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ABSTRACT
Objectives The aim was to use routine data available at a 
patient’s admission to the hospital to predict polypharmacy 
and drug–drug interactions (DDI) and to evaluate the 
prediction performance with regard to its usefulness to 
support the efficient management of benefits and risks of 
drug prescriptions.
Design Retrospective, longitudinal study.
Setting We used data from a large multicentred 
pharmacovigilance project carried out in eight psychiatric 
hospitals in Hesse, Germany.
Participants Inpatient episodes consecutively discharged 
between 1 October 2017 and 30 September 2018 (year 1) 
or 1 January 2019 and 31 December 2019 (year 2).
Outcome measures The proportion of rightly classified 
hospital episodes.
Methods We used gradient boosting to predict respective 
outcomes. We tested the performance of our final models 
in unseen patients from another calendar year and 
separated the study sites used for training from the study 
sites used for performance testing.
Results A total of 53 909 episodes were included in the 
study. The models’ performance, as measured by the area 
under the receiver operating characteristic, was ‘excellent’ 
(0.83) and ‘acceptable’ (0.72) compared with common 
benchmarks for the prediction of polypharmacy and DDI, 
respectively. Both models were substantially better than a 
naive prediction based solely on basic diagnostic grouping.
Conclusion This study has shown that polypharmacy 
and DDI can be predicted from routine data at patient 
admission. These predictions could support an 
efficient management of benefits and risks of hospital 
prescriptions, for instance by including pharmaceutical 
supervision early after admission for patients at risk before 
pharmacological treatment is established.

INTRODUCTION
The most common medical decision is the 
prescription of medicines.1 Pharmacotherapy 
is also essential for the treatment of mental 
and behavioural disorders,2–6 where more 
than 130 different drugs with proven effi-
cacy are currently available.7 The combina-
tion of multiple drugs is required in many 

clinical situations,8 but this is associated with 
an increased risk of drug–drug interactions 
(DDI),9 which enhances the risk of adverse 
drug reactions (ADR).10

The simultaneous use of five or more 
different pharmaceuticals is defined as poly-
pharmacy.11 12 Its prevalence is high in both 
outpatient and inpatient settings, especially 
in old aged patients.13–17 Cost savings from 
reducing polypharmacy can be substan-
tial.18 Due to an ageing population and an 
increasing number of patients with multi-
morbidity, polypharmacy is likely to become 
more frequent in the future, thereby further 
complicating the efficient management of 
benefits and risks of prescriptions in hospital 
psychiatry.19

DDI can be pharmacokinetic or pharma-
codynamic in nature. In psychiatry, most 

Strengths and limitations of this study

 ► Detailed and broad longitudinal prescription data 
from eight hospitals, allowing to delineate the 
daily prescription patterns for each hospital epi-
sode and identifying polypharmacy and drug–drug 
interactions.

 ► Restricted set of features in prediction models which 
should already be routinely available or easily possi-
ble to implement in many hospitals.

 ► Relatively low risk of information leakage and over-
fitting by testing the prediction performance in pa-
tients that were treated in another calendar year 
and by separating the study sites that were used for 
model training from the study sites that were used 
for testing the prediction performance.

 ► No delineation of patient- specific benefit-–risk bal-
ances of prescriptions, for instance by including 
drug serum levels, results of electrocardiograms or 
individual pharmacogenetic risk factors.

 ► Restriction to study sites from one large provider of 
inpatient psychiatric services in the region of Hesse, 
Germany.
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pharmacokinetic DDI are related to the cytochrome P450 
(CYP)- mediated drug metabolism.20 21 Pharmacodynamic 
DDI arise when the pharmacological effect of one drug 
is affected directly by another one.22 The latter is most 
relevant when combining drugs with anticholinergic or 
QT interval prolonging activity. Anticholinergic drugs 
decrease or block the actions of acetylcholine on central 
and peripheral acetylcholine receptors and may lead to 
multiple ADR like dry mouth, confusion, constipation, 
urinary retention, falls or delirium.23 24 Combining anti-
cholinergic drugs increases the risk of the occurrence and 
severity of the respective ADR.24–26 QT interval prolonging 
properties of drugs can lead to ventricular arrhythmia 
(Torsade de Pointes, TdP) and cardiac arrest.27–30 Not all 
but most DDI are related to negative clinical outcomes 
and this relationship has been studied thoroughly. There-
fore, for most drug combinations avoiding of DDI is a way 
to improve drug safety.

