Article Text

Application of impulse oscillometry for within-breath analysis in patients with chronic obstructive pulmonary disease: pilot study
  1. Junichi Ohishi1,
  2. Hajime Kurosawa1,
  3. Hiromasa Ogawa1,
  4. Toshiya Irokawa1,
  5. Wataru Hida2,
  6. Masahiro Kohzuki3
  1. 1Department of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan
  2. 2Health Administration Centre, Tohoku University, Sendai, Japan
  3. 3Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
  1. Correspondence to Professor Hajime Kurosawa; kurosawa-thk{at}m.tohoku.ac.jp

Abstract

Background The impulse oscillometry is increasingly used for assessing the oscillatory mechanics of the respiratory system. The within-breath behaviour of the oscillatory mechanics in chronic obstructive pulmonary disease (COPD) is a well-known physiological feature. The purpose of this study was to develop a new approach for assessing this feature using impulse oscillometry.

Methods The oscillatory mechanics were assessed by a commercially available impulse oscillometry device. The respiratory system resistance (Rrs) and reactance (Xrs) were measured during tidal breathing in patients with COPD (n=39) and healthy subjects (n=5). Selected data, the Rrs at 5 Hz (R5), Rrs at 20 Hz (R20), Xrs at 5 Hz (X5), and resonant frequency of Xrs (Fres) every 0.2 s, were extracted from the device. These data were divided into eight time fractions during the respiratory cycle to form averaged respiratory phases.

Results The time courses of the R5 and X5 were notably dependent on the respiratory cycles in patients with COPD, while there was little such dependency in healthy subjects. Irrespective of respiratory phase, R5 and Fres increased, and X5 fell to a more negative level in patients with COPD in a severity-dependent fashion. The increase in the R5 and negative level in the X5 were more prominent in the middle of the expiratory phase. The severity dependence in the R20 was relatively small compared with that in the R5.

Conclusions The results of this study suggest that impulse oscillometry can assess the within-breath behaviour of the oscillatory mechanics with high temporal resolution, which may be helpful for evaluating the severity of COPD. Further studies are needed to reveal which biomarkers obtained with this approach would be suitable for evaluating the airway obstruction.

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Supplementary materials

  • Supplementary Data

    This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

    Files in this Data Supplement:

Footnotes

  • Correction notice The “To cite: …” information and running footer in this article have been updated with the correct volume number (volume 1).

  • To cite: Ohishi J, Kurosawa H, Ogawa H, et al. Application of impulse oscillometry for within-breath analysis in patients with chronic obstructive pulmonary disease: pilot study. BMJ Open 2011;1:e000184. doi:10.1136/bmjopen-2011-000184

  • Funding Grant-in-Aid for Japanese Society for the Promotion of Science Fellows.

  • Competing interests None.

  • Patient consent Obtained.

  • Ethics approval Ethics approval was provided by Tohoku University Medical Ethics Committee.

  • Contributors JO and HK performed the measurement and analysis in this study. HK and HO recruited the patients for this study. TI and WH contributed to the interpretation of data. MK conceived of the study and participated in its design. All authors have read the original manuscript and approved the revised manuscript.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data sharing statement Deidentified data will be available to readers upon request.