge and management of whiplash associated disorders and post-				
26	518	traumatic stress disorder: implications for patient care. BMC Fam Pract.				
27	519	2016;17:82.(doi):10.1186/s12875-016-0491-2.				
28	520	22. Sterling M, Jull G, Vicenzino B, Kenardy J, Darnell R. Physical and psychological				
29	521	factors predict outcome following whiplash injury. Pain. 2005;114(1):141-8.				
30 31	522	23. Sterling M, Jull G, Kenardy J. Physical and psychological factors maintain long-term				
32	523	predictive capacity post-whiplash injury. Pain. 2006;122(1):102-8.				
33	524	24. Goldsmith R, Wright C, Bell S, Rushton A. Cold hyperalgesia as a prognostic factor				
34	525	in whiplash associated disorders: a systematic review (Provisional abstract). Manual Therapy				
35	526	[Internet]. 2012; 17(5):[402-10 pp.]. Available from:				
36	527	http://onlinelibrary.wiley.com/o/cochrane/cldare/articles/DARE-12012041731/frame.html.				
37 38	528	25. Knackstedt H, Kråkenes J, Bansevicius D, Russell MB. Magnetic resonance imaging				
39	529	of craniovertebral structures: clinical significance in cervicogenic headaches. The journal of				
40	530	headache and pain. 2012;13(1):39-44.				
41	531	26. Vetti N, Krakenes J, Damsgaard E, Rorvik J, Gilhus NE, Espeland A. Magnetic				
42	532	resonance imaging of the alar and transverse ligaments in acute whiplash-associated disorders				
43 44	533	1 and 2: a cross-sectional controlled study. Spine (Phila Pa. 2011;36(6):E434-40. doi:				
44 45	534	10.1097/BRS.0b013e3181da21a9.				
46	535	27. Dullerud R, Gjertsen Ø, Server A. Magnetic resonance imaging of ligaments and				
47	536	membranes in the craniocervical junction in whiplash-associated injury and in healthy control				
48	537	subjects. Acta Radiologica. 2010;51(2):207-12.				
49	538	28. Myran R, Kvistad KA, Nygaard OP, Andresen H, Folvik M, Zwart J-A. Magnetic				
50 51	539	resonance imaging assessment of the alar ligaments in whiplash injuries: a case-control study.				
52	540	Spine. 2008;33(18):2012-6.				
52	541	29. Krakenes J, Kaale BR. Magnetic resonance imaging assessment of craniovertebral				
54	542	ligaments and membranes after whiplash trauma. Spine. 2006;31(24):2820-6.				
55	543 544	30. Richter M, Ferrari R, Otte D, Kuensebeck HW, Blauth M, Krettek C. Correlation of				
56	544 545	clinical findings, collision parameters, and psychological factors in the outcome of whiplash				
57 58	545 546	associated disorders. J Neurol Neurosurg Psychiatry. 2004;75(5):758-64.				
58 59	546 547	31. Spearing NM, Connelly LB, Gargett S, Sterling M. Does injury compensation lead to worse health after whiplash? A systematic review. Pain. 2012;153(6):1274-82.				
60	547	worse nearmaner winplash? A systematic review. Fall. 2012,155(0).1274-02.				

Williamson E, Williams M, Gates S, Lamb SE. A systematic literature review of 32. psychological factors and the development of late whiplash syndrome. Pain. 2008;135(1-2):20-30. 33. Walton DM, Pretty J, MacDermid JC, Teasell RW. Risk factors for persistent problems following whiplash injury: results of a systematic review and meta-analysis. Journal of Orthopaedic & Sports Physical Therapy. 2009;39(5):334-50. 34. Williams M, Williamson E, Gates S, Lamb S, Cooke M. A systematic literature review of physical prognostic factors for the development of Late Whiplash Syndrome. Spine. 2007;32(25):E764-E80. Sterling M. Does knowledge of predictors of recovery and nonrecovery assist 35. outcomes after whiplash injury? Spine. 2011;36(Supplement 25):S257-S62. Sterling M, Jull G, Vicenzino B, Kenardy J, Darnell R. Development of motor system 36. dysfunction following whiplash injury. PAIN®. 2003;103(1-2):65-73. Dall'Alba PT, Sterling MM, Treleaven JM, Edwards SL, Jull GA. Cervical range of 37. motion discriminates between asymptomatic persons and those with whiplash. Spine. 2001;26(19):2090-4. 38. Falla DL, Jull GA, Hodges PW. Patients with neck pain demonstrate reduced electromyographic activity of the deep cervical flexor muscles during performance of the craniocervical flexion test. Spine. 2004;29(19):2108-14. 39. Jull GAJJomp. Deep cervical flexor muscle dysfunction in whiplash. 2000;8(1-2):143-54. 40. Baydal-Bertomeu JM, Page AF, Belda-Lois JM, Garrido-Jaén D, Prat JM. Neck motion patterns in whiplash-associated disorders: quantifying variability and spontaneity of movement. Clinical biomechanics. 2011;26(1):29-34. Sjölander P, Michaelson P, Jaric S, Djupsjöbacka M. Sensorimotor disturbances in 41. chronic neck pain-range of motion, peak velocity, smoothness of movement, and repositioning acuity. Manual therapy. 2008;13(2):122-31. Fernandez-de-las-Penas C, Falla D, Arendt-Nielsen L, Farina D. Cervical muscle co-42. activation in isometric contractions is enhanced in chronic tension-type headache patients. Cephalalgia. 2008;28(7):744-51. Falla D, Farina D, Dahl MK, Graven-Nielsen TJJoAP. Muscle pain induces task-43. dependent changes in cervical agonist/antagonist activity. 2007;102(2):601-9. Madeleine P, Leclerc F, Arendt-Nielsen L, Ravier P, Farina D. Experimental muscle 44. pain changes the spatial distribution of upper trapezius muscle activity during sustained contraction. Clinical neurophysiology. 2006;117(11):2436-45. Madeleine P, Mathiassen SE, Arendt-Nielsen L. Changes in the degree of motor 45. variability associated with experimental and chronic neck-shoulder pain during a standardised repetitive arm movement. Experimental Brain Research. 2008;185(4):689-98. Muceli S, Falla D, Farina D. Reorganization of muscle synergies during 46. multidirectional reaching in the horizontal plane with experimental muscle pain. Journal of neurophysiology. 2014;111(8):1615-30. Smith M, Coppieters MW, Hodges PW. Effect of experimentally induced low back 47. pain on postural sway with breathing. Experimental brain research. 2005;166(1):109-17. 48. Tucker KJ, Hodges PW. Changes in motor unit recruitment strategy during pain alters force direction. European journal of pain. 2010;14(9):932-8. Hug F, Hodges PW, Tucker K. Task dependency of motor adaptations to an acute 49. noxious stimulation. Journal of neurophysiology. 2014;111(11):2298-306. Gizzi L, Muceli S, Petzke F, Falla D. Experimental muscle pain impairs the 50. synergistic modular control of neck muscles. PloS one. 2015;10(9):e0137844.

BMJ Open

2							
4	597	51. Walton D. A review of the definitions of 'recovery' used in prognostic studies on					
5	598	whiplash using an ICF framework. Disability & Rehabilitation. 2009;31(12):943-57.					
6	599	52. Gabel CP, Burkett B, Neller A, Yelland M. Can long-term impairment in general					
7	600	practitioner whiplash patients be predicted using screening and patient-reported outcomes?					
8	601	International Journal of Rehabilitation Research. 2008;31(1):79-80.					
9 10	602	53. Holm LW, Carroll LJ, Cassidy JD, Skillgate E, Ahlbom A. Expectations for recovery					
11	603	important in the prognosis of whiplash injuries. PLoS Medicine. 2008;5(5):0760-7.					
12	604	54. Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al.					
13	605	SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med.					
14	606	2013;158(3):200-7.					
15	607	55. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a					
16	608	multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD					
17 18	609	statement. BMC medicine. 2015;13(1):1.					
10	610	56. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias					
20	611	in studies of prognostic factors. Ann Intern Med. 2013;158(4):280-6.					
21	612	57. Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al.					
22	613	Critical appraisal and data extraction for systematic reviews of prediction modelling studies:					
23	614	the CHARMS checklist. PLoS medicine. 2014;11(10):e1001744.					
24	615	58. Steyerberg EW, Moons KG, van der Windt DA, Hayden JA, Perel P, Schroter S, et al.					
25 26	616	Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS medicine.					
26 27	617	2013;10(2):e1001381.					
28	618	59. Sterling M. Differential development of sensory hypersensitivity and a measure of					
29	619	spinal cord hyperexcitability following whiplash injury. Pain. 2010;150(3):501-6.					
30	620	60. Cantu RC. Cerebral concussion in sport. Sports Medicine. 1992;14(1):64-74.					
31	620 621	61. Crawford JR, Khan RJ, Varley GW. Early management and outcome following soft					
32	622	tissue injuries of the neck—a randomised controlled trial. Injury. 2004;35(9):891-5.					
33 34	623	62. Rosenfeld M, Gunnarsson R, Borenstein P. Early intervention in whiplash-associated					
34 35	624	disorders: a comparison of two treatment protocols. Spine (Phila Pa. 2000;25(14):1782-7.					
36	625	63. Rosenfeld ME, Seferiadis A, Carlsson J, Gunnarsson R. Active Intervention in					
37	626	Patients with Whiplash-Associated Disorders Improves Long-Term Prognosis: A					
38	627	Randomized Controlled Clinical Trial. Spine. 2003;28(22):2491-8.					
39	628	64. Vernon H, Mior S. The Neck Disability Index: a study of reliability and validity.					
40	629	Journal of manipulative and physiological therapeutics. 1991;14(7):409-15.					
41 42	630	65. Macdermid JC, Walton DM, Avery S, Blanchard A, Etruw E, Mcalpine C, et al.					
42	631	Measurement properties of the neck disability index: a systematic review. Journal of					
44	632	orthopaedic & sports physical therapy. 2009;39(5):400-C12.					
45	633	66. Rushton A, Evans D, Middlebrook N, Heneghan N, Falla D, editors.					
46	634	DEVELOPMENT OF A PROGNOSTIC SCREENING TOOL TO PREDICT THE RISK OF					
47	635	CHRONIC PAIN AND DISABILITY FOLLOWING MUSCULOSKELETAL TRAUMA:					
48	636	PROTOCOL FOR A PROSPECTIVE OBSERVATIONAL STUDY. Orthopaedic					
49 50	637	Proceedings; 2018: The British Editorial Society of Bone & Joint Surgery.					
51	638	67. Carroll LJ, Hogg-Johnson S, van der Velde G, Haldeman S, Holm LW, Carragee EJ,					
52	639	et al. Course and Prognostic Factors for Neck Pain in the General Population. Results of the					
53	640	Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders.					
54	641	Journal of Manipulative and Physiological Therapeutics. 2009;32(2 SUPPL.):S87-S96.					
55	642	68. Sterling M, Hendrikz J, Kenardy JJP. Compensation claim lodgement and health					
56 57	643	outcome developmental trajectories following whiplash injury: a prospective study.					
57 58	644	2010;150(1):22-8.					
59	0-1-1	2010,120(1).22 0.					
60							
1							

69. Daenen L, Nijs J, Raadsen B, Roussel N, Cras P, Dankaerts W. Cervical motor dysfunction and its predictive value for long-term recovery in patients with acute whiplash-associated disorders: a systematic review. J Rehabil Med. 2013;45(2):113-22. 70. Pincus T, Kent P, Bronfort G, Loisel P, Pransky G, Hartvigsen J. Twenty-five years with the biopsychosocial model of low back pain—is it time to celebrate? A report from the twelfth international forum for primary care research on low back pain. Spine. 2013;38(24):2118-23. Kivioja J, Jensen I, Lindgren U. Neither the WAD-classification nor the Quebec Task 71. Force follow-up regimen seems to be important for the outcome after a whiplash injury. A prospective study on 186 consecutive patients. European Spine Journal. 2008;17(7):930-5. Jenkins LC, Chang W-J, Buscemi V, Liston M, Toson B, Nicholas M, et al. Do 72. sensorimotor cortex activity, an individual's capacity for neuroplasticity, and psychological features during an episode of acute low back pain predict outcome at 6 months: a protocol for an Australian, multisite prospective, longitudinal cohort study. BMJ open. 2019;9(5):e029027. 73. Williamson E, Williams MA, Gates S, Lamb SE. Risk factors for chronic disability in a cohort of patients with acute whiplash associated disorders seeking physiotherapy treatment for persisting symptoms. Physiotherapy. 2015;101(1):34-43. Field A. Discopering Statistics Using SPSS, Thrid Edition. London: Sage; 2009. 74. 75. Szklo M, Nieto F. Understanding lack of validity: bias. Epidemiology Beyond the basics Maryland: Aspen Publishers Inc. 2000:125-76. 76. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology (Cambridge, Mass). 2010;21(1):128. Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: 77. developing a prognostic model. Bmj. 2009;338:b604. Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic 78. and Cox regression. American journal of epidemiology. 2007;165(6):710-8. 79. Carroll LJ, Holm LW, Hogg-Johnson S, Côté P, Cassidy JD, Haldeman S, et al. Course and prognostic factors for neck pain in whiplash-associated disorders (WAD): results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. Journal of manipulative and physiological therapeutics. 2009;32(2):S97-S107. Hendriks EJ, Scholten-Peeters GG, van der Windt DA, Neeleman-van der Steen CW, 80. Oostendorp RA, Verhagen AP. Prognostic factors for poor recovery in acute whiplash patients. Pain. 2005;114(3):408-16. 81. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. Bmj. 2009;338:b2393.