The use of information technology and the inclusion 
of hospital pharmacists are frequently discussed ways 
to improve efficient management of benefits and risks 
of prescriptions in hospitals. While research has shown 
ambiguous results for the effectiveness and acceptance 
of information technology to support continuous drug 
management during the hospital stay,31–35 systematic 
reviews have found improved patient outcomes for the 
inclusion of hospital pharmacists in adult36 and paedi-
atric inpatients.37

There is a lack of evidence considering the potential to 
identify patients at risk of DDI at their admission to the 
hospital. If potential DDI risks can be detected before a 
patient’s pharmacological treatment is established, drug 
safety can improve by early focus on balancing patient- 
specific, combined benefit–risk ratios of all prescrip-
tions. Furthermore, if polypharmacy can be predicted in 
advance, that is, detecting cases that will receive at least 
five drugs simultaneously, this allows early identification 
of patients that will have particular needs of drug safety 
management. The aim of the present study was to use 
routine data available at admission to the hospital in order 
to predict polypharmacy and DDI during the stay, respec-
tively, and to evaluate the prediction performance with 
regard to its usefulness to support the efficient manage-
ment of benefits and risks of drug prescriptions. A further 
aim was to compare the results of a machine learning 
approach with those achieved by means of logistic regres-
sion and by means of a naive baseline classifier.

METHODS
Design, setting and participants
We carried out a retrospective, longitudinal study in 
eight psychiatric hospitals in Hesse, Germany. Our study 
included all inpatient episodes consecutively discharged 
between 1 October 2017 and 30 September 2018 (year 
1) or 1 January 2019 and 31 December 2019 (year 2). 
Episodes at departments for child and adolescent psychi-
atry were excluded. An inpatient episode was defined as 

an individual patient’s stay at the hospital between admis-
sion and formal discharge with a planned duration of 
at least one complete day and night. Our study was part 
of a large clinical pharmacovigilance project sponsored 
by the Innovations Funds of the German Federal Joint 
Committee (‘Optimization of pharmacological treatment 
in hospitalized psychiatric patients (OSA- PSY)’, study 
number 01VSF16009).

Patient and public involvement
Patients and public were not directly involved in the 
design of this retrospective study.

Data
Our study used daily medication data from the electronic 
medical records at the study sites. These data contained 
each individual medication for each day of an inpatient 
episode. This allowed to investigate the medications given 
at each day separately and to include all modifications 
of pharmaceutical treatment during a stay. We defined 
polypharmacy as the concurrent prescription of at least 
five drugs per day.11 12 DDI were defined as (i) pharma-
cokinetic cytochrome P450 CYP- mediated DDI (CYP450- 
Interaction), (ii) the prescription of more than one 
concurrent anticholinergic drug (Antichol. Combi.) and 
(iii) the prescription of more than one concurrent QT 
interval prolonging drug (QT- Combi.).

Daily prescription data per episode were matched with 
DDI- information obtained from guidelines and additional 
studies. CYP- mediated drugs were identified in accor-
dance to the Consensus Guidelines for Therapeutic Drug 
Monitoring in Neuropsychopharmacology38 restricted to 
clinically relevant drugs according to the Food and Drug 
Administration.39 In addition, melperone,40 levome-
promazine41 and perazine42–44 were considered as CYP 
inhibitors. Additional non- psychotropic victim drugs 
were added based on CYP substrate properties defined 
by Hiemke and Eckermann.45 In total, these sources 
resulted in covering the following isoforms for analyses of 
CYP- mediated DDI: CYP1A2, CYP2B6, CYP2C19, CYP2C9, 
CYP2D6, CYP2E1, CYP3A4.

