Article Text

Download PDFPDF

Food choices: concordance in Australian children aged 11–12 years and their parents
  1. Prudence Vivarini1,
  2. Jessica A Kerr1,2,
  3. Susan A Clifford1,2,
  4. Anneke C Grobler1,2,
  5. Pauline W Jansen1,3,4,
  6. Fiona K Mensah1,2,
  7. Louise A Baur5,
  8. Kay Gibbons1,6,
  9. Melissa Wake1,2,7
  1. 1 Murdoch Children’s Research Institute, Parkville, Victoria, Australia
  2. 2 Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
  3. 3 Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, The Netherlands
  4. 4 Department of Psychology, Education and Child Studies, Erasmus University, Rotterdam, The Netherlands
  5. 5 Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
  6. 6 Institute of Health and Sport, Victoria University, Melbourne, Victoria, Australia
  7. 7 Department of Paediatrics and Liggins Institute, University of Auckland, Auckland, New Zealand
  1. Correspondence to Professor Melissa Wake; melissa.wake{at}mcri.edu.au

Abstract

Objectives Snack foods—typically high in salt, sugar, fat and/or energy—are likely important to the obesity epidemic. In the context of a population-based health assessment involving parent–child dyads at child age 11–12 years, we report cross-generational concordance in intake at a controlled snack food observation.

Design Cross-sectional study (Child Health CheckPoint), nested within the Longitudinal Study of Australian Children.

Setting Assessment centres in seven Australian cities, February 2015–March 2016.

Participants Of all participating CheckPoint families (n=1874), 1299 children (50.3% girls) and 1274 parents (85.9% mothers) with snack data were included. Survey weights and methods were applied to account for the clustered multistage sample design.

Outcome measures Partway through the 3.5-hour assessment, parents and children attended Food Stop separately for a timed 15 min ‘snack break’. One of four standardised box size/content combinations was randomly provided to all participants on any given day. Total food mass, energy, nutrients and sodium consumed was measured to the nearest 1 g. Pearson’s correlation coefficients and adjusted multivariable linear regression models assessed parent–child concordance in each variable.

Results Children consumed less grams (151 g [SD 80] vs 165 g [SD 79]) but more energy (1393 kJ [SD 537] vs 1290 kJ [SD 658]) than parents. Parent–child concordance coefficients were small, ranging from 0.07 for sodium intake to 0.17 for carbohydrate intake. Compared with children with parents’ energy intake on the 10th centile, children whose parents were on the 90th centile ate on average 227 kJ more. If extrapolated to one similar unsupervised snack on a daily basis, this equates to an additional 83 050 kJ per year, which could have a cumulative impact on additional body fat.

Conclusions Although modest at an individual level, this measured parent-child concordance in unsupervised daily snack situations could account for substantial annual population differences in energy, fat and sodium intake for children aged 11–12 years.

Trial registration number ISRCTN12538380.

  • energy intake
  • food preferences
  • snacks
  • children
  • inheritance patterns
  • epidemiologic studies

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Contributors PV is the lead author of the manuscript and assisted in initial data collection. JAK is a study investigator who oversaw the Food Stop conception, execution and analyses and provided advice and critical review of this manuscript. SAC is the study project manager, coordinated data collection and provided critical review of this manuscript. ACG assisted with statistical analysis and contributed to the writing of the manuscript. FKM and LAB are study investigators and contributed to the writing and editing of this manuscript. PWJ and KG are collaborators with CheckPoint and provided critical review of the manuscript. MW is the principal investigator of the Child Health CheckPoint, planned the analyses and provided critical review of the manuscript.

  • Funding This work was supported by the National Health and Medical Research Council (NHMRC) of Australia (Project Grants 1041352 and 1109355), The Royal Children’s Hospital Foundation (2014-241), the Murdoch Children’s Research Institute (MCRI), The University of Melbourne, the National Heart Foundation of Australia (100660) and the Financial Markets Foundation for Children (2014-055 and 2016-310). The following authors were supported by the NHMRC: Senior Research Fellowships to MW (1046518) and Career Development Fellowship to FKM (1111160). MW was supported by Cure Kids New Zealand. PWJ was supported by the Dutch Diabetes Foundation, grant number: 2013.81.1664. The MCRI administered the research grants for the study and provided infrastructural support (IT and biospecimen management) to its staff and the study but played no role in the conduct or analysis of the trial. DSS played a role in study design; however, no other funding bodies had a role in the study design and conduct; data collection, management, analysis and interpretation; preparation, review or approval of the manuscript; and decision to submit the manuscript for publication. Research at the MCRI is supported by the Victorian Government’s Operational Infrastructure Support Program.

  • Disclaimer The findings and views reported in this paper are those of the author and should not be attributed to DSS, AIFS or the ABS.

  • Competing interests All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare financial support for the submitted work from the National Health and Medical Research Council of Australia, The Royal Children’s Hospital Foundation, the Murdoch Children’s Research Institute, The University of Melbourne, the National Heart Foundation of Australia and the Financial Markets Foundation for Children. MW received personal fees from the Australian Department of Social Services. MW and FKM were supported by the NHMRC, and MW by Cure Kids New Zealand. MW received grants from NZ Ministry of Business, Innovation & Employment and A Better Start/Cure Kids New Zealand and support from Sandoz to present at a symposium outside the submitted work.

  • Ethics approval The CheckPoint data collection protocol was approved by The Royal Children’s Hospital (Melbourne, Australia) Human Research Ethics Committee (33225D) and the Australian Institute of Family Studies Ethics Committee (14-26).

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data sharing statement The Longitudinal Study of Australian Children datasets and technical documents are available to researchers at no cost via a licence agreement. Data access requests are co-ordinated by the National Centre for Longitudinal Data. More information is available at https://dataverse.ada.edu.au/dataverse/lsac.

  • Patient consent for publication Not required.