Supplementary file 1. Candidate predictors

General patient characteristics including previous musculoskeletal pain

Participants' demographic data will be recorded at baseline including gender and highest attained education level.

Psychosocial features

Pain Catastrophizing Scale (PCS)

The PCS will be used to evaluate the extent to which patients ruminate, magnify or feel helpless about controlling their pain [1]. It is a 13-item self-reported outcome consisting of three dimensions including rumination, magnification and helplessness to measure pain related catastrophizing. Subjects rate the frequency of experiencing catastrophic thoughts as 0 (not at all) or 4 (all the times) which produces an overall score of from 0-52 with higher scores indicating greater negative pain thoughts. The reliability and validity of the PCS have been established [1], and it has been used in patients with WAD [2, 3]. Moderate evidence of significant association shows that initial catastrophising was a risk factor for developing persistent symptoms in whiplash [4] with pooled odd ratio=3.77 (95% confidence intervals = 1.33 - 10.74) [5].

Tampa Scale of Kinesiophobia [TSK-11]

The TSK-11 is a self-reported outcome used to evaluate fear of movement or injury during activities [6]. It consists of 11-item of which each is scored from 1 ('totally agree') to 4 ('totally disagree') producing a total score from 11 to 44, with higher scores indicating higher fear of movement. The TSK-11 has showed excellent test-retest reliability and good construct validity in detecting changed in pain and disability [7]. Indirect association was found between fear of movement and higher neck pain and disability in patients with acute

WAD [8]; catastrophizing increases fear of movement which leads to decreased functional self-efficacy that results in higher pain and disability [8].

Recovery Expectation (high or low expectation of recovery)

Patients will be asked if they expect to fully recover within the next six months. Recovery expectations will be assessed by the question "In your opinion, how likely is it that you will be fully recovered with no persistent sequelae?" [9]. In response to this question, recovery expectations will be measured using NRS where a patient need to indicate how likely he/she would have completely recovered, by choosing a score from 0 ("not likely") to 10 ("very likely") [10]. Low expectation of making full recovery were found to be an independent predictive factor associated (odds ratio= 4.2 [95% CI = 2.1 - 8.5]) with higher disability in individuals with acute WAD [10].

elie

Pain characteristics

Numeric Rating Scale (NRS)

Current neck pain intensity will be measured using NRS which is a 11-point scale range from 0 (no pain) to 10 (worst possible pain). Also, perceived pain intensity will be measured at the end of each physical measure of neck range of motion tasks, neck maximum contraction tasks, and neck submaximum contraction tasks. The reliability of NRS has been established in patients with neck pain (ICC:0.76) [11]. Also, participants will be asked remotely (through the app) where they have 'experienced pain during the last week' from several body locations [12]. Based on their response of chosen areas, pain intensity will be assessed using NRS. Finally, neck pain intensity following active movements will be measured through NRS. High evidence of significant association shows that initial neck pain

BMJ Open

intensity was a consistent risk factor for developing persistent symptoms in whiplash [4] with pooled odd ratio= 5.61 (95% CI = 3.74 - 8.43) [13].

Physical measures

<u>Wearable sensor for motion detection (Neck range of movement, angular velocity, movement</u> <u>smoothness and proprioception)</u>

A wearable BTS G-WALK® sensor system (BTS Bioengineering, Italy) will be utilised to assess neck range of motion, angular velocity, movement smoothness, and neck proprioception. The sensor connects to a computer via Bluetooth; at the end of each analysis an automatic report containing all the parameters recorded during the test, is displayed.

Active neck flexion, side-flexion, extension, and rotation will be measured at baseline. Impaired range of motion has been found in individuals with WAD compared to healthy controls [14, 15] and has also been found to be a factor associated with persistent disability at one year [16, 17], and neck pain and disability at 6 months [18, 19].

Besides range of motion, the angular velocity and movement smoothness will be recorded simultaneously during each neck movement. Each movement direction will be repeated five times and the average taken. These kinematic variables may provide more information about motor control disturbances [20]. A study found maximum angular velocity and acceleration were lower in subjects with chronic WAD when compared to healthy control [20]. The same finding (lower peak velocity) was found in cohorts of both WAD and insidious neck pain [21]. Moreover, significant differences in jerk indices were observed during active neck movements in a study comparing healthy controls to those with chronic neck pain of both insidious onset and traumatic onset [21].

Neck proprioception will be measured by calculating the Joint Position Error (JPE) following active neck rotation. JPE is defined as the ability to relocate the natural head

position without the assistance of vision [22]. To assess this, the same wearable sensor (G-Walk) will be used. Patients will repeat active neck rotation with their eyes closed and will indicate when they think that they have returned to the starting position. JPE will be assessed three times for both right and left rotation and the average taken for each direction. Decreased head repositioning accuracy has been observed in people with idiopathic neck pain [23], but with greater repositioning errors found in individuals with neck pain attributed to a trauma [24], which is even more evident in those with moderate to severe pain and disability [14].

Dynamometer (maximal and sub-maximal isometric contractions)

At baseline, the participants will perform maximal and sub-maximal isometric contractions to measure maximum strength and control of sub-maximal forces. Cranio-cervical flexion, neck flexion and extension will be tested using a hand-held dynamometer for neck muscle testing (NOD, OT Bioeletronica, Italy).

1. Maximum voluntary contraction (MVC):

 Two MVCs will be performed for cranio-cervical flexion, neck flexion, and extension. Each maximum MVCs will last for 3 seconds, separated by 1 minute rest in between [25]. The mean MVC for each direction will be calculated and used in the analysis [26, 27]. Patients will perform an initial trial to familiarise themselves with each movement under the guidance of a trained examiner with minimal force.

Cranio-cervical flexion strength testing will be performed with the participant in supine lying with the hip and knees flexed to approximately 90 degrees [28]. The head will be placed in neutral position and the dynamometer placed behind the upper cervical spine with the instruction being to nod as if saying yes but as hard as you can. Patients will be seated to measure neck flexion and extension strength with the participant seated comfortably on a chair with hip and knee flexed to 90 degrees with head in neutral position

BMJ Open

and feet flat on the ground. To measure neck flexion, the dynamometer will be placed over the forehead and against the resistance of the examiner, the patient will be instructed to "push as hard as you can as you try to bring your chin to your chest" [29]. The dynamometer will then be placed on the back of the head and the patient instructed to "push as hard as you can into the dynamometer as if trying to bring the back of the head to your neck" [29].

Patients with neck pain commonly present with reduced neck strength [29-32], although the extent of impaired strength is highly variable across patients [33]. Significant lower isometric MVC force has been observed in patients with chronic WAD compared to healthy controls [29]. Reduced neck muscle strength has been associated with the extent of disability [25, 34] and pain [34] in people with chronic neck pain..

2. Sub-maximal voluntary contractions:

In the same positions described for the MVC, participants will be instructed to perform a single submaximal contraction at 20% of their maximal force and hold this for 10 seconds for cranio-cervical flexion, flexion and extension. In addition, participants will perform 40%, 60%, 80%, and 100% of their maximal force for the cranio-cervical flexion only. Feedback on force will guide the participant to maintain specific degree of contraction from their MVC over the duration of the contraction.

Surface electromyography (EMG) (co-activation of the sternocleidomastoid and splenius capitis)

The amplitude of sternocleidomastoid (SCM) activity will be measured bilaterally during the isometric maximum and submaximal voluntary contractions of cranio-cervical flexion. In addition, both SCM and splenius capitis (SC) activity will be measured bilaterally during the maximum and submaximal voluntary contractions of neck flexion and extension.

Increased co-activation of the neck flexors and extensors has been observed in patients with chronic neck pain and headache [35], and is associated with reduced neck strength [35]. Changes in neck muscle activation has been observed in people with acute neck

pain following a whiplash injury [14, 36].

Following gentle skin preparation, pairs of bipolar surface electrodes will be placed over SCM and SC bilaterally following published guidelines for electrode placement [37].

Signals will be detected using wireless EMG (Ultium® EMG, Noraxon, USA). Co-activation

indexes will be calculated as described previously [38].

References:

- OPP, E Sullivan, M.J., S.R. Bishop, and J. Pivik, The pain catastrophizing scale: development 1. and validation. Psychological assessment, 1995. 7(4): p. 524.
- 2. Sterling, M., et al., Psychologic factors are related to some sensory pain thresholds but not nociceptive flexion reflex threshold in chronic whiplash. The Clinical journal of pain, 2008. 24(2): p. 124-130.
- 3. Sullivan, M.J., et al., Differential predictors of pain and disability in patients with whiplash injuries. Pain Research and Management, 2002. 7(2): p. 68-74.
- 4. Walton, D.M., et al., An Overview of Systematic Reviews on Prognostic Factors in Neck Pain: Results from the International Collaboration on Neck Pain (ICON) *Project*. Open Orthop J, 2013. 7: p. 494-505.
- 5. Walton, D.M., et al., Risk factors for persistent problems following whiplash injury: Results of a systematic review and meta-analysis. Journal of Orthopaedic and Sports Physical Therapy, 2009. **39**(5): p. 334-349.
- Roelofs, J., et al., Fear of movement and (re) injury in chronic musculoskeletal pain: 6. Evidence for an invariant two-factor model of the Tampa Scale for Kinesiophobia across pain diagnoses and Dutch, Swedish, and Canadian samples. Pain, 2007. **131**(1): p. 181-190.
- 7. Woby, S.R., et al., Psychometric properties of the TSK-11: a shortened version of the *Tampa Scale for Kinesiophobia*. Pain, 2005. **117**(1-2): p. 137-44.
- 8. Sandborgh, M., A.-C. Johansson, and A. Söderlund, The relation between the fearavoidance model and constructs from the social cognitive theory in acute WAD. Pain Research and Management, 2016. 2016.
- 9. Elrud, R., et al., Is time of neck pain onset a prognostic factor in whiplash-associated disorders? Edorium Journal of Disability and Rehabilitation, 2016. 1: p. 16-23.

1 2 3

4 5

6 7

2		
3	10	Holm I.W. et al. Encodeding for a construction the management is the second state of a bighter back
4	10.	Holm, L.W., et al., <i>Expectations for recovery important in the prognosis of whiplash</i>
5	11	<i>injuries.</i> PLoS medicine, 2008. 5 (5): p. e105.
6	11.	Cleland, J.A., J.D. Childs, and J.M. Whitman, <i>Psychometric properties of the Neck</i>
7		Disability Index and Numeric Pain Rating Scale in patients with mechanical neck
8		<i>pain</i> . Archives of physical medicine and rehabilitation, 2008. 89 (1): p. 69-74.
9	12.	Parsons, S., et al., Measuring troublesomeness of chronic pain by location. BMC
10		Musculoskeletal Disorders, 2006. 7(1): p. 34.
11 12	13.	Walton, D.M., et al., Risk factors for persistent problems following acute whiplash
12 13		injury: update of a systematic review and meta-analysis. J Orthop Sports Phys Ther,
13		2013. 43 (2): p. 31-43.
15	14.	Sterling, M., et al., Development of motor system dysfunction following whiplash
16		<i>injury</i> . PAIN®, 2003. 103 (1-2): p. 65-73.
17	15.	Dall'Alba, P.T., et al., Cervical range of motion discriminates between asymptomatic
18	15.	persons and those with whiplash. Spine, 2001. 26 (19): p. 2090-2094.
19	16.	
20	10.	Kasch, H., F.W. Bach, and T.S. Jensen, <i>Handicap after acute whiplash injury A 1</i> -
21	17	year prospective study of risk factors. Neurology, 2001. 56 (12): p. 1637-1643.
22	17.	Kasch, H., et al., Clinical assessment of prognostic factors for long-term pain and
23		handicap after whiplash injury: a 1-year prospective study. Eur J Neurol, 2008.
24		15 (11): p. 1222-30.
25	18.	Sterling, M., G. Jull, and J. Kenardy, Physical and psychological factors maintain
26		long-term predictive capacity post-whiplash injury. Pain (03043959), 2006. 122(1/2):
27 28		p. 102-108.
28 29	19.	Sterling, M., et al., Physical and psychological factors predict outcome following
30		whiplash injury. Pain, 2005. 114 (1): p. 141-148.
31	20.	Baydal-Bertomeu, J.M., et al., Neck motion patterns in whiplash-associated
32		disorders: quantifying variability and spontaneity of movement. Clinical
33		biomechanics, 2011. 26 (1): p. 29-34.
34	21.	Sjölander, P., et al., Sensorimotor disturbances in chronic neck pain—range of
35	<i>2</i> 1.	motion, peak velocity, smoothness of movement, and repositioning acuity. Manual
36		therapy, 2008. 13 (2): p. 122-131.
37	22	
38	22.	Revel, M., C. Andre-Deshays, and M. Minguet, <i>Cervicocephalic kinesthetic</i>
39		sensibility in patients with cervical pain. Archives of physical medicine and
40 41	• •	rehabilitation, 1991. 72 (5): p. 288-291.
42	23.	Stanton, T., et al., Evidence of impaired proprioception in chronic idiopathic neck
43		pain: a systematic review and meta-analysis. 2015. 101 : p. e1432-e1433.
44	24.	de Vries, J., et al., Joint position sense error in people with neck pain: a systematic
45		<i>review</i> . Manual therapy, 2015. 20 (6): p. 736-744.
46	25.	Lindstroem, R., T. Graven-Nielsen, and D. Falla, Current pain and fear of pain
47		contribute to reduced maximum voluntary contraction of neck muscles in patients
48		with chronic neck pain. Archives of physical medicine and rehabilitation, 2012.
49		93 (11): p. 2042-2048.
50	26.	Chiu, T.T., et al., Correlation among physical impairments, pain, disability, and
51	20.	patient satisfaction in patients with chronic neck pain. 2005. 86 (3): p. 534-540.
52	27.	Ylinen, J., et al., Association of neck pain, disability and neck pain during maximal
53 54	<i>21</i> .	effort with neck muscle strength and range of movement in women with chronic non-
54 55		
55 56	20	specific neck pain. 2004. 8(5): p. 473-478.
57	28.	Falla, D.L., G.A. Jull, and P.W. Hodges, <i>Patients with neck pain demonstrate reduced</i>
58		electromyographic activity of the deep cervical flexor muscles during performance of
59		the craniocervical flexion test. Spine, 2004. 29(19): p. 2108-2114.
60		

29. Pearson, I., et al., *Maximal voluntary isometric neck strength deficits in adults with whiplash-associated disorders and association with pain and fear of movement.* journal of orthopaedic & sports physical therapy, 2009. **39**(3): p. 179-187.