QT interval prolonging drugs were identified based 
on the lists of the Arizona Center for Education and 
Research, which maintains lists of drugs that have either 
a known or a possible risk for TdP.46 47 Anticholinergic 
activity of drugs was identified according to Hiemke and 
Eckermann, Chew et al and Lertxundi et al.45 48 49

The candidate feature variables that might potentially 
predict polypharmacy and DDI were obtained from 
routinely documented information in the electronic 
medical records and patient administration databases. 
A restricted set of feature variables was used that should 
be available in many hospitals at admission of patients. 
These were patients’ age at admission, gender, somatic 
and psychiatric diagnoses according to the 10th revi-
sion of the International Statistical Classification of 
Diseases and Related Health Problems- German Modifi-
cation (ICD-10- GM), the treatment setting (inpatient vs 
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day- clinic) and the scores at admission from the Global 
Assessment of Functioning Scale,50 the Clinical Global 
Impression,51 the Beck Depression Inventory52 as well as 
the Positive and Negative Syndrome Scale.53

Analysis
The study compared the results obtained through a 
machine learning approach with logistic regression and 
a naive baseline classifier. The chosen machine learning 
approach was gradient boosting with trees,54 as imple-
mented in the CARET package in R.55 56 For compar-
ison, we carried out a logistic regression with the same 
feature variables that were used in the machine learning 
approach. Furthermore, a naive baseline classifier was 
obtained by using only basic diagnostic groups in a 
logistic regression. The basic diagnostic groups were F0/
G3 organic mental disorders/other degenerative diseases 
of the nervous system, F1 substance- related mental disor-
ders, F2 schizophrenia, schizotypal and delusional disor-
ders, F3 affective disorders and others.

We trained, validated and tested our models on different 
patients in order to avoid overly optimistic results from 
the evaluation of their prediction performance. There-
fore, we divided data into a training set, that is, a random 
80% sample of patients discharged in the first year, a vali-
dation set, that is, the remaining 20% of patients of the 
first year and a test set, that is, patients discharged in the 
second year. After separating the datasets, missing data 
were addressed by mean imputation and categories repre-
senting missingness of each individual feature.

We tuned hyperparameters on the basis of the trained 
models’ performance in the validation data set using 
the built- in grid search process in the CARET package, 
thereby modifying each of the four tuning parameters, 
that is, boosting iterations, max depth of trees, shrinkage 
and minimal terminal node size, until a maximum perfor-
mance was reached in the validation sample.

The final models’ performance was assessed in the test 
dataset of episodes discharged in year 2. For judging vari-
ability of performance and robustness across different 
study- sites, we thereby trained eight different models 
of episodes discharged in year 1, each holding- out one 
study- site, and used these models to predict the outcomes 
of episodes discharged in year 2 from the held- out study 
site to restrict assessment of performance to hospitals not 
involved in the training process.

Prediction performance was compared using receiver 
operating characteristic curves (ROC) and Precision and 
Recall plots (PR- plots). We calculated 95% DeLong CIs 
for the area under the ROC.57 Furthermore, we defined 
different cut- off values for the operationalisation of the 
models that maximised sensitivity at a minimum precision 
of 0.6, 0.7 and 0.8. We chose a specificity threshold of 0.2 
to be the minimum for a clinically meaningful application 
based on previous work of Tomašev et al.58 Furthermore, 
we defined a sensitivity of 0.2 as the minimum threshold 
for clinically meaningful application.