- 30. Scheuer, R. and M. Friedrich, *Reliability of isometric strength measurements in trunk and neck region: patients with chronic neck pain compared with pain-free persons.* Archives of physical medicine and rehabilitation, 2010. **91**(12): p. 1878-1883.
- 31. Cagnie, B., et al., *Differences in isometric neck muscle strength between healthy controls and women with chronic neck pain: the use of a reliable measurement.* Archives of physical medicine and rehabilitation, 2007. **88**(11): p. 1441-1445.
- 32. Ylinen, J., et al., *Decreased isometric neck strength in women with chronic neck pain and the repeatability of neck strength measurements1*. Archives of physical medicine and rehabilitation, 2004. **85**(8): p. 1303-1308.
- 33. Ylinen, J. and J. Ruuska, *Clinical use of neck isometric strength measurement in rehabilitation*. Archives of physical medicine and rehabilitation, 1994. **75**(4): p. 465-469.
- 34. Lindstrøm, R., et al., *Association between neck muscle coactivation, pain, and strength in women with neck pain.* Manual therapy, 2011. **16**(1): p. 80-86.
- 35. Fernandez-de-las-Penas, C., et al., *Cervical muscle co-activation in isometric contractions is enhanced in chronic tension-type headache patients*. Cephalalgia, 2008. **28**(7): p. 744-751.
- 36. Sterling, M., et al., *Characterization of acute whiplash-associated disorders*. Spine, 2004. **29**(2): p. 182-188.
- Falla, D., et al., Location of innervation zones of sternocleidomastoid and scalene muscles–a basis for clinical and research electromyography applications. 2002.
 113(1): p. 57-63.
- 38. Le, P., et al., *A review of methods to assess coactivation in the spine*. Journal of electromyography and kinesiology, 2017. **32**: p. 51-60.

Page 35 of 38			BMJ Open	
1 2 3 4 5 6 7 8			STANDARD PROTOCOL ITEMS: RECOMMENDATIONS FOR INTERVENTIONAL TRIALS	
	SPIRIT 2013 Check	dist: Rec	ommended items to address in a clinical trial protocol and related documents*	
9 10 11	Section/item	ltem No	Description	Addressed on page number
12 13 14	Administrative info	ormatior		
15 16	Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
17 18	Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	
19 20 21 22 23 24 25 26		2b	All items from the World Health Organization Trial Registration Data Set	
	Protocol version	3	Date and version identifier	
	Funding	4	Sources and types of financial, material, and other support	19
	Roles and	5a	Names, affiliations, and roles of protocol contributors	1
27 28	responsibilities	5b	Name and contact information for the trial sponsor	
29 30 31 32 33 34 35 36 37 38 39 40 41 42		5c	Role of study sponsor and funders, if any, in study design; collection, management, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	
		5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	
43 44 45 46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	1

			BMJ Open	Page 3
1 2	Introduction		2019-0	
- 3 4 5	Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant 4- studies (published and unpublished) examining benefits and harms for each intervent	6
6 7		6b	Explanation for choice of comparators	
8 9 10 11 12 13	Objectives	7	Specific objectives or hypotheses 6	
	Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, explorator y) 7	
14 15	Methods: Participar	nts, inte	erventions, and outcomes	
15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31	Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of couge tries where data will 7 be collected. Reference to where list of study sites can be obtained	
	Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and 7 individuals who will perform the interventions (eg, surgeons, psychotherapists)	
	Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be N/	A
		11b	Criteria for discontinuing or modifying allocated interventions for a given trial participa f (eg, drug dose N/ change in response to harms, participant request, or improving/worsening disease) $\frac{2}{2}$	A
		11c	Strategies to improve adherence to intervention protocols, and any procedures for m_{P}^{Σ} itoring adherence N/ (eg, drug tablet return, laboratory tests)	A
32 33		11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	
34 35 36 37 38 39 40 41 42	Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, 10 median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended)
	Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for 9 participants. A schematic diagram is highly recommended (see Figure 1)	
43 44 45 46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	:

Page	37 of 38		BMJ Open	
1 2 3 4 5	Sample size	14	Estimated number of participants needed to achieve study objectives and how it was \vec{b} determined, including clinical and statistical assumptions supporting any sample size calculations	16
	Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size $\frac{37}{32}$	7-8
6 7	Methods: Assignm	ent of ir	nterventions (for controlled trials)	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 42	Allocation:			
	Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	
	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	
	Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	
	Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	
		17b	If blinded, circumstances under which unblinding is permissible, and procedure for received a participant's allocated intervention during the trial	
	Methods: Data coll	ection,	management, and analysis	
	Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and adalatity, if known. Reference to where data collection forms can be found, if not in the protocol	
		18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	10-11
43 44 45 46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

			BMJ Open	Page
1 2 3 4 5 6 7 8 9 10 11 12 13	Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	12-14
	Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol ∇_{Q}^{γ}	15-16
		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	16
		20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	17
14 15	Methods: Monitorin	ng	oadec	
16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	
		21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	7
	Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	
	Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	
	Ethics and dissemi	nation	ې مې	
	Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	17
	Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility creations, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	20
44 45			. of peer review only inter a single configuration and a book guideline station	

Page	39	of	38
------	----	----	----

Page 39 of 38			BMJ Open Jope	
1 2	Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and 8 how (see Item 32)	
3 4 5 6		26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary NA studies, if applicable	
7 8 9	Confidentiality	27	How personal information about potential and enrolled participants will be collected, spared, and maintained 12-13 in order to protect confidentiality before, during, and after the trial	
10 11 12	Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial $\frac{8}{8}$ d each study site 19	
13 14 15	Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contract al agreements that 12-13 limit such access for investigators	
16 17 18	Ancillary and post- trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial NA participation	
19 20 21 22 23	Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, 17 the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41		31b	Authorship eligibility guidelines and any intended use of professional writers	
		31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	
	Appendices		20, 2	
	Informed consent materials	32	Model consent form and other related documentation given to participants and author \mathbf{x} descent form and other related documentation given to participants and author \mathbf{x}	
	Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular NA analysis in the current trial and for future use in ancillary studies, if applicable	
	Amendments to the p	rotocol	that this checklist be read in conjunction with the SPIRIT 2013 Explanation & Elaboration for important clarification on the should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Commons	ne items.
42 43 44 45			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	5

DO MEASURES OF PHYSICAL FUNCTION ENHANCE THE PREDICTION OF PERSISTENT PAIN AND DISABILITY FOLLOWING A WHIPLASH INJURY? PROTOCOL FOR A PROSPECTIVE OBSERVATIONAL STUDY IN SPAIN

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035736.R1
Article Type:	Protocol
Date Submitted by the Author:	17-Feb-2020
Complete List of Authors:	Alalawi, Ahmed; University of Birmingham, Centre of Precision Rehabilitation for Spinal Pain (CPR Spine); LUQUE-SUAREZ, ALEJANDRO; UNIVERSITY OF MALAGA, PHYSIOTHERAPY Fernandez-Sanchez, Manuel; Universidad De Almeria Facultad de Ciencias de la Educacion Enfermeria y Fisioterapia Gallina, Alessio; University of Birmingham, School of Sport, Exercise and Rehabilitation Sciences Evans, David; University of Birmingham, School of Sport, Exercise and Rehabilitation Sciences Falla, Deborah; University of Birmingham, School of Sport, Exercise and Rehabilitation Sciences
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Patient-centred medicine
Keywords:	Rehabilitation medicine < INTERNAL MEDICINE, Musculoskeletal disorders < ORTHOPAEDIC & TRAUMA SURGERY, Spine < ORTHOPAEDIC & TRAUMA SURGERY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

R. O.

2	
3	
4	
4	
5	
6	
7	
8	
-	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
22	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	Do measures of physical function enhance the prediction of
2	persistent pain and disability following a whiplash injury?
3	Protocol for a prospective observational study in Spain
4	
5	
6 7 8	Alalawi A ^{a,b} , Luque-Suarez A ^{c,d} , Fernandez-Sanchez M ^e , Gallina A ^a , Evans DW ^a , Falla D ^a
9	^a Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise
10	and Rehabilitation Sciences, University of Birmingham, United Kingdom
11	^b Physical Therapy Department, College of Applied Medical Sciences, Umm Al-Qura
12	University, Makkah, Saudi Arabia.
13	° Universidad de Malaga, Department of Physiotherapy, Malaga, Spain
14	^d Instituto de la Investigacion Biomedica de Malaga (IBIMA), Malaga, Spain
15	^e Department of Nursing, Physiotherapy and Medicine, University of Almeria, Spain
16	
17 18 19 20 21 22 23 24 25 26 27 28	Correspondence: Professor Deborah Falla Centre of Precision Rehabilitation for Spinal Pain School of Sport, Exercise and Rehabilitation Sciences College of Life and Environmental Sciences University of Birmingham Birmingham, B15 2TT, UK Tel: +44 121 415 4220 Email: d.falla@bham.ac.uk
16 17 18 19 20 21 22 23 24 25 26 27	Correspondence: Professor Deborah Falla Centre of Precision Rehabilitation for Spinal Pain School of Sport, Exercise and Rehabilitation Sciences College of Life and Environmental Sciences University of Birmingham Birmingham, B15 2TT, UK Tel: +44 121 415 4220

1 2		
3 4	29	ABSTRACT
5 6 7	30	Introduction
8 9	31	Not all factors that predict persistent pain and disability following whiplash injury are known.
10 11	32	In particular, few physical factors, such as changes in motor function and muscle behaviour
12 13 14	33	have been investigated. The aim of this study is to identify predictive factors that are
15 16	34	associated with the development of persistent pain and disability following a whiplash injury
17 18	35	by combining contemporary measures of physical function together with established
19 20 21	36	psychological and pain-related predictive factors.
22 23	37	Methods and analysis
24 25	38	A prospective observational study will recruit 150 consecutive eligible patients experiencing
26 27 28	39	whiplash-related symptoms, admitted to a private physiotherapy clinic in Spain within 15
29 30	40	days of their whiplash injury. Poor outcome will be measured using the Neck Disability
31 32	41	Index (NDI), defined as an NDI score of 30% or greater at 6 months post-injury. Candidate
33 34 35	42	predictors, including demographic characteristics, injury characteristics, pain characteristics,
36 37	43	self-reported psychosocial factors and physical factors will be collected at baseline (within 15
38 39	44	days of inception). Regression analyses will be performed to identify factors that are
40 41	45	associated with persistent neck pain and disability over the study period.
42 43 44	46	Ethics and dissemination
45 46	47	The project has been approved by the Ethics Committee of the province of Malaga, Spain
47 48	48	(#30052019). The results of this study will be published in peer-reviewed journals.
49 50 51	49	
52 53	50	
54 55	51	
56 57 58	52	
58 59 60	53	
~-		

1. This protocol describes, a priori, the methods and analysis of identifying predictors of

2. Specific physical measures together with established self-reported measures will be

3. Candidate predictors are selected using a combination of best available knowledge

4. Trajectories of self-reported pain and disability will be recorded over the 12 month

5. Physical measures will not be measured throughout the course of the study.

STRENGTHS AND LIMITATIONS OF THIS STUDY

captured within 15 days of inception.

study period.

persistent pain and disability following a whiplash injury.

and theory, and their applicability in clinical practice.

2	
3 4	54
5 6 7	55
7 8 9	56
10 11	57
12 13	58
14 15	59
16 17	60
18 19	
20 21	61
22 23	62
24 25 26	63
20 27 28	64
29 30	65
31 32	66
33 34	67
35 36	
37 38	68
39 40	69
41 42	70
43 44 45	71
46 47	72
48 49	73
50 51	74
52 53	75
54 55	76
56 57	77
58 59 60	78

BMJ Open

79 INTRODUCTION

The term 'whiplash' refers to an acceleration-deceleration motion of the neck, most commonly following a motor vehicle collision, that can result in tissue injury (1). Following whiplash, individuals may develop a variety of clinical signs and symptoms, collectively termed whiplash-associated disorders (WAD) (1). Soft tissue damage has been detected in some individuals with WAD; however, this has not been linked to the progression of symptoms (2-4). WAD is associated with a significant socioeconomic burden (5); the cost to the UK economy is \sim £3 billion per year (6). This burden is primarily acquired by those developing chronic, long-term symptoms and half of those with WAD continue to report neck pain at least one year after the injury (7). This highlights the importance of early identification of features associated with ongoing pain and disability; this would facilitate personalised treatment approaches to mitigate the risk associated with the development of chronic WAD (8).