The results of machine learning models may be difficult 
to understand since the processes between input and output 
are opaque.59 This aspect is sometimes referred to the term 
‘black- box’. In response, several methods have been devel-
oped to make machine learning models more interpretable.60 
In our study, we calculated so called accumulated local effects 
of feature variables to show the average model prediction 
over the feature and to make their influence interpretable. 
Accumulated local effects describe the way features influence 
the prediction of a machine learning model on average.61 
They are computed as accumulated differences over the 
conditional distribution and are considered unbiased even 
when features are correlated.62 The detailed methods for 
calculating accumulated local effects are described in detail 
in Molnar61 and Apley and Zhu.62

RESULTS
A total of 53 909 episodes were included in the study. 
Table 1 shows the characteristics of the episodes in year 1 
and year 2. The study periods used for training and vali-
dation (year 1) and for testing (year 2) were very similar 
in terms of both total number of inpatient episodes and 
their characteristics.

Figure 1 shows the association between the maximum 
number of different prescriptions an episode has received 
per day and the proportion of episodes with a DDI. As 
expected, the likelihood of all DDI increased with the 
number of prescriptions. It appears remarkable that the 
risk of QT- Combi. showed the steepest increase between 
one and four different medications and levelled off after-
wards. In contrast, the risk of CYP450- Interaction and 
Antichol- Combi. increased at a relatively constant rate. 
Further detailed results describing the frequencies of DDI 
and polypharmacy are provided in online supplemental 
figure S1 (for each diagnosis group) and the online 
supplemental figure S2 (for each combination of DDI 
and polypharmacy). The overall incidence of at least one 
DDI or receiving polypharmacy was relatively high (63%) 
and therefore an import aspect of clinical management.

Figure 2 compares the possible combinations of 
sensitivity, that is, the proportion of correctly predicted 
actual positives, and specificity, that is, the proportion of 
correctly predicted actual negatives, that were reached by 
the different classifications. Furthermore, the operational 
points at the curves that maximise sensitivity at different 
minimum levels of precision are shown. Measured by the 
area under the ROC, the models for polypharmacy and 
DDI achieved a relatively good performance.

The area under the ROC can be a potentially misleading 
measure of model performance when observations are 
distributed very unbalanced between classes.63 There-
fore, figure 2 also compares the possible combinations 
of recall, a synonym for sensitivity, and precision, that 
is, the proportion of actual positives among all positive 
predictions. The analogous figures for the ROC and the 
PR- plots for each individual DDI are shown in online 
supplemental figure S3.
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Figure 3 provides additional measures of classification 
performance based on a set of different potentially mean-
ingful operational points. These should help to facilitate a 
more intuitively understanding of actual clinical usability. 
For instance, the model for polypharmacy operated at a 
minimum precision of 0.70 generated three false alerts 
for seven true alerts. It triggered alerts for one half of all 
admissions, thereby rightly identifying slightly more than 

three fourths of all actual positives and 72% of all actual 
negatives.

Two additional measures of model performance that 
are commonly used to evaluate the performance of clin-
ical prediction models are calibration, that is, how consis-
tent the predictions were with the observed rates, and the 
learning curve, that is, how the prediction performance 
increased with increasing number of episodes in the 

Table 1 Patient characteristics

Year 1 Year 2

Number of 
episodes (n)

26 949 26 960

Study site (n 
and %)

1 1971 7 2039 8

2 5977 22 6108 23

3 2172 8 2157 8

4 3432 13 3447 13

5 5087 19 4874 18

6 2710 10 2831 10

7 3125 12 3073 11

8 2475 9 2431 9

Day- clinic (n 
and %)

3444 13 3394 13

Female (n and 
%)

12 304 46 12 343 46

Age at 
admission 
(years, mean 
and SD)

47 18 47 18

Length of stay 
(days, median 
and IQR)

17 8–33 17 8–33

Diagnostic 
group (n and 
%)

F0/G3 2419 9 2330 9

F1 8980 33 8791 33

F2 4048 15 4086 15

F3 8147 30 8259 31

F4 1722 6 1650 6

F6 1252 5 1347 5

F7 185 1 265 1

Others 196 1 228 1

  NA 0 0 4 0

IQR 25th–75th percentile.
Year 1: 1 October 2017 to 30 September 2018.
Year 2: 1 January 2019 to 31 December 2019.
F0, organic, including symptomatic, mental disorders; F1, mental 
and behavioural disorders due to psychoactive substance use; 
F2, schizophrenia, schizotypal and delusional disorders; F3, mood 
(affective) disorders; F4, neurotic, stress- related and somatoform 
disorders; F6, disorders of adult personality and behavior; F7, 
mental retardation; G3, other degenerative diseases of the nervous 
system.