High-quality evidence has shown higher pain and disability immediately post-injury to be the most consistent factor predicting longer-term pain and disability (9, 10). Studies have examined other factors that might predict the development of ongoing pain following whiplash covering all three elements of the biopsychosocial model: demographic factors (7, 11-14), pre-existing comorbidities (11, 13, 14), collision factors (7, 11-13, 15-18), physical factors (14, 19-24), radiological changes (2, 25-30), societal factors (31), and psychological factors (7, 32, 33). Yet, there is controversial evidence concerning the predictive ability of other factors including: general psychological distress, depression, previous neck pain, gender, and the use of a seatbelt at the time of the collision (9, 14, 32, 34, 35). This illustrates an incomplete picture regarding the predictive factors for recovery versus ongoing pain in WAD.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

103	There has been little investigation of the predictive utility of physical factors
104	following whiplash injury; of the studies conducted, measures of physical function have been
105	limited to measures such as range of motion (19, 20, 36, 37) and cranio-cervical flexion test
106	performance (38, 39). Yet, physical factors offer potential to improve prediction accuracy
107	(REFS). For example, there is a wealth of evidence describing changes in motor function and
108	muscle behaviour (40-42). Decreased maximum angular velocity of neck movements has
109	been observed in individuals with chronic WAD when compared to healthy individuals (40).
110	Such changes in movement behaviour have been confirmed in individuals with WAD and
111	insidious neck pain, where lower peak velocity was observed in both groups (41). In addition,
112	a significantly larger jerk index (measure of the smoothness of neck movement) has been
113	reported in individuals with chronic neck pain of both insidious and traumatic onset, when
114	compared to asymptomatic individuals (41). Another feature reported in those with chronic
115	neck pain is increased co-activation of the neck flexors and extensors (42), which is
116	associated with reduced neck strength (42). These additional features have not been
117	investigated in individuals with acute WAD, but results from experimental pain studies
118	suggest these adaptations occur soon after pain onset and may therefore have relevance for
119	ongoing symptoms in individuals with chronic WAD (43-50).
120	A number of methodological limitations of previously published studies in the field of
121	WAD prognosis have been identified. For instance, a review conducted by Walton et al. (10)
122	found that many predictors have conflicting results (11, 12, 32). Inconsistent outcome

measures have previously been used by to define recovery in WAD (51), with a different definition of recovery used in each study (7, 52). Other reasons for inconsistency can be attributed to poor reporting (11, 53) and the inclusion of subjects from different settings and at different inception points. Another recent review found controversial evidence with

BMJ Open

2	
3 4	127
5 6	100
7	128
8 9	129
10 11	130
12 13	131
14 15 16	132
16 17 18	133
19 20	134
21	-
22 23	135
24 25	136
26 27 28	137
20 29 30	138
31 32	139
33	1.40
34 35	140
36 37 38	141
39 40 41	142
42 43 44	143
44 45 46	144
47 48	145
49 50	146
51 52	147
53 54	148
55 56	140
57	149
58 59 60	150

127 regards to which demographic factors, prior pain, and psychological factors are associated 128 with the transition to chronic WAD. (9).

129 Collectively, these limitations impact on our understanding of factors associated with 130 the transition to chronic WAD following a whiplash injury and highlight the need for an 131 adequately powered, methodologically robust observational study to provide useful 132 predictive estimates. Such knowledge could lead to the development of a new clinical care 133 pathway that matches early interventions to risk factors for poor recovery.

Aims of study 135

136 The aim of the study is to identify factors soon after a whiplash injury that predict the occurrence of persistent pain and disability six months later. We will include a broad range of 137 138 candidate predictors, including measures of physical function with self-reported measures of 139 pain, disability and established psychological constructs.

141 **METHODS**

142 **Study Design**

iez o, The study will be a prospective observational design. This protocol has been developed 143 144 in accordance with guidelines from the SPIRIT 2013 Statement (54), the Transparent Reporting 145 of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD) 146 statement (55), the Quality In Prognosis Studies (QUIPS) tool (56), the CHecklist for critical 147 Appraisal and data extraction for systematic Reviews of prediction Modelling Studies 148 (CHARMS) (57), and the PROGnosis RESearch Strategy (PROGRESS) framework (58).

151 Participants

We aim to recruit 150 individuals presenting to a private physiotherapy clinic in Malaga, Spain with symptoms attributed to a recent (within the previous 15 days) whiplash injury. Consecutive eligible individuals will be invited to participate in the study for a followup period of 12 months until this target is achieved. Study recruitment will commence November 2019 and will be completed by November 2020.

Eligibility criteria

Inclusion criteria: Adults aged 18 years or older, who are experiencing acute neck pain with or without other whiplash-related symptoms such as headache, upper limb symptoms, or dizziness (59) following a whiplash injury, attributed to a recent (previous 15 days) motor vehicle collision or sports injury. An ability to understand written and verbal Spanish language is also necessary.

Exclusion criteria: Individuals who experienced cervical spine fractures or dislocations during or since their whiplash injury (WAD grade IV) (1), loss of consciousness during or since their whiplash injury (60), or have ever received neck surgery (61) will be excluded from participation. Individuals with malignant spinal disorders, mental disorders (62, 63), or regular use of analgesic medication prior to the injury due to chronic pain will also be excluded.

Recruitment

Participants will be recruited from a single private physiotherapy clinic in Malaga, Spain. Based on feasibility data (clinical records), we estimate that at least 300 eligible individuals will be eligible for recruitment over a 12 month period, and that at least 50% can be expected to consent to participation. Page 9 of 39

BMJ Open

We will recruit eligible patients within 15 days of their whiplash injury. One designated physiotherapist working at the physiotherapy clinic will manually check electronic clinical records of all consecutive patients attending the clinic. Once an eligible patient is identified at the clinic, the designated clinic physiotherapist will contact the patient to invite them to participate in the study; this invitation will be done either in-person at the clinic after the first treatment session or via telephone after patients have returned home from their clinic appointment. A verbal and written description of the study will be provided during the invitation. Those patients interested in participation will be invited to attend an initial study session at the physiotherapy clinic. At this session, the researcher will again explain the study design and context, patients will be given a detailed information sheet, and written informed consent will be sought. The English version of the consent form is provided in the supplementary file. Once recruited, participants (Figure 1) will be asked to complete a baseline self-reported questionnaire, after which physical data will be collected (Table 1). Participants will be informed that they can withdraw from the study at any time, without having to provide a reason. They will also be advised to carry on with their daily routines as usual, and that any interventions received during their physiotherapy sessions will be recorded for a descriptive analysis.

8 192

193 Outcome

194Outcome will be measured using the Neck Disability Index (NDI) (64); a neck-195specific self-reported questionnaire used to assess neck pain-related disability. The NDI196consists of 10 items of daily activities including personal care, lifting, reading, work, driving,197sleeping, and recreation (64). Each item has five ordinal response options from 0 (no198disability) to 5 (complete disability), producing a maximum total score of 50 which can be

1 2	
3 4	199
5 6 7	200
8 9	201
10 11	202
12 13 14	203
15 16	204
17 18	205
19 20 21	206
22 23	207
24 25	208
26 27 28	209
29 30	210
31 32	211
33 34 35	212
36 37	213
38 39	214
40 41 42	215
42 43 44	216
45 46	217
47 48 40	218
49 50 51	219
52 53	220
54 55	221
56 57 58	222
59 60	223

expressed as a percentage (0-100%). The reliability of NDI and validity have beenestablished in individuals with neck pain disorders (65).

Outcome will be assessed at six months for the prediction model (66). Using six months as a cut-off for identifying outcome is supported by the finding that most individuals recover within three months of the whiplash injury, with fewer recovering after this (11, 67), and a plateau after six months (68). To investigate the course of neck pain and disability, the NDI scores will additionally be collected at 3 and 6 months.

207 Candidate predictors

Due to the current lack of consensus on predictive factors of poor outcome, several self-reported and physical measures will be collected (9). Factors have been selected based on current knowledge of prognosis in whiplash (2, 7, 9, 11-13, 24, 31-34, 69) and a theoretical association with prognosis in individuals with neck pain, as informed by the biopsychosocial model of pain (70). These factors are also chosen due to being feasible to measure in clinical practice. Candidate predictors are summarised in Table 1 with further information available in the supplementary file S1. All data collection will be standardised through protocols and clinical report forms

Table 1: Summary of self-repo	rted and physical measures that will be	collected	
Domain/Candidate predictor	Data collection instrument	Baseline commencing ≤ 15 days post- injury	3, 12 months, clin course; 6 months, outcom assessment point
General patient characteristics	including previous musculoskeletal pain		•
Gender at birth	Male/Female	√	
Education	Highest educational level attained	\checkmark	
Psychosocial features	5	I	1
Catastrophizing	Pain Catastrophizing Scale (PCS)	\checkmark	
Kinesiophobia	Tampa Scale of Kinesiophobia [TSK- 11]	√	
Recovery Expectation	Numeric Rating scales (NRS)	\checkmark	
Injury characteristics		1	1
Disability	Neck Disability Index (NDI)	\checkmark	\checkmark
Pain characteristics			
Current neck pain intensity	Numeric Rating scales (NRS)	\checkmark	
Neck pain intensity at the end of neck range of motion tasks.	Numeric Rating scales (NRS)	\checkmark	
Neck pain intensity at the end of maximum contraction tasks of cranio-cervical flexion, neck flexion, and neck extension.	Numeric Rating scales (NRS)	1	
Neck pain intensity at the end of submaximum contraction tasks of cranio-cervical flexion, neck flexion, and neck extension.	Numeric Rating scales (NRS)	1	
Physical measures			
Neck range of motion	G-Walk (Flexion, extension, rotation, & side flexion)	~	
Neck angular velocity Smoothness of Neck movement	G-Walk (Flexion, extension, rotation, & side flexion)	1	
	G-Walk (Flexion, extension, rotation, & side flexion)		
Neck proprioception	G-Walk (Rotation with eyes closed)	✓	
Maximal and sub-maximal isometric contractions	Dynamometer – evaluation of cranio- cervical flexion, flexion, and extension maximum voluntary contraction and control of sub-maximal force	√	
Co-activation of the sternocleidomastoid and splenius capitis	Surface electromyography (EMG) during physical tests described above	\checkmark	

1 2		
3 4	229	
5 6 7	230	Data collection
8 9	231	Baseline and follow-up
10 11 12	232	Baseline data including self-reported questionnaires and physical assessments will be
12 13 14	233	collected immediately following recruitment, at the physiotherapy clinic, by a trained
15 16	234	assessor (MFS) within 15 days of injury. Participants will be contacted by the same assessor
17 18	235	by telephone (MFS) at the University of Malaga (UoM) at three, six and twelve months
19 20 21	236	follow-up, in order to complete the NDI, as used previously (71).
22 23	237	
24 25	238	Data management
26 27 28	239	Participant data privacy will be maintained throughout data handling (collection
29 30	240	transfer, storage, and processing) and will comply with data protection requirements as set out
31 32	241	by the General Data Protection Regulation (GDPR) of the European Union, and UK Data
33 34 35	242	Protection Act 2018 (Figure 2). Participant data will be tracked using only study identification
36 37	243	(ID) numbers. Study ID numbers will be kept separate from study research data, which will be
38 39	244	accessible only by members of the UoM research team.
40 41 42	245	Sensitive data management:
42 43 44	246	Sensitive data management:
45 46	247	Some participant data will be sensitive in nature; in particular consent forms which
47 48	248	contain identifiable data, name, phone, contact address and study ID numbers. Once each
49 50 51	249	participant has completed a consent form in the clinic, it will then be sealed in an envelope and
52 53	250	temporarily locked in a secure drawer at the physiotherapy clinic, with access only available
54 55	251	to members of the UoM research team. Once daily data collection has ended, all sealed
56 57 58	252	envelopes containing consent forms collected on that day will be physically transferred to the
59 60	253	UoM by one of the research team and locked in a secure filing cabinet there. Identifiable data

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
	0
1	1
1	2
1	
1	4
1	5
1	
1	
	8
	9
2	0 1
2	1
2	2
2 2	2
2 2	3 4 5 6 7 8 9 0 1 2
2	4
2	5
2	6
2	7
2	8
- ว	9
2 2	<u> </u>
с 2	0
3	1
3	3
3	4
	5
	6
-	
	8
3	9
4	0
4	
4	
4	
	4
4	
	6
4	7
4	
	9
	0
	1
	2
5	3
	4
5	
5	6
5	
	8
_	9

will be securely stored at UoM for a period of 10 years, after which they will be destroyed. Noidentifiable data will be transferred outside of the UoM.

- 256
- 257 <u>Self-reported questionnaires management:</u>

Self-reported paper questionnaires, identifiable only by study ID number for each 258 259 participant, will be sealed in another envelope and temporarily locked in a secure cabinet at the 260 clinic, separate from the one in which consent forms are stored. Sealed envelopes containing the pseudonymised self-reported questionnaires will be physically transferred to the UoM at 261 262 the end of each data collection day by one of the research team. Once transferred, self-reported 263 questionnaires will be scanned by one of the research team and saved in a password protected 264 laptop computer, owned and managed by UoM. Scanned self-reported electronic data will be 265 encrypted using a WinRAR Software before transit to the University of Birmingham (UoB) (via Power Folder data sharing software, hosted locally at the University). Once received, this 266 pseudonymised data will be uploaded directly to physically secure servers at the UoB, where 267 268 they will remain indefinitely on secure UoB servers with access restricted to members of the 269 study team. Once uploaded to UoB servers, data will be removed completely from the laptop at UoM. The same procedures will be followed for follow-up NDI data at 3, 6, and 12 months. 270

3 271

60

272 <u>Physical data management:</u>

Pseudonymised physical data will be saved in a password protected laptop owned and manged by UoM, whilst at the clinic study session. Access to the UoM laptop is restricted and only available to the local research team. As with other data, pseudonymised electronic data will be encrypted using a WinRAR Software, transferred to the UoB team, and uploaded to the physically secure servers at UoB, where they will remain indefinitely with access restricted to study researchers. Again, once data has been received by the team at UoB, they will be removedfrom UoM computers.