Figure 1 95% CI of proportion of hospital episodes 
with drug–drug interactions versus maximum number of 
medications per day. CYP450- Interaction: pharmacokinetic 
cytochrome P450 (CYP)- mediated drug–drug interaction. 
QT- Combi.: a combination of at least two drugs on the 
same day with known or possible risk of Torsade de Pointes 
according to the Arizona Center for Education and Research 
classification. Antichol. Combi.: a combination of at least two 
drugs on the same day with at least moderate anticholinergic 
activity.

Figure 2 Receiver operating characteristic curves and 
precision and recall plots. Polypharmacy, receiving at least 
five different medications at the same day. A: precision at 
least 80%, B: precision at least 70%, C: precision at least 
60%. Crossed circles show cut- off values that maximise 
sensitivity at different minimum thresholds of precision. Grey 
areas are not clinically meaningful because of a sensitivity or 
precision of less than 0.2. Dashed horizontal lines show the 
prevalence of the outcome. Diagonal lines show the random 
classifier bottom line. AUC, area under the curve; DDI, drug–
drug interactions; GBM, gradient boosting machine.
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training data. These two measures are provided in online 
supplemental figures S4 and S5.

The overall prediction performance does not inform 
about the influence of individual feature variables on 
the predicted outcomes. These influences are not readily 
accessible in machine learning applications. Therefore, 
figures 4 and 5 show the accumulated local effects of the 
top eight features ranked by their variable importance in 
an effort to show the average model predictions across the 
features and make their influence interpretable. Variable 
importance is a dimensionless measure that represents 
the influence of each feature on the prediction perfor-
mance relative to the other variables (the method is 
described in detail in Friedman54).

The plots describe how the features influenced the 
prediction on average, with negative values representing 
decreasing probabilities and positive values representing 
increasing probabilities. Furthermore, the plots show the 
type of associations between outcome and feature vari-
able, that is, whether they were linear, monotonic or more 
complex. The influence of feature variables on outcomes 
was as clinically expected, supporting the assumption that 
the models provided meaningful predictions.

DISCUSSION
Key findings
The aim of the present study was to use routine data avail-
able at patient admission to the hospital to predict poly-
pharmacy and DDI during the stay as well as to evaluate 
the prediction performance with regard to its usefulness 

to support the efficient management of benefits and 
risks of drug prescriptions. A further aim was to compare 
the results of a machine learning approach with those 
achieved by means of logistic regression and by means 
of a naive baseline classifier. The models’ performance, 
as measured by the area under the ROC, was ‘excellent’ 

Figure 3 Measures of prediction performance. Polyphar.: 
receiving at least five different medications at the same day. 
Pr.: precision of at least. Prevalence: proportion of episodes 
with observed positive outcome. Trig. Rate: proportion of 
episodes that cause a positive prediction. True positive rate 
(a.k.a. sensitivity and recall): proportion of actual positives 
that are correctly identified as such. True negative rate (a.k.a. 
specificity): proportion of actual negatives that are correctly 
identified as such. False positive rate: proportion of actual 
negatives that are falsely predicted as positives. False 
negative rate,; proportion of actual positives that are falsely 
predicted as negatives. Pos. Pred. value (a.k.a. precision): 
proportion of actual positives in all positive predictions. Neg. 
Pred. value: proportion of actual negatives in all negative 
predictions. DDI, drug–drug interactions.

Figure 4 Accumulated local effects of top eight feature 
variables in predicting any drug–drug interaction. Comorb.: 
comorbidities. Age at adm.: age at admission. F10.2: 
dependence syndrome due to use of alcohol as main 
diagnosis. GAF at adm.: Global Assessment of Functioning 
at admission. PANSS NA at adm.: Positive and Negative 
Syndrome Scale missing at admission. Comorb. F10 (ICD): 
mental and behavioural disorders due to use of alcohol as 
secondary diagnosis. CGI at adm.: Clinical Global Impression 
at admission. BDI at adm.: Beck Depression Inventory at 
admission.

Figure 5 Accumulated local effects of top eight feature 
variables in predicting polypharmacy. Polypharmacy: 
receiving at least five different medications at the same 
day. Comorb. I* (ICD): diseases of the circulatory system as 
secondary diagnosis. Comorb.: comorbidities. Age at adm.: 
age at admission. Comorb. E* (ICD): endocrine, nutritional 
and metabolic diseases as secondary diagnosis. GAF at 
adm.: Global Assessment of Functioning at admission. CGI at 
admission: Clinical Global Impression at admission. Comorb. 
F10 (ICD): mental and behavioural disorders due to use of 
alcohol as secondary diagnosis.
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and ‘acceptable’ compared with common benchmarks64 
for the prediction of polypharmacy and DDI, respectively. 
The performance of the machine learning approach was 
very similar to the performance of the logistic regression 
models. Both models were substantially better than a naive 
prediction based solely on basic diagnostic grouping.

A reliable identification of patients at admission that 
will likely receive polypharmacy during their stay or are at 
risk of DDI would be beneficial for an efficient manage-
ment of pharmacotherapy and the promotion of patient 
safety.65 These identifications would allow, for instance, 
the early involvement of pharmacists and specialised 
physicians that could supervise potentially complicated 
constellations and avoid DDI before a patient’s pharma-
cological treatment is established.

However, it is difficult to objectively define the prediction 
performance required for a useful application in routine clin-
ical practice and this was out of the scope of the present study 
(see for instance66 67). Different applications and clinical 
settings likely require their own trade- off decisions between 
reducing false alerts and increasing coverage of actual posi-
tives, sometimes requiring intensive focus on the avoidance 
of missing actual positive cases. Our model was trained, tested 
and validated in the context of inpatient psychiatry. It has the 
potential to be useful in any clinical setting where polyphar-
macy and DDI are relevant and where the feature variables 
are readily available.

Regardless of prediction performance, machine 
learning techniques must be used responsibly in clinical 
practice, otherwise unintended effects can have severe 
consequences.68 The exact framework for a responsible 
use is currently under discussion.69–71 For instance, care-
givers have to be trained in using the provided results, 
patients‘ access to care has to remain equitable, real- 
world performance must be constantly scrutinised, and 
responsibilities in case of errors have to be clear.

Furthermore, the effective implementation in clinical 
practice requires more than high prediction performance. 
Improved patient outcomes depend on how predictions 
are translated into effective decision making.72 This trans-
lation requires the predictions to be reasonably integrated 
in existing clinical processes in order to be accepted by 
medical staff and to create an actual benefit from better 
informed decisions.73

Present study in comparison to previous research
Previous studies found similar results considering the asso-
ciation between patient characteristics and the prediction 
of polypharmacy and DDI. Abolhassani et al studied 17 742 
adult patients discharged between 2009 and 2015 from 
a department of internal medicine at s Swiss hospital.74 
They found age, number of comorbidities and a higher 
Charlson Comorbidity Index independently associated 
with polypharmacy. Pérez et al studied 38 299 patients in 
44 general practices in Ireland between 2012 and 2015 
and found that age and multimorbidity were associated 
with a higher risk of DDI.75 Furthermore, they found that 

hospital admissions themselves were independently asso-
ciated with a higher risk of DDI.

These studies did not investigate psychiatric hospital 
care. To the best of our knowledge, there is currently no 
evidence comparable in scale and scope investigating 
the prediction of polypharmacy and the risk of DDI in 
hospital psychiatry. Predicting other outcomes in hospi-
talised patients has often been found to be more complex 
in psychiatry than in other medical disciplines.76–78 Less 
distinct diagnostic concepts,79–81 less standardisation of 
care82 and a broader spectrum of acceptable therapeutic 
regimes83 were reasons put forward for this.