281 Data analysis

Numbers of individuals will be recorded that are: potentially eligible, examined for eligibility, confirmed eligible, recruited into the study, completing follow-up, and analysed. Loss to follow-up and withdrawals will be reported, with reasons where available. Descriptive analyses of participants at baseline will include participant demographics, self-reported questionnaires and physical assessment data.

288 Linear and logistic regression analysis:

Linear regression analysis will be used as the primary analysis to develop a linear model to determine the association between candidate predictors and neck pain and disability (measured by NDI) at 6 months post injury. Linear regression analysis was included as a primary analysis to allow for the inclusion of the outcome (NDI) without dichotomisation. This approach follows the recommendations by PROGRESS series recommending of analysing continuous variables on their continuous scale (72), as well as to the fact that this approach method increases the statistical power and reduces information loss.

In addition to the linear regression analysis, Logistic regression will be included as a secondary analysis to identify factors that are associated with poor outcomes. Outcome (NDI) scores will be dichotomised into good or poor categories with a NDI score of \geq 30% at six months post-injury defined as poor outcome, as described previously.

- 59 302

1 2		
3 4 5 6 7 8 9 10 11 12	303	Variable selection:
	304	Penalization (shrinkage) approach will be used to avoid overfitting the final prognostic
	305	model, given the minimum number of events (10) per variable will be adopted in this study to
	306	develop prognostic modes (73).
12 13 14	307	
15 16	308	Firstly a full model will be constructed including all baseline candidate predictors (Table1)
17 18	309	with their estimated adjusted regression coefficients calculated by standard methods. Next, a
19 20 21	310	shrinkage method, a least absolute shrinkage and selection operator (LASSO) regression, will
22 23	311	be used to effectively exclude candidate predictors from the final model by shrinking their
24 25	312	coefficients to exactly zero (74). Candidate predictors with zero coefficients will be excluded
26 27 28 29 30 31 32	313	from the model, leaving the remaining candidate predictors with regression confidents of
	314	more than zero. This approach is in line with the current recommendations for variable
	315	selection in prognostic models to address overfitting (75). Moreover, this approach is
33 34 35	316	preferred when a model with fewer predictors is desired without affecting the predictive
35 36 37 38 39	317	ability of the model, making it more applicable in clinical practice (73).
	318	
40 41 42	319	Model Performance:
42 43 44	320	The predictive performance of the prognostic screening tool will be assessed using the
45 46	321	established traditional measures of overall prognosis, discrimination, and calibration (76).
47 48	322	Brier score will be used to quantify the overall performance of the screening tool where the
49 50 51	323	score ranges from 0 ('perfect model') to 0.25 ('not informative model') (76). The Receiver
52 53	324	Operator Characteristic (ROC) curve will be used to discriminate between those who did or
54 55	325	did not develop chronic whiplash. Finally, the calibration will be assessed through plotting
56 57 58	326	the mean predicted against observed chronic whiplash cases.
59 60	327	

329	This study will consider the association between 16 candidate predictors (Table 1)
330	and neck pain and disability at 6 months. The authors will ensure that at least ten participants
331	per predictor will be used to develop an adequately powered linear regression analysis (77,
332	78). Because the shrinkage method by LASSO method creates models with fewer predictors
333	(73), it is anticipated that the number of final predictors retained in the final linear model will
334	fall below 12 predictors. Therefore, a sample size target of 120 participants is required to
335	adequately powered a maximum of 12 candidate predictors into the multiple linear
336	regression, with the addition of 30 participants to allow for possible loss of follow-up (total =
337	150).
338	For the sample size of a logistic regression model derived following the LASSO
339	shrinkage method, a minimum of 5 events per predictor is sufficient as established previously
340	(73). Based on the current knowledge about the transition rate from acute to chronic WAD, it
341	is expected that 50% of patients will report persistent neck pain and disability (11, 79, 80).
342	This leaves 60 out of our potential participants who might develop persistent neck pain and
343	disability 6 months post WAD. Therefore, a sample size of 60 participants is adequate to
344	power a logistic regression analysis of 12 candidate predictors with 5 events per predictor.
345	
346	
347	Management of missing data
348	For each variable of interest, numbers of participants with missing data will be reported.
349	Any potential bias due to loss of follow-up will be assessed and compared using baseline data
350	of subjects who withdraw or lost at follow-up (66). Multiple imputation (81) will be used to
351	deal with missing outcome data, if appropriate and necessary. Participants will be excluded

BMJ Open

3 4 5	352	from the predictive model and subsequent analyses if they request to withdraw from the study
5 6 7 8 9 10 11 12 13 14	353	following recruitment (66).
	354	Patients and public involvement
	355	The research question in this study was developed following consultations with
	356	patients. Patients will not be involved in the analysis and data collection of study. The results
15 16	357	of the study will be presented to members of the public and patients during one of our regular
17 18	358	Patient and public involvement meetings.
19 20 21	359	
22 23	360	Ethics and dissemination:
24 25	361	The study will be conducted according to the Declaration of Helsinki. The project has
26 27 28	362	been approved by the Ethics Committee of the province of Malaga, Spain (#30052019). The
28 29 30	363	results of the study will be disseminated via reports published in peer-reviewed journals and
31 32	364	national and international conferences. No datasets will be created as part of this work for
33 34 25	365	deposition or curation. Participant burden has been taken into consideration when developing
35 36 37	366	this study. The number of measures has been kept to a minimum. To ensure the privacy of
38 39	367	each patient, a unique identification number will be assigned to each participant at the time of
40 41	368	recruitment. Only pseudonymised or anonymised data will be used during analyses.
42 43 44	369	Participants will be informed that they can withdraw from the study at any time, without
45 46	370	having to provide a reason; however, where a reason is given it will be recorded. If a
47 48	371	participant withdraws, no further data will be collected but data already collected will be
49 50 51	372	retained for analyses. Baseline characteristics of any participants that withdraw will be
51 52 53	373	compared to retained participants to assess for any differences.
54 55	374	At each data collection session, confirmation to proceed will be gained before any
56 57	375	data are collected. Any concerns and/or adverse events will be noted and fed back to clinical
58 59 60	376	staff, according to the Good Clinical Practice principles. For ethical reasons, routine

treatment will not be withheld from individuals at any point during the study. The details and frequency of any received treatment will be recorded and reported. The protocol and conduct of this study are strengthened by the inclusion of patient and public involvement, who contributed to the development of study design and documentation. In addition, they will contribute to the processes of performing data analysis, interpretation of results, and producing a lay summary of findings.

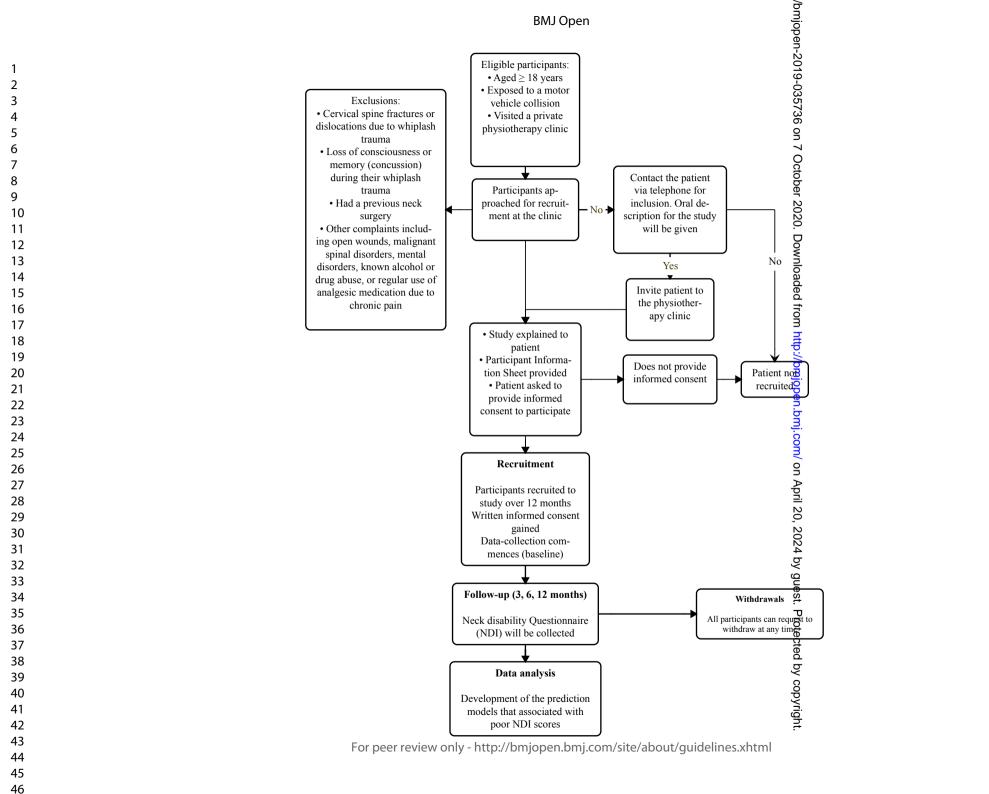
DISCUSSION

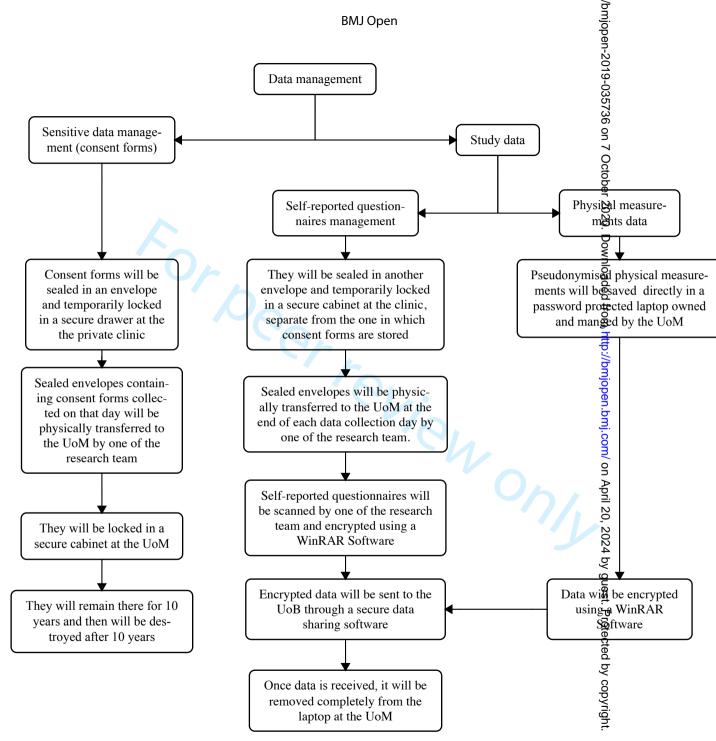
This is the first protocol to describe, *a priori*, the methods and analysis for identifying predictive factors for ongoing pain and disability following acute whiplash injury. In particular, self-reported measures together with novel physical measure will be incorporated including angular velocity, smoothness of movements, force steadiness, and neck muscle co-activation to predict poor outcome in individuals with WAD recruited within 15 days of the injury. The selected candidate predictors are included based on current knowledge and the possible utilisation in clinical practice. The knowledge gained through this study can assist in the identification of personalised interventions to facilitate recovery and therefore minimise the transition to chronic whiplash.

SPIRIT 2013 Statement, TRIPOD, PROGRESS, QUIPS and CHARMS statements and frameworks have informed design to ensure rigorous conduct of this study (54-58). The results from this study will provide new insights into who is likely to recover versus who is likely to develop persistent symptoms following a whiplash injury. Using a novel combination of outcome measures will allow the future development of a tool to predict development of chronic and disabling pain following a whiplash injury providing new opportunities to identify precision intervention.

1 2		
3 4 5	402	Author Contributions
5 6 7	403	All authors contributed to the focus of this study. AA is a PhD student with DF as Lead
8 9	404	Supervisor and AG as Co-Supervisor. AA drafted the initial protocol with guidance from DF
10 11 12	405	and DWE at all stages. ALS and MFS will be involved in collecting data from participants.
13 14	406	All authors approved the final version for publication. DF is guarantor.
15 16	407	
17 18 19	408	
20 21	409	Funding Statement
22 23	410	This research received no specific grant from any funding agency in the public, commercial
24 25 26	411	or not-for-profit sectors.
27 28	412	
29 30	413	Competing Interests Statement
31 32 33	414	The authors have no competing interests to report.
33 34 35	415	
36 37	416	
38 39	417	Patient consent
40 41 42	418	Not required.
43 44	419	Not required.
45 46	420	Ethics approval
47 48 49	421	Approved by Ethics Committee of the province of Malaga, Spain (#30052019).
50 51	422	
52 53	423	Data sharing statement
54 55	424	No additional data are available.
56 57 58 59 60	425	Amendment Protocol

2		
3	100	
4	426	If changes in the protocol deemed to be necessary during conducting the study, they will be
5 6	407	de sum auto de su the main num auto fithe ato des
7	427	documented on the main report of the study.
8	120	Deferences
9	428	References
10	429 430	1 Southard WO Strawman ML Salmi LD Coggidy ID Dynamogovy I Swiggs S at al
11 12	430 431	1. Spitzer WO, Skovron ML, Salmi LR, Cassidy JD, Duranceau J, Suissa S, et al. Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders:
12	431	redefining "whiplash" and its management. Spine (Phila Pa. 1995;20(8 Suppl):1S-73S.
14	4 <i>32</i> 433	
15		2. Li Q, Shen H, Li M. Magnetic resonance imaging signal changes of alar and
16	434	transverse ligaments not correlated with whiplash-associated disorders: a meta-analysis of
17	435	case-control studies. European spine journal : official publication of the European Spine
18	436	Society, the European Spinal Deformity Society, and the European Section of the Cervical
19 20	437	Spine Research Society. 2013;22(1):14-20.
20 21	438	3. Kongsted A, Sorensen JS, Andersen H, Keseler B, Jensen TS, Bendix T. Are early
22	439	MRI findings correlated with long-lasting symptoms following whiplash injury? A
23	440	prospective trial with 1-year follow-up. European Spine Journal. 2008;17(8):996-1005.
24	441	4. Ichihara D, Okada E, Chiba K, Toyama Y, Fujiwara H, Momoshima S, et al.
25	442	Longitudinal magnetic resonance imaging study on whiplash injury patients: minimum 10-
26	443	year follow-up. Journal of orthopaedic science : official journal of the Japanese Orthopaedic
27 28	444	Association. 2009;14(5):602-10.
28 29	445	5. Holm LW, Carroll LJ, Cassidy JD, Hogg-Johnson S, Cote P, Guzman J, et al. The
30	446	burden and determinants of neck pain in whiplash-associated disorders after traffic collisions:
31	447	results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated
32	448	Disorders. J Manipulative Physiol Ther. 2009;32(2 Suppl):S61-9.
33	449	6. Melody J. Whiplash associated disorder training pack. London: British Association
34	450	for Accident and Emergency Medicine. 2003.
35	451	7. Carroll LJ, Holm LW, Hogg-Johnson S, Cote P, Cassidy JD, Haldeman S, et al.
36 37	452	Course and prognostic factors for neck pain in whiplash-associated disorders (WAD): results
38	453	of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated
39	454	Disorders. Spine (Phila Pa. 2008;33(4 Suppl):S83-92. doi: 10.1097/BRS.0b013e3181643eb8.
40	455	8. Jull GA, Soderlund A, Stemper BD, Kenardy J, Gross AR, Cote P, et al. Toward
41	456	optimal early management after whiplash injury to lessen the rate of transition to chronicity:
42	457	discussion paper 5. Spine (Phila Pa 1976). 2011;36(25 Suppl):S335-42.
43 44	458	9. Sarrami P, Armstrong E, Naylor JM, Harris IA. Factors predicting outcome in
44 45	459	whiplash injury: a systematic meta-review of prognostic factors. Journal of orthopaedics and
46	460	traumatology : official journal of the Italian Society of Orthopaedics and Traumatology.
47	461	2017;18(1):9-16.
48	462	10. Walton DM, Carroll LJ, Kasch H, Sterling M, Verhagen AP, Macdermid JC, et al. An
49	463	Overview of Systematic Reviews on Prognostic Factors in Neck Pain: Results from the
50	464	International Collaboration on Neck Pain (ICON) Project. The open orthopaedics journal.
51 52	465	2013;7:494-505.
52 53	466	11. Kamper SJ, Rebbeck TJ, Maher CG, McAuley JH, Sterling M. Course and prognostic
54	467	factors of whiplash: A systematic review and meta-analysis. Pain. 2008;138(3):617-29.
55	468	12. Scholten-Peeters GG, Verhagen AP, Bekkering GE, van der Windt DA, Barnsley L,
56	469	Oostendorp RA, et al. Prognostic factors of whiplash-associated disorders: a systematic
57	470	review of prospective cohort studies. PAIN. 2003;104(1-2):303.
58 50	471	13. Cote P, Cassidy JD, Carroll L, Frank JW, Bombardier C. A systematic review of the
59 60	472	prognosis of acute whiplash and a new conceptual framework to synthesize the literature.
00	473	Spine (Phila Pa 1976). 2001;26(19):E445-58.


1		
2		
3		
4	474	14. Walton DM, MacDermid JC, Giorgianni AA, Mascarenhas JC, West S, Zammit CA.
5	475	Risk factors for persistent problems following acute whiplash injury: Update of a systematic
6 7	476	review and meta-analysis. JOURNAL OF ORTHOPAEDIC AND SPORTS PHYSICAL
8	477	THERAPY. 2013;43(2):31.
9	478	15. Atherton K, Wiles NJ, Lecky FE, Hawes SJ, Silman AJ, Macfarlane GJ, et al.
10	479	Predictors of persistent neck pain after whiplash injury. Emergency Medicine Journal.
11	480	2006;23(3):195-201.
12 13	481	16. Hartling L, Pickett W, Brison RJ. Derivation of a clinical decision rule for whiplash
14	482	associated disorders among individuals involved in rear-end collisions. Accident; analysis
15	483	and prevention. 2002;34(4):531-9.
16	484	17. Hendriks EJ, Scholten-Peeters GG, van der Windt DA, Neeleman-van der Steen CW,
17	485	Oostendorp RA, Verhagen AP. Prognostic factors for poor recovery in acute whiplash
18	486 487	patients. Pain. 2005;114(3):408-16. 18. Radanov BP, Sturzenegger M, Di GS. Long-term outcome after whiplash injury. A 2-
19 20	487	18. Radanov BP, Sturzenegger M, Di GS. Long-term outcome after whiplash injury. A 2- year follow-up considering features of injury mechanism and somatic, radiologic, and
21	489	psychosocial findings. Medicine. 1995;74(5):281-97.
22	490	19. Kasch H, Bach FW, Jensen TS. Handicap after acute whiplash injury A 1-year
23	491	prospective study of risk factors. Neurology. 2001;56(12):1637-43.
24	492	20. Kasch H, Qerama E, Kongsted A, Bendix T, Jensen TS, Bach FW. Clinical
25 26	493	assessment of prognostic factors for long-term pain and handicap after whiplash injury: a 1-
20 27	494	year prospective study. European journal of neurology. 2008;15(11):1222-30.
28	495	21. Brijnath B, Bunzli S, Xia T, Singh N, Schattner P, Collie A, et al. General
29	496	practitioners knowledge and management of whiplash associated disorders and post-
30	497	traumatic stress disorder: implications for patient care. BMC Fam Pract.
31	498	2016;17:82.(doi):10.1186/s12875-016-0491-2.
32 33	499	22. Sterling M, Jull G, Vicenzino B, Kenardy J, Darnell R. Physical and psychological
34	500	factors predict outcome following whiplash injury. Pain. 2005;114(1):141-8.
35	501	23. Sterling M, Jull G, Kenardy J. Physical and psychological factors maintain long-term
36	502	predictive capacity post-whiplash injury. Pain. 2006;122(1):102-8.
37	503	24. Goldsmith R, Wright C, Bell S, Rushton A. Cold hyperalgesia as a prognostic factor
38 39	504	in whiplash associated disorders: a systematic review (Provisional abstract). Manual Ther
39 40	505	[Internet]. 2012; 17(5):[402-10 pp.]. Available from:
41	506	http://onlinelibrary.wiley.com/o/cochrane/cldare/articles/DARE-12012041731/frame.html
42	507	https://ac-els-cdn-com.ezproxye.bham.ac.uk/S1356689X12000446/1-s2.0-
43	508	<u>S1356689X12000446-main.pdf?_tid=269e83f4-10a0-11e8-8efb-</u>
44	509	00000aab0f26&acdnat=1518514246_bc1f615313bbda7dfe89d961d2473d2f.
45 46	510	25. Knackstedt H, Kråkenes J, Bansevicius D, Russell MB. Magnetic resonance imaging
47	511	of craniovertebral structures: clinical significance in cervicogenic headaches. The journal of
48	512	headache and pain. 2012;13(1):39-44.
49	513	26. Vetti N, Krakenes J, Damsgaard E, Rorvik J, Gilhus NE, Espeland A. Magnetic
50	514	resonance imaging of the alar and transverse ligaments in acute whiplash-associated disorders
51 52	515	1 and 2: a cross-sectional controlled study. Spine (Phila Pa. 2011;36(6):E434-40. doi:
52 53	516	10.1097/BRS.0b013e3181da21a9.
54	517	27. Dullerud R, Gjertsen Ø, Server A. Magnetic resonance imaging of ligaments and
55	518	membranes in the craniocervical junction in whiplash-associated injury and in healthy control
56	519	subjects. Acta Radiologica. 2010;51(2):207-12.
57	520	28. Myran R, Kvistad KA, Nygaard OP, Andresen H, Folvik M, Zwart J-A. Magnetic
58 59	521 522	resonance imaging assessment of the alar ligaments in whiplash injuries: a case-control study.
60	322	Spine. 2008;33(18):2012-6.


29. Krakenes J, Kaale BR. Magnetic resonance imaging assessment of craniovertebral ligaments and membranes after whiplash trauma. Spine. 2006;31(24):2820-6. 30. Richter M, Ferrari R, Otte D, Kuensebeck HW, Blauth M, Krettek C. Correlation of clinical findings, collision parameters, and psychological factors in the outcome of whiplash associated disorders. J Neurol Neurosurg Psychiatry. 2004;75(5):758-64. Spearing NM, Connelly LB, Gargett S, Sterling M. Does injury compensation lead to 31. worse health after whiplash? A systematic review. Pain. 2012;153(6):1274-82. Williamson E, Williams M, Gates S, Lamb SE. A systematic literature review of 32. psychological factors and the development of late whiplash syndrome. Pain. 2008;135(1-2):20-30. 33. Walton DM, Pretty J, MacDermid JC, Teasell RW. Risk factors for persistent problems following whiplash injury: results of a systematic review and meta-analysis. Journal of Orthopaedic & Sports Physical Therapy. 2009;39(5):334-50. 34. Williams M, Williamson E, Gates S, Lamb S, Cooke M. A systematic literature review of physical prognostic factors for the development of Late Whiplash Syndrome. Spine. 2007;32(25):E764-E80. Sterling M. Does knowledge of predictors of recovery and nonrecovery assist 35. outcomes after whiplash injury? Spine. 2011;36(Supplement 25):S257-S62. Sterling M, Jull G, Vicenzino B, Kenardy J, Darnell R. Development of motor system 36. dysfunction following whiplash injury. PAIN®. 2003;103(1-2):65-73. Dall'Alba PT, Sterling MM, Treleaven JM, Edwards SL, Jull GA. Cervical range of 37. motion discriminates between asymptomatic persons and those with whiplash. Spine. 2001;26(19):2090-4. Falla DL, Jull GA, Hodges PW. Patients with neck pain demonstrate reduced 38. electromyographic activity of the deep cervical flexor muscles during performance of the craniocervical flexion test. Spine. 2004;29(19):2108-14. 39. Jull GAJJomp. Deep cervical flexor muscle dysfunction in whiplash. 2000;8(1-2):143-54. 40. Baydal-Bertomeu JM, Page ÁF, Belda-Lois JM, Garrido-Jaén D, Prat JM. Neck motion patterns in whiplash-associated disorders: quantifying variability and spontaneity of movement. Clinical biomechanics. 2011;26(1):29-34. Sjölander P, Michaelson P, Jaric S, Djupsjöbacka M. Sensorimotor disturbances in 41. chronic neck pain-range of motion, peak velocity, smoothness of movement, and repositioning acuity. Manual therapy. 2008;13(2):122-31. Fernandez-de-las-Penas C, Falla D, Arendt-Nielsen L, Farina D. Cervical muscle co-42. activation in isometric contractions is enhanced in chronic tension-type headache patients. Cephalalgia. 2008;28(7):744-51. Falla D, Farina D, Dahl MK, Graven-Nielsen TJJoAP. Muscle pain induces task-43. dependent changes in cervical agonist/antagonist activity. 2007;102(2):601-9. Madeleine P, Leclerc F, Arendt-Nielsen L, Ravier P, Farina D. Experimental muscle 44. pain changes the spatial distribution of upper trapezius muscle activity during sustained contraction. Clinical neurophysiology. 2006;117(11):2436-45. Madeleine P, Mathiassen SE, Arendt-Nielsen L. Changes in the degree of motor 45. variability associated with experimental and chronic neck-shoulder pain during a standardised repetitive arm movement. Experimental Brain Research. 2008;185(4):689-98. Muceli S, Falla D, Farina D. Reorganization of muscle synergies during 46. multidirectional reaching in the horizontal plane with experimental muscle pain. Journal of neurophysiology. 2014;111(8):1615-30. Smith M, Coppieters MW, Hodges PW. Effect of experimentally induced low back 47. pain on postural sway with breathing. Experimental brain research. 2005;166(1):109-17.