Several previous studies aimed to use patient and 
service data to predict outcomes of psychiatric hospital 
stays. These studies have often used a broad range 
of feature variables. Moreover, studies were often 
restricted to specific settings and patients. Leigthon et 
al84 attempted at predicting remission after 12 months 
in 79 patients with a first episode of psychosis applying 
a wide range of psychometric, demographic and socio-
economic feature variables and reached an area under 
the ROC of 0.65. Koutsouleris et al85 reached a sensi-
tivity of 71%, a specificity of 72% and a precision of 93% 
in 108 unseen patients with their top 10 demographic, 
socioeconomic and psychometric features to predict 
remission in first episode of psychosis. Lin et al86 used 
single nucleotide polymorphisms from genetic analyses 
and clinical data and reached an area under the ROC of 
0.82 in distinguishing responders from non- responders 
prior to antidepressant therapy in 455 patients with 
major depression.

Strengths and weaknesses of our study
A strength of this study is its detailed longitudinal 
prescription data. This allowed for delineating the daily 
prescription patterns for each episode and identifying 
polypharmacy and DDI. A further strength of this study is 
its broad coverage of psychiatric hospital care by including 
all inpatients admitted to eight psychiatric hospitals for 
2 years. Furthermore, the study used a rather restricted 
set of features which should already be routinely avail-
able or easily possible to implement in many hospitals. 
Moreover, we were able to reduce the risk of information 
leakage and overfitting by testing the prediction perfor-
mance of our models in patients that were treated in 
another calendar year and by separating the study sites 
that were used for model training from the study sites that 
were used for testing the prediction performance.

The present study did not include all potential types of 
pharmacokinetic and pharmacodynamic DDI that could 
occur under psychotropic medication. However, we have 
covered main types of DDI in hospital psychiatry, and 
our clinical prediction models will bring about a tool to 
support the efficient management of benefits and major 
risks of hospital prescriptions.

Our study did not delineate patient- specific benefit–
risk balances of prescriptions, for instance by including 
drug serum levels, results of electrocardiograms or 

 on A
pril 17, 2024 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2020-045276 on 9 A

pril 2021. D
ow

nloaded from
 

http://bmjopen.bmj.com/


7Wolff J, et al. BMJ Open 2021;11:e045276. doi:10.1136/bmjopen-2020-045276

Open access

individual pharmacogenetic risk factors. Therefore, it was 
not possible to differentiate between DDI and actually 
inadequate prescriptions. Neither did our study docu-
ment actual ADR. DDI do not necessarily lead to ADR 
and negative patient outcomes. However, the association 
between undesired DDI and an increased risk of nega-
tive patient outcomes has been thoroughly established by 
previous studies.10 24–30 Indeed, the association between 
DDI and actual negative patient outcomes might often be 
underestimated in psychiatry and therefore neglected in 
clinical practice.87

Another limitation of our study was the lack of time 
stamps on feature data. Patients were diagnosed and 
rated on clinical severity scales at admission and these 
values should mainly remained stable. However, we were 
not able to entirely rule out that these groupings might 
have been changed during the stay by clinical staff. A 
further general limitation of our study was its restric-
tion to study sites from one large provider of inpatient 
psychiatric services in the region of Hesse, Germany. 
This obviously raises the question whether the predic-
tion performance of the present models would remain 
stable if used in different healthcare systems or different 
clinical setting.

Conclusion
This study has shown that polypharmacy and DDI at a 
psychiatric hospital can be predicted from routine data 
at patient admission. These predictions could support 
an efficient management of benefits and risks of hospital 
prescriptions, for instance by including pharmaceutical 
supervision early after admission for patients at risk 
before pharmacological treatment is established. Future 
studies should investigate the clinical impact of such risk 
models on drug safety processes and patient outcomes in 
hospital psychiatry.
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