1		
2		
3		
4	573	48. Tucker KJ, Hodges PW. Changes in motor unit recruitment strategy during pain alters
5	574	force direction. European journal of pain. 2010;14(9):932-8.
6	575	49. Hug F, Hodges PW, Tucker K. Task dependency of motor adaptations to an acute
7	576	noxious stimulation. Journal of neurophysiology. 2014;111(11):2298-306.
8 9	577	50. Gizzi L, Muceli S, Petzke F, Falla D. Experimental muscle pain impairs the
9 10	578	synergistic modular control of neck muscles. PloS one. 2015;10(9):e0137844.
11	579	51. Walton D. A review of the definitions of 'recovery' used in prognostic studies on
12	580	whiplash using an ICF framework. Disability & Rehabilitation. 2009;31(12):943-57.
13	581	52. Gabel CP, Burkett B, Neller A, Yelland M. Can long-term impairment in general
14	582	practitioner whiplash patients be predicted using screening and patient-reported outcomes?
15	583	International Journal of Rehabilitation Research. 2008;31(1):79-80.
16	584	53. Holm LW, Carroll LJ, Cassidy JD, Skillgate E, Ahlbom A. Expectations for recovery
17 18	585	important in the prognosis of whiplash injuries. PLoS Medicine. 2008;5(5):0760-7.
19	586	54. Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al.
20	587	SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med.
21	588	2013;158(3):200-7.
22	589	55. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a
23	590	multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD
24 25	591	statement. BMC medicine. 2015;13(1):1.
25 26	592	56. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias
20	593	in studies of prognostic factors. Ann Intern Med. 2013;158(4):280-6.
28	594	57. Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al.
29	595	Critical appraisal and data extraction for systematic reviews of prediction modelling studies:
30	596	the CHARMS checklist. PLoS medicine. 2014;11(10):e1001744.
31	597	58. Steyerberg EW, Moons KG, van der Windt DA, Hayden JA, Perel P, Schroter S, et al.
32 33	598	Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS medicine.
34	599	2013;10(2):e1001381.
35	600	59. Sterling M. Differential development of sensory hypersensitivity and a measure of
36	601	spinal cord hyperexcitability following whiplash injury. Pain. 2010;150(3):501-6.
37	602	60. Cantu RC. Cerebral concussion in sport. Sports Medicine. 1992;14(1):64-74.
38	603	61. Crawford JR, Khan RJ, Varley GW. Early management and outcome following soft
39 40	604	tissue injuries of the neck—a randomised controlled trial. Injury. 2004;35(9):891-5.
41	605	62. Rosenfeld M, Gunnarsson R, Borenstein P. Early intervention in whiplash-associated
42	606	disorders: a comparison of two treatment protocols. Spine (Phila Pa. 2000;25(14):1782-7.
43	607	63. Rosenfeld ME, Seferiadis A, Carlsson J, Gunnarsson R. Active Intervention in
44	608	Patients with Whiplash-Associated Disorders Improves Long-Term Prognosis: A
45 46	609	Randomized Controlled Clinical Trial. Spine. 2003;28(22):2491-8.
46 47	610	64. Vernon H, Mior S. The Neck Disability Index: a study of reliability and validity.
47	611	Journal of manipulative and physiological therapeutics. 1991;14(7):409-15.
49	612	65. Macdermid JC, Walton DM, Avery S, Blanchard A, Etruw E, Mcalpine C, et al.
50	613	Measurement properties of the neck disability index: a systematic review. Journal of
51	614	orthopaedic & sports physical therapy. 2009;39(5):400-C12.
52	615	66. Rushton A, Evans D, Middlebrook N, Heneghan N, Falla D, editors.
53	616	DEVELOPMENT OF A PROGNOSTIC SCREENING TOOL TO PREDICT THE RISK OF
54 55	617	CHRONIC PAIN AND DISABILITY FOLLOWING MUSCULOSKELETAL TRAUMA:
55 56	618	PROTOCOL FOR A PROSPECTIVE OBSERVATIONAL STUDY. Orthopaedic
57	619	Proceedings; 2018: The British Editorial Society of Bone & Joint Surgery.
58	620	67. Carroll LJ, Hogg-Johnson S, van der Velde G, Haldeman S, Holm LW, Carragee EJ,
59	621	et al. Course and Prognostic Factors for Neck Pain in the General Population. Results of the
60		

Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. Journal of Manipulative and Physiological Therapeutics. 2009;32(2 SUPPL.):S87-S96. 68. Sterling M, Hendrikz J, Kenardy JJP. Compensation claim lodgement and health outcome developmental trajectories following whiplash injury: a prospective study. 2010;150(1):22-8. Daenen L, Nijs J, Raadsen B, Roussel N, Cras P, Dankaerts W. Cervical motor 69. dysfunction and its predictive value for long-term recovery in patients with acute whiplash-associated disorders: a systematic review. J Rehabil Med. 2013;45(2):113-22. Pincus T, Kent P, Bronfort G, Loisel P, Pransky G, Hartvigsen J. Twenty-five years 70. with the biopsychosocial model of low back pain—is it time to celebrate? A report from the twelfth international forum for primary care research on low back pain. Spine. 2013;38(24):2118-23. Kivioja J, Jensen I, Lindgren U. Neither the WAD-classification nor the Quebec Task 71. Force follow-up regimen seems to be important for the outcome after a whiplash injury. A prospective study on 186 consecutive patients. European Spine Journal. 2008;17(7):930-5. Riley RD, Hayden JA, Steverberg EW, Moons KG, Abrams K, Kyzas PA, et al. 72. Prognosis Research Strategy (PROGRESS) 2: prognostic factor research. PLoS medicine. 2013;10(2):e1001380. Pavlou M, Ambler G, Seaman SR, Guttmann O, Elliott P, King M, et al. How to 73. develop a more accurate risk prediction model when there are few events. Bmj. 2015;351:h3868. 74. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological). 1996;58(1):267-88. Riley RD, van der Windt D, Croft P, Moons KG. Prognosis Research in Healthcare: 75. concepts, methods, and impact: Oxford University Press; 2019. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. 76. Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology (Cambridge, Mass). 2010;21(1):128. 77. Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model. Bmj. 2009;338:b604. Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic 78. and Cox regression. American journal of epidemiology. 2007;165(6):710-8. Carroll LJ, Holm LW, Hogg-Johnson S, Côté P, Cassidy JD, Haldeman S, et al. 79. Course and prognostic factors for neck pain in whiplash-associated disorders (WAD): results of the Bone and Joint Decade 2000–2010 Task Force on Neck Pain and Its Associated Disorders. Journal of manipulative and physiological therapeutics. 2009;32(2):S97-S107. Hendriks EJ, Scholten-Peeters GG, van der Windt DA, Neeleman-van der Steen CW, 80. Oostendorp RA, Verhagen AP. Prognostic factors for poor recovery in acute whiplash patients. Pain. 2005;114(3):408-16. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple 81. imputation for missing data in epidemiological and clinical research: potential and pitfalls. Bmj. 2009;338:b2393.

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\22\\13\\14\\15\\16\\17\\18\\9\\20\\21\\22\\23\\24\\25\\26\\27\\28\\9\\30\\31\\32\\33\\4\\5\\36\end{array}$	672 673 674 675 676 677 678 679 680 681 682 683 684	Figure Captions Figure 1: Participant flow through the study. Figure 2: Process for data management.
$\begin{array}{c} 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 56\\ 56\\ \end{array}$		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary file 1. Candidate predictors

General patient characteristics including previous musculoskeletal pain

Participants' demographic data will be recorded at baseline including gender and highest attained education level.

Psychosocial features

Pain Catastrophizing Scale (PCS)

The PCS will be used to evaluate the extent to which patients ruminate, magnify or feel helpless about controlling their pain [1]. It is a 13-item self-reported outcome consisting of three dimensions including rumination, magnification and helplessness to measure pain related catastrophizing. Subjects rate the frequency of experiencing catastrophic thoughts as 0 (not at all) or 4 (all the times) which produces an overall score of from 0-52 with higher scores indicating greater negative pain thoughts. The reliability and validity of the PCS have been established [1], and it has been used in patients with WAD [2, 3]. Moderate evidence of significant association shows that initial catastrophising was a risk factor for developing persistent symptoms in whiplash [4] with pooled odd ratio=3.77 (95% confidence intervals = 1.33 - 10.74) [5].

Tampa Scale of Kinesiophobia [TSK-11]

The TSK-11 is a self-reported outcome used to evaluate fear of movement or injury during activities [6]. It consists of 11-item of which each is scored from 1 ('totally agree') to 4 ('totally disagree') producing a total score from 11 to 44, with higher scores indicating higher fear of movement. The TSK-11 has showed excellent test-retest reliability and good construct validity in detecting changed in pain and disability [7]. Indirect association was found between fear of movement and higher neck pain and disability in patients with acute

BMJ Open

WAD [8]; catastrophizing increases fear of movement which leads to decreased functional self-efficacy that results in higher pain and disability [8].

Recovery Expectation (high or low expectation of recovery)

Patients will be asked if they expect to fully recover within the next six months. Recovery expectations will be assessed by the question "In your opinion, how likely is it that you will be fully recovered with no persistent sequelae?" [9]. In response to this question, recovery expectations will be measured using NRS where a patient need to indicate how likely he/she would have completely recovered, by choosing a score from 0 ("not likely") to 10 ("very likely") [10]. Low expectation of making full recovery were found to be an independent predictive factor associated (odds ratio= 4.2 [95% CI = 2.1 - 8.5]) with higher disability in individuals with acute WAD [10].

evie

Pain characteristics

Numeric Rating Scale (NRS)

Current neck pain intensity will be measured using NRS which is a 11-point scale range from 0 (no pain) to 10 (worst possible pain). Also, perceived pain intensity will be measured at the end of each physical measure of neck range of motion tasks, neck maximum contraction tasks, and neck submaximum contraction tasks. The reliability of NRS has been established in patients with neck pain (ICC:0.76) [11]. Also, participants will be asked remotely (through the app) where they have 'experienced pain during the last week' from several body locations [12]. Based on their response of chosen areas, pain intensity will be assessed using NRS. Finally, neck pain intensity following active movements will be measured through NRS. High evidence of significant association shows that initial neck pain intensity was a consistent risk factor for developing persistent symptoms in whiplash [4] with pooled odd ratio= 5.61 (95% CI = 3.74 - 8.43) [13].

Physical measures

<u>Wearable sensor for motion detection (Neck range of movement, angular velocity, movement</u> <u>smoothness and proprioception)</u>

A wearable BTS G-WALK® sensor system (BTS Bioengineering, Italy) will be utilised to assess neck range of motion, angular velocity, movement smoothness, and neck proprioception. The sensor connects to a computer via Bluetooth; at the end of each analysis an automatic report containing all the parameters recorded during the test, is displayed.

Active neck flexion, side-flexion, extension, and rotation will be measured at baseline. Impaired range of motion has been found in individuals with WAD compared to healthy controls [14, 15] and has also been found to be a factor associated with persistent disability at one year [16, 17], and neck pain and disability at 6 months [18, 19].

Besides range of motion, the angular velocity and movement smoothness will be recorded simultaneously during each neck movement. Each movement direction will be repeated five times and the average taken. These kinematic variables may provide more information about motor control disturbances [20]. A study found maximum angular velocity and acceleration were lower in subjects with chronic WAD when compared to healthy control [20]. The same finding (lower peak velocity) was found in cohorts of both WAD and insidious neck pain [21]. Moreover, significant differences in jerk indices were observed during active neck movements in a study comparing healthy controls to those with chronic neck pain of both insidious onset and traumatic onset [21].

Neck proprioception will be measured by calculating the Joint Position Error (JPE) following active neck rotation. JPE is defined as the ability to relocate the natural head

BMJ Open

position without the assistance of vision [22]. To assess this, the same wearable sensor (G-Walk) will be used. Patients will repeat active neck rotation with their eyes closed and will indicate when they think that they have returned to the starting position. JPE will be assessed three times for both right and left rotation and the average taken for each direction. Decreased head repositioning accuracy has been observed in people with idiopathic neck pain [23], but with greater repositioning errors found in individuals with neck pain attributed to a trauma [24], which is even more evident in those with moderate to severe pain and disability [14].

Dynamometer (maximal and sub-maximal isometric contractions)

At baseline, the participants will perform maximal and sub-maximal isometric contractions to measure maximum strength and control of sub-maximal forces. Cranio-cervical flexion, neck flexion and extension will be tested using a hand-held dynamometer for neck muscle testing (NOD, OT Bioeletronica, Italy).

1. Maximum voluntary contraction (MVC):

Two MVCs will be performed for cranio-cervical flexion, neck flexion, and extension. Each maximum MVCs will last for 3 seconds, separated by 1 minute rest in between [25]. The mean MVC for each direction will be calculated and used in the analysis [26, 27]. Patients will perform an initial trial to familiarise themselves with each movement under the guidance of a trained examiner with minimal force.

Cranio-cervical flexion strength testing will be performed with the participant in supine lying with the hip and knees flexed to approximately 90 degrees [28]. The head will be placed in neutral position and the dynamometer placed behind the upper cervical spine with the instruction being to nod as if saying yes but as hard as you can. Patients will be seated to measure neck flexion and extension strength with the participant seated comfortably on a chair with hip and knee flexed to 90 degrees with head in neutral position

and feet flat on the ground. To measure neck flexion, the dynamometer will be placed over the forehead and against the resistance of the examiner, the patient will be instructed to "push as hard as you can as you try to bring your chin to your chest" [29]. The dynamometer will then be placed on the back of the head and the patient instructed to "push as hard as you can into the dynamometer as if trying to bring the back of the head to your neck" [29].

Patients with neck pain commonly present with reduced neck strength [29-32], although the extent of impaired strength is highly variable across patients [33]. Significant lower isometric MVC force has been observed in patients with chronic WAD compared to healthy controls [29]. Reduced neck muscle strength has been associated with the extent of disability [25, 34] and pain [34] in people with chronic neck pain..

2. Sub-maximal voluntary contractions:

 In the same positions described for the MVC, participants will be instructed to perform a single submaximal contraction at 20% of their maximal force and hold this for 10 seconds for cranio-cervical flexion, flexion and extension. In addition, participants will perform 40%, 60%, 80%, and 100% of their maximal force for the cranio-cervical flexion only. Feedback on force will guide the participant to maintain specific degree of contraction from their MVC over the duration of the contraction.

Surface electromyography (EMG) (co-activation of the sternocleidomastoid and splenius capitis)

The amplitude of sternocleidomastoid (SCM) activity will be measured bilaterally during the isometric maximum and submaximal voluntary contractions of cranio-cervical flexion. In addition, both SCM and splenius capitis (SC) activity will be measured bilaterally during the maximum and submaximal voluntary contractions of neck flexion and extension.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Increased co-activation of the neck flexors and extensors has been observed in patients with chronic neck pain and headache [35], and is associated with reduced neck strength [35]. Changes in neck muscle activation has been observed in people with acute neck pain following a whiplash injury [14, 36].

Following gentle skin preparation, pairs of bipolar surface electrodes will be placed over SCM and SC bilaterally following published guidelines for electrode placement [37]. Signals will be detected using wireless EMG (Ultium® EMG, Noraxon, USA). Co-activation indexes will be calculated as described previously [38].

References:

- 1. Sullivan, M.J., S.R. Bishop, and J. Pivik, *The pain catastrophizing scale: development and validation.* Psychological assessment, 1995. **7**(4): p. 524.
- 2. Sterling, M., et al., *Psychologic factors are related to some sensory pain thresholds but not nociceptive flexion reflex threshold in chronic whiplash.* The Clinical journal of pain, 2008. **24**(2): p. 124-130.
- 3. Sullivan, M.J., et al., *Differential predictors of pain and disability in patients with whiplash injuries.* Pain Research and Management, 2002. **7**(2): p. 68-74.
- 4. Walton, D.M., et al., An Overview of Systematic Reviews on Prognostic Factors in Neck Pain: Results from the International Collaboration on Neck Pain (ICON) Project. Open Orthop J, 2013. **7**: p. 494-505.
- 5. Walton, D.M., et al., *Risk factors for persistent problems following whiplash injury: Results of a systematic review and meta-analysis.* Journal of Orthopaedic and Sports Physical Therapy, 2009. **39**(5): p. 334-349.
- 6. Roelofs, J., et al., Fear of movement and (re) injury in chronic musculoskeletal pain: Evidence for an invariant two-factor model of the Tampa Scale for Kinesiophobia across pain diagnoses and Dutch, Swedish, and Canadian samples. Pain, 2007.
 131(1): p. 181-190.
- 7. Woby, S.R., et al., *Psychometric properties of the TSK-11: a shortened version of the Tampa Scale for Kinesiophobia.* Pain, 2005. **117**(1-2): p. 137-44.
- Sandborgh, M., A.-C. Johansson, and A. Söderlund, The relation between the fearavoidance model and constructs from the social cognitive theory in acute WAD. Pain Research and Management, 2016. 2016.

9.	Elrud, R., et al., <i>Is time of neck pain onset a prognostic factor in whiplash-associat</i>
10.	<i>disorders</i> ? Edorium Journal of Disability and Rehabilitation, 2016. 1 : p. 16-23. Holm, L.W., et al., <i>Expectations for recovery important in the prognosis of whiplas injuries</i> . PLoS medicine, 2008. 5 (5): p. e105.
11.	Cleland, J.A., J.D. Childs, and J.M. Whitman, <i>Psychometric properties of the Neck</i>
11.	Disability Index and Numeric Pain Rating Scale in patients with mechanical neck p Archives of physical medicine and rehabilitation, 2008. 89 (1): p. 69-74.
12.	Parsons, S., et al., <i>Measuring troublesomeness of chronic pain by location</i> . BMC
12.	Musculoskeletal Disorders, 2006. 7 (1): p. 34.
13.	Walton, D.M., et al., Risk factors for persistent problems following acute whiplash
	<i>injury: update of a systematic review and meta-analysis.</i> J Orthop Sports Phys The 2013. 43 (2): p. 31-43.
14.	Sterling, M., et al., Development of motor system dysfunction following whiplash
	<i>injury.</i> PAIN [®] , 2003. 103 (1-2): p. 65-73.
15.	Dall'Alba, P.T., et al., Cervical range of motion discriminates between asymptoma
	persons and those with whiplash. Spine, 2001. 26 (19): p. 2090-2094.
16.	Kasch, H., F.W. Bach, and T.S. Jensen, Handicap after acute whiplash injury A 1-ye
	prospective study of risk factors. Neurology, 2001. 56 (12): p. 1637-1643.
17.	Kasch, H., et al., Clinical assessment of prognostic factors for long-term pain and
	handicap after whiplash injury: a 1-year prospective study. Eur J Neurol, 2008.
	15 (11): p. 1222-30.
18.	Sterling, M., G. Jull, and J. Kenardy, <i>Physical and psychological factors maintain lo</i>
	<i>term predictive capacity post-whiplash injury.</i> Pain (03043959), 2006. 122 (1/2): p
19.	102-108.
19.	Sterling, M., et al., <i>Physical and psychological factors predict outcome following</i> whiplash injury. Pain, 2005. 114 (1): p. 141-148.
20.	Baydal-Bertomeu, J.M., et al., Neck motion patterns in whiplash-associated
20.	disorders: quantifying variability and spontaneity of movement. Clinical
	biomechanics, 2011. 26 (1): p. 29-34.
21.	Sjölander, P., et al., Sensorimotor disturbances in chronic neck pain—range of
	motion, peak velocity, smoothness of movement, and repositioning acuity. Manua
	therapy, 2008. 13 (2): p. 122-131.
22.	Revel, M., C. Andre-Deshays, and M. Minguet, Cervicocephalic kinesthetic sensibility
	in patients with cervical pain. Archives of physical medicine and rehabilitation, 19
	72 (5): p. 288-291.
23.	Stanton, T., et al., Evidence of impaired proprioception in chronic idiopathic neck
	pain: a systematic review and meta-analysis. 2015. 101 : p. e1432-e1433.
24.	de Vries, J., et al., Joint position sense error in people with neck pain: a systematic
	<i>review.</i> Manual therapy, 2015. 20 (6): p. 736-744.
25.	Lindstroem, R., T. Graven-Nielsen, and D. Falla, Current pain and fear of pain
	contribute to reduced maximum voluntary contraction of neck muscles in patients
	with chronic neck pain. Archives of physical medicine and rehabilitation, 2012.
26	93 (11): p. 2042-2048.
26.	Chiu, T.T., et al., <i>Correlation among physical impairments, pain, disability, and</i>
	patient satisfaction in patients with chronic neck pain. 2005. 86 (3): p. 534-540.

2 3 4 5 6	27.
7 8	28.
9 10 11 12	29.
13 14 15 16	30.
17 18 19 20	31.
21 22 23	32.
24 25 26 27	33.
28 29 30	34.
31 32 33	35.
34 35 36	36.
37 38 39	37.
40 41 42 43	38.
44 45 46	
47 48 49	
50 51 52	
53 54 55	
56 57	
58 59 60	

- 28. Falla, D.L., G.A. Jull, and P.W. Hodges, *Patients with neck pain demonstrate reduced electromyographic activity of the deep cervical flexor muscles during performance of the craniocervical flexion test*. Spine, 2004. **29**(19): p. 2108-2114.
- 29. Pearson, I., et al., *Maximal voluntary isometric neck strength deficits in adults with whiplash-associated disorders and association with pain and fear of movement.* journal of orthopaedic & sports physical therapy, 2009. **39**(3): p. 179-187.
- 30. Scheuer, R. and M. Friedrich, *Reliability of isometric strength measurements in trunk and neck region: patients with chronic neck pain compared with pain-free persons.* Archives of physical medicine and rehabilitation, 2010. **91**(12): p. 1878-1883.
- 31. Cagnie, B., et al., *Differences in isometric neck muscle strength between healthy controls and women with chronic neck pain: the use of a reliable measurement.* Archives of physical medicine and rehabilitation, 2007. **88**(11): p. 1441-1445.
- 32. Ylinen, J., et al., *Decreased isometric neck strength in women with chronic neck pain and the repeatability of neck strength measurements1*. Archives of physical medicine and rehabilitation, 2004. **85**(8): p. 1303-1308.
- 33. Ylinen, J. and J. Ruuska, *Clinical use of neck isometric strength measurement in rehabilitation*. Archives of physical medicine and rehabilitation, 1994. **75**(4): p. 465-469.
- 34. Lindstrøm, R., et al., Association between neck muscle coactivation, pain, and strength in women with neck pain. Manual therapy, 2011. **16**(1): p. 80-86.
- 35. Fernandez-de-las-Penas, C., et al., *Cervical muscle co-activation in isometric contractions is enhanced in chronic tension-type headache patients.* Cephalalgia, 2008. **28**(7): p. 744-751.
- 36. Sterling, M., et al., *Characterization of acute whiplash-associated disorders*. Spine, 2004. **29**(2): p. 182-188.
- Falla, D., et al., Location of innervation zones of sternocleidomastoid and scalene muscles—a basis for clinical and research electromyography applications. 2002.
 113(1): p. 57-63.
- 38. Le, P., et al., *A review of methods to assess coactivation in the spine*. Journal of electromyography and kinesiology, 2017. **32**: p. 51-60.

3 4

		BMJ Open	Pag
		BMJ Open SPRICE Standard Protocol Items: Recommendations for Interventional Trials	
		ommended items to address in a clinical trial protocol and related documents*	
Section/item	ltem No	Description	Addressed on page number
Administrative infe	ormatior	n Vinload	
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	Not intended
	2b	Trial identifier and registry name. If not yet registered, name of intended registry All items from the World Health Organization Trial Registration Data Set Date and version identifier	NA
Protocol version	3	Date and version identifier	NA
Funding	4	Sources and types of financial, material, and other support	19
Roles and	5a	Names, affiliations, and roles of protocol contributors	1
responsibilities	5b	Name and contact information for the trial sponsor	1
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	NA
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	NA
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 37 of 39			BMJ Open	
1 2	Introduction		-2019-0	
- 3 4 5	Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each interven	4-6
6 7		6b	Explanation for choice of comparators	NA
8 9	Objectives	7	Specific objectives or hypotheses	6
10 11 12 13	Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	7
14 15	Methods: Participa	nts, int	erventions, and outcomes	
16 17 18	Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of couge tries where data will be collected. Reference to where list of study sites can be obtained	7
19 20 21	Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	7
22 23 24 25	Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	NA
23 26 27 28		11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease) के हु	NA
29 30 31		11c	Strategies to improve adherence to intervention protocols, and any procedures for $m_{\lambda_1}^{\aleph}$ itoring adherence (eg, drug tablet return, laboratory tests)	NA
32 33		11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	8
34 35 36 37 38 39	Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	10
40 41 42	Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure 1)	9
43 44 45 46			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

			BMJ Open	
1 2	Sample size	14	Estimated number of participants needed to achieve study objectives and how it was $\dot{\underline{G}}$ etermined, including clinical and statistical assumptions supporting any sample size calculations	16
3 4 5	Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size $\frac{97}{8}$	7-8
6 7	Methods: Assignm	ent of i	nterventions (for controlled trials)	
8 9	Allocation:		ober 2	
10 11 12 13 14 15	Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	NA
16 17 18 19	Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	NA
20 21 22	Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	NA
23 24 25 26	Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	NA
27 28 29		17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	NA
30 31 32	Methods: Data coll	ection,	management, and analysis	
33 34 35 36 37	Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	NA
38 39 40 41 42		18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	10-11
43 44 45			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page	39	of	39
------	----	----	----

Page 39 of 39			BMJ Open	
1 2 3 4	Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	12-14
5 6 7	Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol σ_{Q}^{2}	15-16
8 9		20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	16
10 11 12 13		20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	17
14 15	Methods: Monitorin	ng	oa ded	
16 17 18 19 20	Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	NA
21 22 23 24		21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	7
25 26 27	Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	NA
28 29 30 31	Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	NA
32 33	Ethics and dissemi	nation	by gue	
34 35 36	Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) ap∯oval	17
37 38 39 40 41 42 43	Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility contents, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	20
44 45				

		BMJ Open	Ра
Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authoris \vec{P} d surrogates, and how (see Item 32)	8
	26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable 3	NA
Confidentiality	27	How personal information about potential and enrolled participants will be collected, spared, and maintained in order to protect confidentiality before, during, and after the trial	12-13
Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial a begin by the study site ∇	19
Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contract $\frac{s}{2}$ a greements that limit such access for investigators	12-13
Ancillary and post- trial care	30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	NA
Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, health are professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	17
	31b	Authorship eligibility guidelines and any intended use of professional writers	NA
	31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	NA
Appendices		20, 2	
Informed consent materials	32	Model consent form and other related documentation given to participants and author $\hat{\mathbb{S}}$ ed surrogates	185
Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	NA
Amendments to the p	orotoco	I that this checklist be read in conjunction with the SPIRIT 2013 Explanation & Elaboratien for important clarification of the should be tracked and dated. The SPIRIT checklist is copyrighted by the SPIRIT Group under the Creative Constraints 3.0 Unported" license.	
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Correction: Do measures of physical function enhance the prediction of persistent pain and disability following a whiplash injury? Protocol for a prospective observational study in Spain

Alalawi A, Luque-Suarez A, Fernandez-Sanchez M, *et al.* Do measures of physical function enhance the prediction of persistent pain and disability following a whiplash injury? Protocol for a prospective observational study in Spain. *BMJ Open* 2020;**10**:e035736. doi: 10.1136/bmjopen-2019-035736

This article was previously published with an error in authorship. The updated affiliations for author Ahmed Alalawi are listed below:

- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, UK.
- Physical Therapy Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

BMJ Open 2020;10:e035736corr1. doi:10.1136/bmjopen-2019-035736corr1

Check for updates